int main() { const std::string examplesPath= "/home/remi/pred/DGtal_PRED/Source/Experience/"; std::string filename = examplesPath + "samples/contourS.pgm"; Image image = DGtal::PNMReader<Image>::importPGM(filename); DGtal::trace.info() << "Imported image: "<<image<<endl; DGtal::Board2D aBoard; aBoard << image.domain(); aBoard.saveSVG("imageDomainTuto.svg"); aBoard.clear(); Display2DFactory::drawImage<Gray>(aBoard, image, (unsigned char)0, (unsigned char)255); aBoard.saveEPS("imageDomainTuto2.eps"); typedef IntervalForegroundPredicate<Image> Binarizer; Binarizer b(image,1, 135); typedef DGtal::DistanceTransformation<Z2i::Space, Binarizer, 2> DTL2; typedef DTL2::OutputImage OutputImage; DTL2 dt(image.domain(),b); OutputImage result = dt.compute(); OutputImage::Value maxDT = (*std::max_element(result.begin(), result.end())); typedef DGtal::HueShadeColorMap<OutputImage::Value,2> HueTwice; aBoard.clear(); Display2DFactory::drawImage<HueTwice>(aBoard, result, (OutputImage::Value)0, (OutputImage::Value)maxDT); aBoard.saveEPS("imageDomainTuto3.eps"); }
int main(int argc, char **argv) { QApplication application(argc,argv); DGtal::Viewer3D viewer; DGtal::Z3i::Point center(0,0,0); DGtal::ImplicitRoundedHyperCube<Z3i::Space> myCube( center, 20, 2.8); DGtal::Z3i::Domain domain(myCube.getLowerBound(), myCube.getUpperBound()); DGtal::Z3i::DigitalSet mySet(domain); DGtal::Shapes<DGtal::Z3i::Domain>::euclideanShaper( mySet, myCube); viewer.show(); // viewer << mySet << DGtal::Display3D::updateDisplay; //! [ImageSetDT-DT] typedef DGtal::SetPredicate<DGtal::Z3i::DigitalSet> Predicate; Predicate aPredicate(mySet); typedef DGtal::DistanceTransformation<Z3i::Space, Predicate, 2> DTL2; typedef DTL2::OutputImage OutputImage; DTL2 dt(domain,aPredicate); OutputImage result = dt.compute(); //! [ImageSetDT-DT] OutputImage::Value maxDT = (*std::max_element(result.begin(), result.end())); GradientColorMap<OutputImage::Value> gradient( 0, maxDT); gradient.addColor(DGtal::Color::Blue); gradient.addColor(DGtal::Color::Green); gradient.addColor(DGtal::Color::Yellow); gradient.addColor(DGtal::Color::Red); for(Z3i::Domain::ConstIterator it = domain.begin(), itend = domain.end(); it != itend; ++it) if (result(*it) != 0) { OutputImage::Value val= result( *it ); DGtal::Color c= gradient(val); viewer << DGtal::CustomColors3D(c,c) << *it ; } viewer << DGtal::ClippingPlane(1,0,0,0); //@todo updateDisplay is in Display3D or Viewer3D (cf doc)? viewer << DGtal::Display3D::updateDisplay; return application.exec(); }
bool ImageWriterEXR::writeStandardImage(const std::string& filePath, const OutputImage& image, unsigned int channels, bool fullFloat) { unsigned int width = image.getWidth(); unsigned int height = image.getHeight(); Imf::Header header(width, height); Imf::StringAttribute sourceAttribute; sourceAttribute.value() = "Created with Imagine 0.98"; header.insert("comments", sourceAttribute); Imf::PixelType pixelType = (fullFloat) ? Imf::FLOAT : Imf::HALF; if (channels & ImageWriter::RGB) { header.channels().insert("R", Imf::Channel(pixelType)); header.channels().insert("G", Imf::Channel(pixelType)); header.channels().insert("B", Imf::Channel(pixelType)); } if (channels & ImageWriter::ALPHA) header.channels().insert("A", Imf::Channel(pixelType)); // if we haven't got any depth data, don't bother if (!(image.components() & COMPONENT_DEPTH)) channels = channels & ~ImageWriter::DEPTH; if (channels & ImageWriter::DEPTH) header.channels().insert("Z", Imf::Channel(pixelType)); // if we haven't got any normal data, don't bother if (!(image.components() & COMPONENT_NORMAL)) channels = channels & ~ImageWriter::NORMALS; if (channels & ImageWriter::NORMALS) { header.channels().insert("normal.X", Imf::Channel(pixelType)); header.channels().insert("normal.Y", Imf::Channel(pixelType)); header.channels().insert("normal.Z", Imf::Channel(pixelType)); } // if we haven't got any wpp data, don't bother if (!(image.components() & COMPONENT_WPP)) channels = channels & ~ImageWriter::WPP; if (channels & ImageWriter::WPP) { header.channels().insert("wpp.X", Imf::Channel(pixelType)); header.channels().insert("wpp.Y", Imf::Channel(pixelType)); header.channels().insert("wpp.Z", Imf::Channel(pixelType)); } // if we haven't got shadows, don't write them if (!(image.components() & COMPONENT_SHADOWS)) channels = channels & ~ImageWriter::SHADOWS; if (channels & ImageWriter::SHADOWS) { // cope with Nuke's limitations by putting ".r" on the end so it shows up in channel list... header.channels().insert("shadows.r", Imf::Channel(pixelType)); } unsigned int rgbStride = (channels & ImageWriter::ALPHA) ? 4 : 3; T* rgba = NULL; if (channels & ImageWriter::RGB) rgba = new T[width * height * rgbStride]; T* pDepth = NULL; if (channels & ImageWriter::DEPTH) pDepth = new T[width * height]; T* pNormal = NULL; if (channels & ImageWriter::NORMALS) pNormal = new T[width * height * 3]; T* pWPP = NULL; if (channels & ImageWriter::WPP) pWPP = new T[width * height * 3]; T* pShadows = NULL; if (channels & ImageWriter::SHADOWS) pShadows = new T[width * height]; const Colour4f* pRow = NULL; const float* pDepthRow = NULL; const Colour3f* pNormalRow = NULL; const Colour3f* pWPPRow = NULL; const float* pShadowsRow = NULL; for (unsigned int y = 0; y < height; y++) { pRow = image.colourRowPtr(y); if (channels & ImageWriter::DEPTH) pDepthRow = image.depthRowPtr(y); if (channels & ImageWriter::NORMALS) pNormalRow = image.normalRowPtr(y); if (channels & ImageWriter::WPP) pWPPRow = image.wppRowPtr(y); if (channels & ImageWriter::SHADOWS) pShadowsRow = image.shadowsRowPtr(y); unsigned int rgbStartPos = width * y * rgbStride; unsigned int normalStartPos = width * y * 3; unsigned int wppStartPos = width * y * 3; for (unsigned int x = 0; x < width; x++) { unsigned int pixelPos = rgbStartPos + (x * rgbStride); if (channels & ImageWriter::RGB) { float red = ColourSpace::convertSRGBToLinearAccurate(pRow->r); float green = ColourSpace::convertSRGBToLinearAccurate(pRow->g); float blue = ColourSpace::convertSRGBToLinearAccurate(pRow->b); rgba[pixelPos++] = red; rgba[pixelPos++] = green; rgba[pixelPos++] = blue; } else { pixelPos += 3; } if (channels & ImageWriter::ALPHA) rgba[pixelPos++] = pRow->a; if (channels & ImageWriter::DEPTH) { pDepth[(width * y) + x] = *pDepthRow++; } if (channels & ImageWriter::NORMALS && pNormalRow) { const Colour3f& normal = *pNormalRow; unsigned int normalPixelPos = normalStartPos + (x * 3); pNormal[normalPixelPos++] = normal.r; pNormal[normalPixelPos++] = normal.g; pNormal[normalPixelPos++] = normal.b; pNormalRow++; } if (channels & ImageWriter::WPP && pWPPRow) { const Colour3f& wpp = *pWPPRow; unsigned int wppPixelPos = wppStartPos + (x * 3); pWPP[wppPixelPos++] = wpp.r; pWPP[wppPixelPos++] = wpp.g; pWPP[wppPixelPos++] = wpp.b; pWPPRow++; } if (channels & ImageWriter::SHADOWS) { pShadows[(width * y) + x] = *pShadowsRow++; } pRow++; } } Imf::FrameBuffer fb; if (channels & ImageWriter::RGB) { fb.insert("R", Imf::Slice(pixelType, (char *)rgba, rgbStride*sizeof(T), rgbStride*width*sizeof(T))); fb.insert("G", Imf::Slice(pixelType, (char *)rgba + sizeof(T), rgbStride*sizeof(T), rgbStride*width*sizeof(T))); fb.insert("B", Imf::Slice(pixelType, (char *)rgba + 2 * sizeof(T), rgbStride*sizeof(T), rgbStride*width*sizeof(T))); } if (channels & ImageWriter::ALPHA) fb.insert("A", Imf::Slice(pixelType, (char *)rgba+3*sizeof(T), rgbStride*sizeof(T), rgbStride*width*sizeof(T))); if (channels & ImageWriter::DEPTH) { fb.insert("Z", Imf::Slice(pixelType, (char *)&(*pDepth), sizeof(T), width * sizeof(T))); } if (channels & ImageWriter::NORMALS) { fb.insert("normal.X", Imf::Slice(pixelType, (char *)pNormal, 3 * sizeof(T), 3 * width * sizeof(T))); fb.insert("normal.Y", Imf::Slice(pixelType, (char *)pNormal + sizeof(T), 3*sizeof(T), 3*width*sizeof(T))); fb.insert("normal.Z", Imf::Slice(pixelType, (char *)pNormal + 2 * sizeof(T), 3*sizeof(T), 3*width*sizeof(T))); } if (channels & ImageWriter::WPP) { fb.insert("wpp.X", Imf::Slice(pixelType, (char *)pWPP, 3 * sizeof(T), 3 * width * sizeof(T))); fb.insert("wpp.Y", Imf::Slice(pixelType, (char *)pWPP + sizeof(T), 3*sizeof(T), 3*width*sizeof(T))); fb.insert("wpp.Z", Imf::Slice(pixelType, (char *)pWPP + 2 * sizeof(T), 3*sizeof(T), 3*width*sizeof(T))); } if (channels & ImageWriter::SHADOWS) { fb.insert("shadows.r", Imf::Slice(pixelType, (char *)&(*pShadows), sizeof(T), width * sizeof(T))); } Imf::OutputFile file(filePath.c_str(), header); file.setFrameBuffer(fb); file.writePixels(height); if (rgba) delete [] rgba; if (pDepth) delete [] pDepth; if (pNormal) delete [] pNormal; if (pWPP) delete [] pWPP; if (pShadows) delete [] pShadows; return true; }
bool ImageWriterEXR::writeDeepImage(const std::string& filePath, const OutputImage& image, unsigned int channels) { #if USE_OPENEXR2 unsigned int width = image.getWidth(); unsigned int height = image.getHeight(); Imf::Header header(width, height); header.setName("Main"); header.channels().insert("A", Imf::Channel(Imf::HALF)); header.channels().insert("R", Imf::Channel(Imf::HALF)); header.channels().insert("G", Imf::Channel(Imf::HALF)); header.channels().insert("B", Imf::Channel(Imf::HALF)); header.channels().insert("Z", Imf::Channel(Imf::HALF)); Imf::StringAttribute sourceAttribute; sourceAttribute.value() = "Created with Imagine 0.98"; header.insert("comments", sourceAttribute); #if USE_DEEPTILE header.setType(Imf::DEEPTILE); header.setTileDescription(Imf::TileDescription()); #else header.setType(Imf::DEEPSCANLINE); #endif // we need this... header.compression() = Imf::ZIPS_COMPRESSION; // header.compression() = Imf::NO_COMPRESSION; unsigned int* pSampleCount = new unsigned int[width * height]; // work out total number of samples for all pixels unsigned int totalSamples = 0; unsigned int pixelIndex = 0; for (unsigned int y = 0; y < height; y++) { DeepValues* pDeepValues = image.getDeepImage()->colourRowPtr(y); for (unsigned int x = 0; x < width; x++) { totalSamples += pDeepValues->numSamples; pSampleCount[pixelIndex++] = pDeepValues->numSamples; pDeepValues++; } } half* pAlphaFullSamples = new half[totalSamples]; half* pRedFullSamples = new half[totalSamples]; half* pGreenFullSamples = new half[totalSamples]; half* pBlueFullSamples = new half[totalSamples]; half* pZFullSamples = new half[totalSamples]; const DeepValues* pDeepValues = NULL; // accumulate the data for writing... std::vector<half*> aAlphaPointers(width * height); std::vector<half*> aRedPointers(width * height); std::vector<half*> aGreenPointers(width * height); std::vector<half*> aBluePointers(width * height); std::vector<half*> aZPointers(width * height); pixelIndex = 0; unsigned int fullSampleIndex = 0; for (unsigned int y = 0; y < height; y++) { pDeepValues = image.getDeepImage()->colourRowPtr(y); const DeepValues* pDeepPixelValues = pDeepValues; for (unsigned int x = 0; x < width; x++) { unsigned int numSamples = pDeepPixelValues->numSamples; half* pAlphaSampleStart = pAlphaFullSamples + fullSampleIndex; aAlphaPointers[pixelIndex] = pAlphaSampleStart; half* pRedSampleStart = pRedFullSamples + fullSampleIndex; aRedPointers[pixelIndex] = pRedSampleStart; half* pGreenSampleStart = pGreenFullSamples + fullSampleIndex; aGreenPointers[pixelIndex] = pGreenSampleStart; half* pBlueSampleStart = pBlueFullSamples + fullSampleIndex; aBluePointers[pixelIndex] = pBlueSampleStart; half* pZSampleStart = pZFullSamples + fullSampleIndex; aZPointers[pixelIndex] = pZSampleStart; DeepSample* pDeepSample = pDeepPixelValues->samples; // now blit the data over for (unsigned int s = 0; s < numSamples; s++) { *pRedSampleStart++ = pDeepSample->colour.r; *pGreenSampleStart++ = pDeepSample->colour.g; *pBlueSampleStart++ = pDeepSample->colour.b; *pAlphaSampleStart++ = pDeepSample->colour.a; *pZSampleStart++ = pDeepSample->depth; pDeepSample++; } pDeepPixelValues++; fullSampleIndex += numSamples; pixelIndex ++; } } Imf::DeepFrameBuffer frameBuffer; // write the sample count frameBuffer.insertSampleCountSlice(Imf::Slice(Imf::UINT, (char*)pSampleCount, sizeof(unsigned int), width * sizeof(unsigned int))); frameBuffer.insert("A", Imf::DeepSlice(Imf::HALF, (char*)(&aAlphaPointers[0]), sizeof(half*), sizeof(half*) * width, sizeof(half))); frameBuffer.insert("R", Imf::DeepSlice(Imf::HALF, (char*)(&aRedPointers[0]), sizeof(half*), sizeof(half*) * width, sizeof(half))); frameBuffer.insert("G", Imf::DeepSlice(Imf::HALF, (char*)(&aGreenPointers[0]), sizeof(half*), sizeof(half*) * width, sizeof(half))); frameBuffer.insert("B", Imf::DeepSlice(Imf::HALF, (char*)(&aBluePointers[0]), sizeof(half*), sizeof(half*) * width, sizeof(half))); frameBuffer.insert("Z", Imf::DeepSlice(Imf::HALF, (char*)(&aZPointers[0]), sizeof(half*), sizeof(half*) * width, sizeof(half))); const bool useMultipart = true; if (useMultipart) { #if !USE_DEEPTILE Imf::MultiPartOutputFile file(filePath.c_str(), &header, 1); Imf::DeepScanLineOutputPart part(file, 0); try { part.setFrameBuffer(frameBuffer); part.writePixels(height); } catch (...) { int one = 5; } #else Imf::MultiPartOutputFile file(filePath.c_str(), &header, 1); Imf::DeepTiledOutputPart part(file, 0); try { part.setFrameBuffer(frameBuffer); for (int y = 0; y < part.numYTiles(); y++) { for (int x = 0; x < part.numXTiles(); x++) { part.writeTile(x, y, 0); } } } catch (...) { int one = 5; } #endif } else { #if !USE_DEEPTILE Imf::DeepScanLineOutputFile file(filePath.c_str(), header); try { file.setFrameBuffer(frameBuffer); file.writePixels(height); } catch (...) { int one = 5; } #else Imf::DeepTiledOutputFile file(filePath.c_str(), header); try { file.setFrameBuffer(frameBuffer); file.writeTiles(0, file.numXTiles() - 1, 0, file.numYTiles() - 1); /* for (int y = 0; y < file.numYTiles(); y++) { for (int x = 0; x < file.numXTiles(); x++) { file.writeTile(x, y, 0); } } */ } catch (...) { int one = 5; } #endif } delete [] pSampleCount; delete [] pRedFullSamples; delete [] pGreenFullSamples; delete [] pBlueFullSamples; delete [] pAlphaFullSamples; delete [] pZFullSamples; #endif return true; }