void AdaptivePath::update() { double weight2 = -1.*mypathv->dx; double weight1 = 1.0 + mypathv->dx; if( weight1>1.0 ) { weight1=1.0; weight2=0.0; } else if( weight2>1.0 ) { weight1=0.0; weight2=1.0; } // Add projections to dispalcement accumulators ReferenceConfiguration* myref = getReferenceConfiguration( mypathv->iclose1 ); myref->extractDisplacementVector( getPositions(), getArguments(), mypathv->cargs, false, displacement ); getReferenceConfiguration( mypathv->iclose2 )->extractDisplacementVector( myref->getReferencePositions(), getArguments(), myref->getReferenceArguments(), false, displacement2 ); displacement.addDirection( -mypathv->dx, displacement2 ); pdisplacements[mypathv->iclose1].addDirection( weight1, displacement ); pdisplacements[mypathv->iclose2].addDirection( weight2, displacement ); // Update weight accumulators wsum[mypathv->iclose1] *= fadefact; wsum[mypathv->iclose2] *= fadefact; wsum[mypathv->iclose1] += weight1; wsum[mypathv->iclose2] += weight2; // This does the update of the path if it is time to if( (getStep()>0) && (getStep()%update_str==0) ) { wsum[fixedn[0]]=wsum[fixedn[1]]=0.; for(unsigned inode=0; inode<getNumberOfReferencePoints(); ++inode) { if( wsum[inode]>0 ) { // First displace the node by the weighted direction getReferenceConfiguration( inode )->displaceReferenceConfiguration( 1./wsum[inode], pdisplacements[inode] ); // Reset the displacement pdisplacements[inode].zeroDirection(); } } // Now ensure all the nodes of the path are equally spaced PathReparameterization myspacings( getPbc(), getArguments(), getAllReferenceConfigurations() ); myspacings.reparameterize( fixedn[0], fixedn[1], tolerance ); } if( (getStep()>0) && (getStep()%wstride==0) ) { pathfile.printf("# PATH AT STEP %d TIME %f \n", getStep(), getTime() ); std::vector<std::unique_ptr<ReferenceConfiguration>>& myconfs=getAllReferenceConfigurations(); std::vector<SetupMolInfo*> moldat=plumed.getActionSet().select<SetupMolInfo*>(); if( moldat.size()>1 ) error("you should only have one MOLINFO action in your input file"); SetupMolInfo* mymoldat=NULL; if( moldat.size()==1 ) mymoldat=moldat[0]; std::vector<std::string> argument_names( getNumberOfArguments() ); for(unsigned i=0; i<getNumberOfArguments(); ++i) argument_names[i] = getPntrToArgument(i)->getName(); PDB mypdb; mypdb.setArgumentNames( argument_names ); for(unsigned i=0; i<myconfs.size(); ++i) { pathfile.printf("REMARK TYPE=%s\n", myconfs[i]->getName().c_str() ); mypdb.setAtomPositions( myconfs[i]->getReferencePositions() ); for(unsigned j=0; j<getNumberOfArguments(); ++j) mypdb.setArgumentValue( getPntrToArgument(j)->getName(), myconfs[i]->getReferenceArgument(j) ); mypdb.print( atoms.getUnits().getLength()/0.1, mymoldat, pathfile, ofmt ); } pathfile.flush(); } }
bool DataCollectionObject::transferDataToPDB( PDB& mypdb ) { // Check if PDB contains argument names std::vector<std::string> pdb_args( mypdb.getArgumentNames() ); // Now set the argument values std::map<std::string,double>::iterator it; for(unsigned i=0; i<pdb_args.size(); ++i) { it=args.find( pdb_args[i] ); if( it==args.end() ) return false; mypdb.setArgumentValue( pdb_args[i], it->second ); } // Now set the atomic positions std::vector<AtomNumber> pdb_pos( mypdb.getAtomNumbers() ); if( pdb_pos.size()==positions.size() ) mypdb.setAtomPositions( positions ); else if( pdb_pos.size()>0 ) plumed_merror("This feature is currently not ready"); return true; }