Esempio n. 1
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("BankFilter");
    parser.push_back (new OptionOneParam (STR_URI_INPUT,     "bank input",   true));
    parser.push_back (new OptionOneParam (STR_FILTER_RATIO,  "skip a sequence if 'good letters number / seq.len > X'",   false, "0.8"));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        /** Shortcuts. */
        double percentThreshold = options->getDouble(STR_FILTER_RATIO);

        /** We open the input bank. */
        IBank* inBank = Bank::open (options->getStr(STR_URI_INPUT));
        LOCAL (inBank);

        /** We create the output inBank. */
        IBank* outBank = new BankFasta (options->getStr(STR_URI_INPUT) + "_filtered");
        LOCAL (outBank);

        /** We iterate the inBank. NOTE: WE USE A LAMBDA EXPRESSION HERE. */
        inBank->iterate ([&] (Sequence& s)
        {
            /** Shortcut. */
            char* data = s.getDataBuffer();

            size_t nbOK = 0;
            for (size_t i=0; i<s.getDataSize(); i++)
            {
                if (data[i]=='A' || data[i]=='C' || data[i]=='G' || data[i]=='T')  { nbOK++; }
            }

            if ((double)nbOK / (double)s.getDataSize() > percentThreshold)  {  outBank->insert (s);  }
        });

        /** We flush the output bank. */
        outBank->flush();
    }

    catch (OptionFailure& e)
    {
        return e.displayErrors (cout);
    }
    catch (Exception& e)
    {
        cerr << "EXCEPTION: " << e.getMessage() << endl;
    }
}
Esempio n. 2
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("bankgen");

    const char* OUTPUT_PREFIX = "-out";
    const char* SEQ_LEN       = "-seq-len";
    const char* READ_LEN      = "-read-len";
    const char* OVERLAP_LEN   = "-overlap-len";
    const char* COVERAGE      = "-coverage";

    parser.push_back (new OptionOneParam (OUTPUT_PREFIX,  "output prefix",               true));
    parser.push_back (new OptionOneParam (SEQ_LEN,        "sequence length",             false,  "1000000"));
    parser.push_back (new OptionOneParam (READ_LEN,       "read length",                 false,  "150" ));
    parser.push_back (new OptionOneParam (OVERLAP_LEN,    "overlap between two reads",   false,  "50" ));
    parser.push_back (new OptionOneParam (COVERAGE,       "coverage",                    false,  "3" ));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        /** We create the random sequence. */
        IBank* randomBank = new BankRandom (1, options->getInt(SEQ_LEN));
        LOCAL (randomBank);

        /** We create the reads bank. */
        IBank* readsBank = new BankSplitter (
            randomBank,
            options->getInt(READ_LEN),
            options->getInt(OVERLAP_LEN),
            options->getInt(COVERAGE)
        );
        LOCAL (readsBank);

        /** We save the random bank. */
        SaveAsFasta (randomBank, options->getStr(OUTPUT_PREFIX) + "_sequence.fa");

        /** We save the reads bank. */
        SaveAsFasta (readsBank, options->getStr(OUTPUT_PREFIX) + "_reads.fa");
    }
    catch (OptionFailure& e)
    {
        e.getParser().displayErrors (stdout);
        e.getParser().displayHelp   (stdout);
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}
Esempio n. 3
0
TraversalKind getTraversalKind (int argc, char* argv[])
{
    const char* STR_TRAVERSAL_MODE = "-traversal";

    TraversalKind result;

    // We create a command line parser.
    OptionsParser parser ("Traversal");
    parser.push_back (new OptionOneParam (STR_TRAVERSAL_MODE, "traversal mode ('unitig' or 'contig'",  true));

    // We retrieve the traversal kind.
    try
    {
        IProperties* props = parser.parse (argc, argv);

        parse (props->getStr(STR_TRAVERSAL_MODE), result);
    }
    catch (OptionFailure& e)
    {
        e.displayErrors (std::cout);
        exit (EXIT_FAILURE);
    }
    catch (Exception& e)
    {
        cout << e.getMessage() << endl;
        exit (EXIT_FAILURE);
    }

    return result;
}
Esempio n. 4
0
int main (int argc, char* argv[])
{
    // We create a command line parser.
    OptionsParser parser ("SortingCount");
    parser.push_back (new OptionOneParam (STR_URI_INPUT, "sorting count input", true));

    try
    {
        // Shortcuts.
        typedef Kmer<>::Count Count;
        typedef Kmer<>::Type  Type;

        // We parse the user options.
        IProperties* options = parser.parse (argc, argv);

        // We load the object storing the couples [kmer,abundance]
        Storage* storage = StorageFactory(STORAGE_HDF5).load (options->getStr(STR_URI_INPUT));   LOCAL (storage);

        // We get the group inside the storage object
        Group& dskGroup = storage->getGroup("dsk");

        // We retrieve the partition holding the couples [kmer,abundance]
        Partition<Count>& solidKmers = dskGroup.getPartition<Count> ("solid");

        // Now, we read the couples in two ways, computing a checksum in each case.
        Type checksum1, checksum2;

        // CASE 1: we read the couples [kmer,abundance] with an iterator over the whole partition
        Iterator<Count>* it = solidKmers.iterator();  LOCAL (it);
        for (it->first(); !it->isDone(); it->next())   {   checksum1 = checksum1 + it->item().value;  }

        // CASE 2: we read the couples [kmer,abundance] with an iterator over each collection of the partition
        for (size_t i=0; i<solidKmers.size(); i++)
        {
            // We get the current collection inside the partition
            Collection<Count>& collection = solidKmers [i];

            Iterator<Count>* it = collection.iterator();  LOCAL (it);
            for (it->first(); !it->isDone(); it->next())   {   checksum2 = checksum2 + it->item().value;  }
        }

        // We check that we got the same checksum
        cout << "checksum1=" << checksum1 << endl;
        cout << "checksum2=" << checksum1 << endl;
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }

    return EXIT_SUCCESS;
}
Esempio n. 5
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("BankFilter");
    parser.push_back (new OptionOneParam (STR_URI_INPUT,    "bank reference",               true));
    parser.push_back (new OptionOneParam (STR_URI_SEQ_IDS,  "file holding indexes of bank", true));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        /** We read the list of indexes. */
        set<size_t> indexes;
        FILE* file = fopen (options->getStr(STR_URI_SEQ_IDS).c_str(), "r");
        if (file != 0)
        {
            char buffer[128];
            while (fgets (buffer, sizeof(buffer), file))  {  indexes.insert (atoi(buffer));  }
            fclose (file);
        }

        cout << "found " << indexes.size() << " indexes" << endl;

        /** We open the output bank. */
        string outputBankUri = options->getStr(STR_URI_INPUT) + "_" + System::file().getBaseName (options->getStr(STR_URI_SEQ_IDS));
        IBank* outputBank = Bank::open (outputBankUri);
        LOCAL (outputBank);

        /** We loop the input bank. */
        IBank* inputBank = Bank::open (options->getStr(STR_URI_INPUT));
        LOCAL (inputBank);

        /** We use another iterator for filtering out some sequences. */
        FilterIterator<Sequence,FilterFunctor> itSeq (inputBank->iterator(), FilterFunctor(indexes));

        /** We loop the sequences. */
        for (itSeq.first(); !itSeq.isDone(); itSeq.next())
        {
            outputBank->insert (itSeq.item());
        }

        /** We flush the output bank. */
        outputBank->flush();
    }

    catch (OptionFailure& e)
    {
        return e.displayErrors (cout);
    }
    catch (Exception& e)
    {
        cerr << "EXCEPTION: " << e.getMessage() << endl;
    }
}
Esempio n. 6
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("BankStats");
    parser.push_back (new OptionOneParam (STR_URI_INPUT, "bank input",   true));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        std::string filename = options->getStr(STR_URI_INPUT);

        //! [snippet16_bank]
        // We get an instance of IBank from the URI.
        IBank* bank = Bank::open (filename);

        //! [snippet16_seq]
        // We create an iterator on the bank
        Iterator<Sequence>* it = bank->iterator();

        // We iterate the sequences of the bank
        for (it->first(); !it->isDone(); it->next())
        {
            // We get a shortcut on the current sequence and its data
            Sequence& seq  = it->item();
            Data&     data = seq.getData();

            // We dump some information about the sequence.
            std::cout << "comment " << seq.getComment() << std::endl;

            // We dump each nucleotide. NOTE: the output depends on the data encoding
            for (size_t i=0; i<data.size(); i++)  {  std::cout << data[i];  }  std::cout << std::endl;
        }

        //! [snippet16_seq]
        // The bank and the iterator have been allocated on the heap, so we have to delete them
        delete it;
        delete bank;
        //! [snippet16_bank]
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }
}
Esempio n. 7
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("BankStats");
    parser.push_back (new OptionOneParam (STR_URI_INPUT, "bank input",   true));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        // We get information about the bank.
        u_int64_t nbSequences=0, dataSize=0, seqMaxSize=0, seqMinSize=~0;

        // We declare an input Bank and use it locally
        IBank* inputBank = Bank::open (options->getStr(STR_URI_INPUT));
        LOCAL (inputBank);

        ProgressIterator<Sequence> it (*inputBank, "iterate");
        for (it.first(); !it.isDone(); it.next())
        {
            Data& data = it.item().getData();

            nbSequences ++;
            if (data.size() > seqMaxSize)  { seqMaxSize = data.size(); }
            if (data.size() < seqMinSize)  { seqMinSize = data.size(); }
            dataSize += data.size ();
        }

        std::cout << "data size         : " << dataSize     << std::endl;
        std::cout << "sequence number   : " << nbSequences  << std::endl;
        std::cout << "sequence max size : " << seqMaxSize   << std::endl;
        std::cout << "sequence min size : " << seqMinSize   << std::endl;
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }
}
Esempio n. 8
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("BankDump");
    parser.push_back (new OptionOneParam (STR_URI_INPUT, "bank input",   true));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        /** We dump the bank hierarchy. */
        dump (Bank::open (options->getStr(STR_URI_INPUT)));
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }
}
Esempio n. 9
0
int main (int argc, char* argv[])
{
    const size_t SPAN = KMER_SPAN(1);

    /** Shortcuts. */
    typedef Kmer<SPAN>::Type  Type;
    typedef Kmer<SPAN>::Count Count;
    typedef Kmer<SPAN>::ModelCanonical ModelCanon;
    typedef Kmer<SPAN>::ModelMinimizer <ModelCanon> Model;

    size_t kmerSize = 33;
    size_t mmerSize = 11;

    /** We create a command line parser. */
    OptionsParser parser ("GraphStats");
    parser.push_back (new OptionOneParam (STR_URI_INPUT, "bank input",  true));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        string filename = options->getStr (STR_URI_INPUT);

        /** We create the solid kmers. */
        Graph graph = Graph::create ("-in %s -kmer-size %d  -bloom none -out toto.h5  -abundance-min 1", filename.c_str(), kmerSize);

        /** We get the information of the solid kmers from the HDF5 file. */
        Storage* storage = StorageFactory(STORAGE_HDF5).load ("toto.h5");   LOCAL (storage);
        Group& dskGroup = storage->getGroup("dsk");

        /** We get the solid kmers partition. */
        Partition<Count>& partition = dskGroup.getPartition<Count> ("solid");

        /** We create two kmers models. */
        Model  model   (kmerSize,   mmerSize);
        Model  modelK1 (kmerSize-1, mmerSize);

        // We declare an output Bank
        BankBinary outputBank (System::file().getBaseName(filename) + ".bin");

        /** We create a sequence with BINARY encoding. */
        Sequence seq (Data::ASCII);

        /** We get an iterator over the [kmer,abundance] of solid kmers. */
        Iterator<Count>* it = partition.iterator();   LOCAL (it);

        /** We iterate the solid kmers. */
        for (it->first(); !it->isDone(); it->next())
        {
            Type current = it->item().value;

            cout << "kmer=" << it->item().value << "  minimizer=" << model.getMinimizerValue(current)
                << "  abundance=" << it->item().abundance << endl;

            /** We interpret the kmer value as a Data object. */
            Data data (Data::BINARY);
            data.setRef ((char*) &current, model.getKmerSize());

            modelK1.iterate (data, [&] (const Model::Kmer& k, size_t idx)
            {
                /** Shortcut. */
                Type miniminizerCurrent = k.minimizer().value();

                cout << "-> " << k.value()
                     << " minimizer=" << miniminizerCurrent << " "
                     << modelK1.getMmersModel().toString (miniminizerCurrent)
                     << endl;

                string tmp = modelK1.getMmersModel().toString (miniminizerCurrent);

                /** We interpret the minimizer value as a Data object. */
                seq.getData().setRef ((char*)tmp.c_str(), modelK1.getMmersModel().getKmerSize());

                /** We insert the sequence into the binary bank. */
                outputBank.insert (seq);
            });
        }

        /** We flush the output bank. */
        outputBank.flush();

        /** We iterate the output bank. */
        outputBank.iterate ([&] (const Sequence& s)
        {
            /** We get the kmer corresponding to the current sequence. */
            ModelCanon::Kmer mini = modelK1.getMmersModel().codeSeed (s.getDataBuffer(), Data::BINARY);

            cout << "mini=" << mini.value() << "  " << modelK1.getMmersModel().toString (mini.value()) << endl;
        });
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }
}
Esempio n. 10
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser;
    parser.push_back (new OptionOneParam (STR_URI_INPUT,  "graph file", true));

    IProperties* params = 0;

    try  {
        /** We parse the user options. */
        params = parser.parse (argc, argv);
    }
    catch (OptionFailure& e)
    {
        e.getParser().displayErrors (stdout);
        e.getParser().displayHelp   (stdout);
        return EXIT_FAILURE;
    }

    // We create the graph with the bank and other options
    Graph graph = Graph::load (params->getStr(STR_URI_INPUT));

    // We create a graph marker.
    GraphMarker<BranchingNode> marker (graph);

    // We create an object for Breadth First Search for the de Bruijn graph.
    BFS<BranchingNode> bfs (graph);

    // We want to compute the distribution of connected components of the branching nodes.
    //    - key is a connected component class (for a given number of branching nodes for this component)
    //    - value is the number of times this component class occurs in the branching sub graph
    map<size_t,Entry> distrib;

    // We get an iterator for all nodes of the graph. We use a progress iterator to get some progress feedback
    ProgressGraphIterator<BranchingNode,ProgressTimer>  itBranching (graph.iterator<BranchingNode>(), "statistics");

    // We want to know the number of connected components
    size_t nbConnectedComponents = 0;

    // We define some kind of unique identifier for a couple (indegree,outdegree)
    map <InOut_t, size_t> topology;

    size_t simplePathSizeMin = ~0;
    size_t simplePathSizeMax =  0;


    // We want time duration of the iteration
    TimeInfo ti;
    ti.start ("compute");

    // We loop the branching nodes
    for (itBranching.first(); !itBranching.isDone(); itBranching.next())
    {
        // We get branching nodes neighbors for the current branching node.
        Graph::Vector<BranchingEdge> successors   = graph.successors  <BranchingEdge> (*itBranching);
        Graph::Vector<BranchingEdge> predecessors = graph.predecessors<BranchingEdge> (*itBranching);

        // We increase the occurrences number for the current couple (in/out) neighbors
        topology [make_pair(predecessors.size(), successors.size())] ++;

        // We loop the in/out neighbors and update min/max simple path size
        for (size_t i=0; i<successors.size(); i++)
        {
            simplePathSizeMax = std::max (simplePathSizeMax, successors[i].distance);
            simplePathSizeMin = std::min (simplePathSizeMin, successors[i].distance);
        }
        for (size_t i=0; i<predecessors.size(); i++)
        {
            simplePathSizeMax = std::max (simplePathSizeMax, predecessors[i].distance);
            simplePathSizeMin = std::min (simplePathSizeMin, predecessors[i].distance);
        }

        // We skip already visited nodes.
        if (marker.isMarked (*itBranching))  {
            continue;
        }

        // We launch the breadth first search; we get as a result the set of branching nodes in this component
        const set<BranchingNode>& component = bfs.run (*itBranching);

        // We mark the nodes for this connected component
        marker.mark (component);

        // We update our distribution
        distrib[component.size()].nbOccurs += 1;

        // We update the number of connected components.
        nbConnectedComponents++;
    }

    ti.stop ("compute");

    // We compute the total number of branching nodes in all connected components.
    size_t sumOccurs = 0;
    size_t sumKmers = 0;
    for (map<size_t,Entry>::iterator it = distrib.begin(); it != distrib.end(); it++)
    {
        sumOccurs += it->first*it->second.nbOccurs;
        sumKmers  += it->second.nbKmers;
    }

    // We sort the statistics by decreasing occurrence numbers. Since map have its own ordering, we need to put all
    // the data into a vector and sort it with our own sorting criteria.
    vector < pair<InOut_t,size_t> >  stats;
    for (map <InOut_t, size_t>::iterator it = topology.begin(); it != topology.end(); it++)  {
        stats.push_back (*it);
    }

    sort (stats.begin(), stats.end(), CompareFct);

    // Note: it must be equal to the number of branching nodes of the graph
    assert (sumOccurs == itBranching.size());

    // We aggregate the computed information
    Properties props ("topology");

    props.add (1, "graph");
    props.add (2, "name",                    "%s", graph.getName().c_str());
    props.add (2, "db_input",                "%s", graph.getInfo().getStr("input").c_str());
    props.add (2, "db_nb_seq",               "%d", graph.getInfo().getInt("sequences_number"));
    props.add (2, "db_size",                 "%d", graph.getInfo().getInt("sequences_size"));
    props.add (2, "kmer_size",               "%d", graph.getInfo().getInt("kmer_size"));
    props.add (2, "kmer_nks",                "%d", graph.getInfo().getInt("nks"));
    props.add (2, "nb_nodes",                "%d", graph.getInfo().getInt("kmers_nb_solid"));
    props.add (2, "nb_branching_nodes",      "%d", graph.getInfo().getInt("nb_branching"));
    props.add (2, "percent_branching_nodes", "%.1f",
               graph.getInfo().getInt("kmers_nb_solid") > 0 ?
               100.0 * (float)graph.getInfo().getInt("nb_branching") / (float) graph.getInfo().getInt("kmers_nb_solid") : 0
              );

    props.add (1, "branching_nodes");

    props.add (2, "simple_path");
    props.add (3, "size_min", "%d", simplePathSizeMin);
    props.add (3, "size_max", "%d", simplePathSizeMax);

    props.add (2, "neighborhoods");
    for (size_t i=0; i<stats.size(); i++)
    {
        props.add (3, "neighborhood", "in=%d out=%d", stats[i].first.first, stats[i].first.second);
        props.add (4, "nb_bnodes",     "%d",    stats[i].second);
        props.add (4, "percentage",   "%5.2f", itBranching.size() > 0 ?
                   100.0*(float)stats[i].second / (float)itBranching.size() : 0
                  );
    }

    props.add (2, "connected_components");
    props.add (3, "nb_classes",    "%d", distrib.size());
    props.add (3, "nb_components", "%d", nbConnectedComponents);
    for (map<size_t,Entry>::iterator it = distrib.begin(); it!=distrib.end(); it++)
    {
        props.add (3, "component_class");
        props.add (4, "nb_occurs",    "%d", it->second.nbOccurs);
        props.add (4, "nb_bnodes",    "%d", it->first);
        props.add (4, "freq_bnodes",  "%f", sumOccurs > 0 ?
                   100.0*(float)(it->first*it->second.nbOccurs) / (float)sumOccurs : 0
                  );
    }
    props.add (1, ti.getProperties("time"));

    // We dump the results in a XML file in the current directory
    XmlDumpPropertiesVisitor v (graph.getName() + ".xml", false);
    props.accept (&v);

    return EXIT_SUCCESS;
}
Esempio n. 11
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("GraphStats");
    parser.push_back (new OptionOneParam (STR_URI_GRAPH, "graph input",  true));
    parser.push_back (new OptionOneParam (STR_NB_CORES,  "nb cores",     false, "0"));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        // We load the graph
        Graph graph = Graph::load (options->getStr(STR_URI_GRAPH));

        // We set the number of cores to be used. Use all available cores if set to 0.
        size_t nbCores = options->getInt(STR_NB_CORES);

        // We get an iterator for branching nodes of the graph.
        // We use a progress iterator to get some progress feedback
        ProgressGraphIterator<BranchingNode,ProgressTimer>  itBranching (graph.iterator<BranchingNode>(), "statistics");

        // We define some kind of unique identifier for a couple (indegree,outdegree)
        typedef pair<size_t,size_t> InOut_t;

        // We want to gather some statistics during the iteration.
        // Note the use of ThreadObject: this object will be cloned N times (one object per thread) and each clone will
        // be reachable within the iteration block through ThreadObject::operator()
        ThreadObject <map <InOut_t, size_t> > topology;

        // We dispatch the iteration on several cores. Note the usage of lambda expression here.
        IDispatcher::Status status = Dispatcher(nbCores).iterate (itBranching, [&] (const BranchingNode& node)
        {
            // We retrieve the current instance of map <InOut_t,size_t> for the current running thread.
            map <InOut_t,size_t>& localTopology = topology();

            // We get branching nodes neighbors for the current branching node.
            Graph::Vector<BranchingEdge> successors   = graph.successors  <BranchingEdge> (node);
            Graph::Vector<BranchingEdge> predecessors = graph.predecessors<BranchingEdge> (node);

            // We increase the occurrences number for the current couple (in/out) neighbors
            localTopology [make_pair(predecessors.size(), successors.size())] ++;
        });

        // Now, the parallel processing is done. We want now to aggregate the information retrieved
        // in each thread in a single map.

        // We get each map<InOut_t,size_t> object filled in each thread, and we add its data into the "global" map.
        // The global map is reachable through the ThreadObject::operator*. The "topology.foreach" will loop over
        // all cloned object used in the threads.
        topology.foreach ([&] (const map <InOut_t, size_t>& t)
        {
            // We update the occurrence of the current couple (in/out)
            for_each (t.begin(), t.end(), [&] (const pair<InOut_t, size_t>& p) { (*topology)[p.first] += p.second;  });
        });

        // We sort the statistics by decreasing occurrence numbers. Since map have its own ordering, we need to put all
        // the data into a vector and sort it with our own sorting criteria.
        vector < pair<InOut_t,size_t> >  stats;
        for (auto it = topology->begin(); it != topology->end(); it++)  { stats.push_back (*it); }
        sort (stats.begin(), stats.end(), [=] (const pair<InOut_t,size_t>& a, const pair<InOut_t,size_t>& b) { return a.second > b.second; });

        printf ("\nThere are %d branching nodes with the following distribution: \n", itBranching.size());

        size_t sum=0;
        for (size_t i=0; i<stats.size(); i++)
        {
            sum += stats[i].second;

            printf ("    [in=%d out=%d]  nb=%7d  percent=%5.2f  distrib=%5.2f\n",
                stats[i].first.first,
                stats[i].first.second,
                stats[i].second,
                100.0*(float)stats[i].second / (float)itBranching.size(),
                100.0*(float)sum             / (float)itBranching.size()
            );
        }

        printf ("\nDone on %d cores in %.2f sec\n\n", status.nbCores, (float)status.time/1000.0);
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }

    return EXIT_SUCCESS;
}
Esempio n. 12
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("KmerTest");
    parser.push_back (new OptionOneParam (STR_URI_INPUT,      "bank input",     true));
    parser.push_back (new OptionOneParam (STR_KMER_SIZE,      "kmer size",      true));
    parser.push_back (new OptionOneParam (STR_MINIMIZER_SIZE, "minimizer size", true));
    parser.push_back (new OptionNoParam  (STR_VERBOSE,        "display kmers",  false));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        // We get the kmer and minimizer sizes.
        size_t kmerSize = options->getInt(STR_KMER_SIZE);
        size_t mmerSize = options->getInt(STR_MINIMIZER_SIZE);

        // We define a try/catch block in case some method fails (bad filename for instance)
        u_int64_t nbKmers       = 0;
        bool display = options->get(STR_VERBOSE) != 0;

        // We declare a Bank instance defined by a list of filenames
        IBank* bank = Bank::open (options->getStr(STR_URI_INPUT));
        LOCAL (bank);

        // We declare a kmer model and a minimizer model
        Model model (kmerSize, mmerSize);

        // We get a reference on the minimizer model, which will be useful for dumping
       const ModelMinimizer::Model& modelMinimizer = model.getMmersModel();

        Kmer<span>::Type checksum;
        size_t nbChanged = 0;
        size_t nbInvalid = 0;

        // We define an iterator that encapsulates the sequences iterator with progress feedback
        ProgressIterator<Sequence> iter (*bank, "iterate bank");

        // We loop over sequences.
        for (iter.first(); !iter.isDone(); iter.next())
        {
            // Shortcut
            Sequence& seq = iter.item();

//! [snippet1_iterate]
            // We iterate the kmers (and minimizers) of the current sequence.
            model.iterate (seq.getData(), [&] (const Model::Kmer& kmer, size_t idx)
            {
                nbKmers ++;
                if (kmer.hasChanged() == true)   { nbChanged++;  }
                if (kmer.isValid()    == false)  { nbInvalid++;  }
                checksum += kmer.minimizer().value();
            });
//! [snippet1_iterate]
        }

        cout << "nbKmers   : " << nbKmers   << endl;
        cout << "nbInvalid : " << nbInvalid << endl;
        cout << "nbChanged : " << nbChanged << endl;
        cout << "ratio     : " << (nbChanged > 0 ? (double)nbKmers / (double)nbChanged : 0) << endl;
        cout << "checksum  : " << checksum  << endl;
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }

    return EXIT_SUCCESS;
}
Esempio n. 13
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("GraphStats");
    parser.push_back (new OptionOneParam (STR_URI_GRAPH, "graph input",  true));

    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        // We load the graph
        Graph graph = Graph::load (options->getStr(STR_URI_GRAPH));

        // We create a graph marker.
        GraphMarker marker (graph);

        // We create an object for Breadth First Search for the de Bruijn graph.
        BFS bfs (graph);

        // We want to compute the distribution of connected components of the branching nodes.
        //    - key is a connected component class (for a given number of branching nodes for this component)
        //    - value is the number of times this component class occurs in the branching sub graph
        map<size_t,size_t> distrib;

        // We get an iterator for all nodes of the graph. We use a progress iterator to get some progress feedback
        ProgressGraphIterator<BranchingNode,ProgressTimer>  itBranching (graph.iteratorBranching(), "statistics");

        // We want time duration of the iteration
        TimeInfo ti;
        ti.start ("compute");

        // We need to keep each connected component.
        list<set<BranchingNode> > components;

        // We loop the branching nodes
        for (itBranching.first(); !itBranching.isDone(); itBranching.next())
        {
            // We skip already visited nodes.
            if (marker.isMarked (*itBranching))  { continue; }

            // We launch the breadth first search; we get as a result the set of branching nodes in this component
            const set<BranchingNode>& component = bfs.run (*itBranching);

            // We memorize the component
            components.push_back (component);

            // We mark the nodes for this connected component
            marker.mark (component);

            // We update our distribution
            distrib[component.size()] ++;
        }

        ti.stop ("compute");

        // We compute the total number of branching nodes in all connected components.
        size_t sum = 0;   for (map<size_t,size_t>::iterator it = distrib.begin(); it != distrib.end(); it++)  {  sum += it->first*it->second; }

        // Note: it must be equal to the number of branching nodes of the graph
        assert (sum == itBranching.size());

        size_t idx1=0;
        size_t cc=0;
        // We check that each component has no intersection with all other components.
        // Note: this check may take a long time since we have N^2 intersections to compute.
        for (list<set<BranchingNode> >::iterator it1 = components.begin(); it1 != components.end(); it1++, idx1++)
        {
            size_t idx2=0;

            for (list<set<BranchingNode> >::iterator it2 = components.begin(); it2 != components.end(); it2++, idx2++)
            {
                if (it1 != it2)
                {
                    set<BranchingNode> inter;
                    set_intersection (it1->begin(),it1->end(),it2->begin(),it2->end(), std::inserter(inter,inter.begin()));
                    if (inter.size()!=0)  { printf ("ERROR, intersection should be empty...\n");  exit(EXIT_FAILURE); }
                }

                if (++cc % 50 == 0)
                {
                    cc = 0;
                    printf ("[check] %.1f  %.1f\r", 100.0*(float)idx1/(float)components.size(), 100.0*(float)idx2/(float)components.size());
                    fflush (stdout);
                }
            }
        }
        printf ("\n");

        // We aggregate the computed information
        Properties props ("connected_components");
        props.add (1, "graph_name",              "%s", graph.getName().c_str());
        props.add (1, "nb_branching_nodes",      "%d", sum);
        props.add (1, "nb_connected_components", "%d", distrib.size());
        for (map<size_t,size_t>::iterator it = distrib.begin(); it!=distrib.end(); it++)
        {
            props.add (2, "component");
            props.add (3, "nb_nodes",    "%d", it->first);
            props.add (3, "nb_occurs",   "%d", it->second);
            props.add (3, "freq_nodes",  "%f", 100.0*(float)(it->first*it->second) / (float)sum);
            props.add (3, "freq_occurs", "%f", 100.0*(float)it->second / (float)sum);
        }
        props.add (1, ti.getProperties("time"));

        // We dump the results in a XML file in the current directory
        XmlDumpPropertiesVisitor v (graph.getName() + ".xml", false);
        props.accept (&v);
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (std::cout);
    }
    catch (Exception& e)
    {
        std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
    }

    return EXIT_SUCCESS;
}
Esempio n. 14
0
int main (int argc, char* argv[])
{
    /** We create a command line parser. */
    OptionsParser parser ("BankSplitter");
    parser.push_back (new OptionOneParam (STR_URI_INPUT,      "bank reference",            true));
    parser.push_back (new OptionOneParam (STR_MAX_INPUT_SIZE, "average db size per split", true));
    parser.push_back (new OptionOneParam (STR_URI_OUTPUT_DIR, "output directory",          false, "."));
    parser.push_back (new OptionNoParam  (STR_OUTPUT_FASTQ,   "fastq output",              false));
    parser.push_back (new OptionNoParam  (STR_OUTPUT_GZ,      "gzip output",               false));

    // We define a try/catch block in case some method fails (bad filename for instance)
    try
    {
        /** We parse the user options. */
        IProperties* options = parser.parse (argc, argv);

        /** Shortcuts. */
        u_int64_t maxDbSize = options->getInt(STR_MAX_INPUT_SIZE);

        // We declare an input Bank
        IBank* inputBank = Bank::open (options->getStr(STR_URI_INPUT));
        LOCAL (inputBank);

        // We get the basename of the input bank.
        string inputBasename = System::file().getBaseName (options->getStr(STR_URI_INPUT));

        /** We set the name of the output directory. */
        stringstream ss;  ss << inputBasename << "_S" << maxDbSize;
        string outputDirName = ss.str();

        /** We create the output directory. */
        string outputDir = options->getStr(STR_URI_OUTPUT_DIR) + "/" + outputDirName;
        System::file().mkdir (outputDir, S_IRWXU);

        // We create the album bank.
        BankAlbum album (outputDir + "/album.txt");

        /** We get estimations about the bank. */
        u_int64_t number, totalSize, maxSize;
        inputBank->estimate (number, totalSize, maxSize);

        u_int64_t estimationNbSeqToIterate = number;

        // We create an iterator over the input bank
        ProgressIterator<Sequence> itSeq (*inputBank, "split");

        // We loop over sequences to get the exact number of sequences.
          int64_t nbBanksOutput = -1;
        u_int64_t nbSequences   =  0;
        u_int64_t dbSize        = ~0;

        bool isFastq   = options->get(STR_OUTPUT_FASTQ) != 0;
        bool isGzipped = options->get(STR_OUTPUT_GZ)    != 0;

        IBank* currentBank = 0;

        for (itSeq.first(); !itSeq.isDone(); itSeq.next())
        {
            if (dbSize > maxDbSize)
            {
                if (currentBank != 0)  { currentBank->flush();  currentBank->finalize(); }

                nbBanksOutput ++;

                /** We build the uri of the current bank. */
                stringstream ss;  ss << inputBasename << "_" << nbBanksOutput << (isFastq ? ".fastq" : ".fasta");
                if (isGzipped) { ss << ".gz"; }

                /** We create a new bank and put it in the album. */
                currentBank = album.addBank (outputDir, ss.str(), isFastq, isGzipped);

                /** We reinit the db size counter. */
                dbSize = 0;
            }

            dbSize += itSeq->getDataSize();

            /** We insert the sequence into the current output bank. */
            currentBank->insert (*itSeq);
        }

        if (currentBank != 0)  { currentBank->flush(); }
    }
    catch (OptionFailure& e)
    {
        return e.displayErrors (cout);
    }
    catch (Exception& e)
    {
        cerr << "EXCEPTION: " << e.getMessage() << endl;
    }
}