void Heightfield::Refine(vector<Reference<Shape> > &refined) const { int ntris = 2*(nx-1)*(ny-1); refined.reserve(ntris); int *verts = new int[3*ntris]; Point *P = new Point[nx*ny]; float *uvs = new float[2*nx*ny]; int nverts = nx*ny; int x, y; // Compute heightfield vertex positions int pos = 0; for (y = 0; y < ny; ++y) { for (x = 0; x < nx; ++x) { P[pos].x = uvs[2*pos] = (float)x / (float)(nx-1); P[pos].y = uvs[2*pos+1] = (float)y / (float)(ny-1); P[pos].z = z[pos]; ++pos; } } // Fill in heightfield vertex offset array int *vp = verts; for (y = 0; y < ny-1; ++y) { for (x = 0; x < nx-1; ++x) { #define VERT(x,y) ((x)+(y)*nx) *vp++ = VERT(x, y); *vp++ = VERT(x+1, y); *vp++ = VERT(x+1, y+1); *vp++ = VERT(x, y); *vp++ = VERT(x+1, y+1); *vp++ = VERT(x, y+1); } #undef VERT } ParamSet paramSet; paramSet.AddInt("indices", verts, 3*ntris); paramSet.AddFloat("uv", uvs, 2 * nverts); paramSet.AddPoint("P", P, nverts); refined.push_back(CreateTriangleMeshShape(ObjectToWorld, WorldToObject, ReverseOrientation, paramSet)); delete[] P; delete[] uvs; delete[] verts; }
void LuxRenderer::defineTriangleMesh(mtlu_MayaObject *obj, bool noObjectDef = false) { MObject meshObject = obj->mobject; MStatus stat = MStatus::kSuccess; MFnMesh meshFn(meshObject, &stat); CHECK_MSTATUS(stat); MItMeshPolygon faceIt(meshObject, &stat); CHECK_MSTATUS(stat); MPointArray points; meshFn.getPoints(points); MFloatVectorArray normals; meshFn.getNormals( normals, MSpace::kWorld ); MFloatArray uArray, vArray; meshFn.getUVs(uArray, vArray); logger.debug(MString("Translating mesh object ") + meshFn.name().asChar()); MString meshFullName = obj->fullNiceName; MIntArray trianglesPerFace, triVertices; meshFn.getTriangles(trianglesPerFace, triVertices); int numTriangles = 0; for( size_t i = 0; i < trianglesPerFace.length(); i++) numTriangles += trianglesPerFace[i]; // lux render does not have a per vertex per face normal definition, here we can use one normal and uv per vertex only // So I create the triangles with unique vertices, normals and uvs. Of course this way vertices etc. cannot be shared. int numPTFloats = numTriangles * 3 * 3; logger.debug(MString("Num Triangles: ") + numTriangles + " num tri floats " + numPTFloats); float *floatPointArray = new float[numPTFloats]; float *floatNormalArray = new float[numPTFloats]; float *floatUvArray = new float[numTriangles * 3 * 2]; logger.debug(MString("Allocated ") + numPTFloats + " floats for point and normals"); MIntArray triangelVtxIdListA; MFloatArray floatPointArrayA; MPointArray triPoints; MIntArray triVtxIds; MIntArray faceVtxIds; MIntArray faceNormalIds; int *triangelVtxIdList = new int[numTriangles * 3]; for( uint sgId = 0; sgId < obj->shadingGroups.length(); sgId++) { MString slotName = MString("slot_") + sgId; } int triCount = 0; int vtxCount = 0; for(faceIt.reset(); !faceIt.isDone(); faceIt.next()) { int faceId = faceIt.index(); int numTris; faceIt.numTriangles(numTris); faceIt.getVertices(faceVtxIds); MIntArray faceUVIndices; faceNormalIds.clear(); for( uint vtxId = 0; vtxId < faceVtxIds.length(); vtxId++) { faceNormalIds.append(faceIt.normalIndex(vtxId)); int uvIndex; faceIt.getUVIndex(vtxId, uvIndex); faceUVIndices.append(uvIndex); } int perFaceShadingGroup = 0; if( obj->perFaceAssignments.length() > 0) perFaceShadingGroup = obj->perFaceAssignments[faceId]; //logger.info(MString("Face ") + faceId + " will receive SG " + perFaceShadingGroup); for( int triId = 0; triId < numTris; triId++) { int faceRelIds[3]; faceIt.getTriangle(triId, triPoints, triVtxIds); for( uint triVtxId = 0; triVtxId < 3; triVtxId++) { for(uint faceVtxId = 0; faceVtxId < faceVtxIds.length(); faceVtxId++) { if( faceVtxIds[faceVtxId] == triVtxIds[triVtxId]) { faceRelIds[triVtxId] = faceVtxId; } } } uint vtxId0 = faceVtxIds[faceRelIds[0]]; uint vtxId1 = faceVtxIds[faceRelIds[1]]; uint vtxId2 = faceVtxIds[faceRelIds[2]]; uint normalId0 = faceNormalIds[faceRelIds[0]]; uint normalId1 = faceNormalIds[faceRelIds[1]]; uint normalId2 = faceNormalIds[faceRelIds[2]]; uint uvId0 = faceUVIndices[faceRelIds[0]]; uint uvId1 = faceUVIndices[faceRelIds[1]]; uint uvId2 = faceUVIndices[faceRelIds[2]]; floatPointArray[vtxCount * 3] = points[vtxId0].x; floatPointArray[vtxCount * 3 + 1] = points[vtxId0].y; floatPointArray[vtxCount * 3 + 2] = points[vtxId0].z; floatNormalArray[vtxCount * 3] = normals[normalId0].x; floatNormalArray[vtxCount * 3 + 1] = normals[normalId0].y; floatNormalArray[vtxCount * 3 + 2] = normals[normalId0].z; floatUvArray[vtxCount * 2] = uArray[uvId0]; floatUvArray[vtxCount * 2 + 1] = vArray[uvId0]; vtxCount++; floatPointArray[vtxCount * 3] = points[vtxId1].x; floatPointArray[vtxCount * 3 + 1] = points[vtxId1].y; floatPointArray[vtxCount * 3 + 2] = points[vtxId1].z; floatNormalArray[vtxCount * 3] = normals[normalId1].x; floatNormalArray[vtxCount * 3 + 1] = normals[normalId1].y; floatNormalArray[vtxCount * 3 + 2] = normals[normalId1].z; floatUvArray[vtxCount * 2] = uArray[uvId1]; floatUvArray[vtxCount * 2 + 1] = vArray[uvId1]; vtxCount++; floatPointArray[vtxCount * 3] = points[vtxId2].x; floatPointArray[vtxCount * 3 + 1] = points[vtxId2].y; floatPointArray[vtxCount * 3 + 2] = points[vtxId2].z; floatNormalArray[vtxCount * 3] = normals[normalId2].x; floatNormalArray[vtxCount * 3 + 1] = normals[normalId2].y; floatNormalArray[vtxCount * 3 + 2] = normals[normalId2].z; floatUvArray[vtxCount * 2] = uArray[uvId2]; floatUvArray[vtxCount * 2 + 1] = vArray[uvId2]; vtxCount++; //logger.debug(MString("Vertex count: ") + vtxCount + " maxId " + ((vtxCount - 1) * 3 + 2) + " ptArrayLen " + (numTriangles * 3 * 3)); triangelVtxIdList[triCount * 3] = triCount * 3; triangelVtxIdList[triCount * 3 + 1] = triCount * 3 + 1; triangelVtxIdList[triCount * 3 + 2] = triCount * 3 + 2; triCount++; } } //generatetangents bool Generate tangent space using miktspace, useful if mesh has a normal map that was also baked using miktspace (such as blender or xnormal) false //subdivscheme string Subdivision algorithm, options are "loop" and "microdisplacement" "loop" //displacementmap string Name of the texture used for the displacement. Subdivscheme parameter must always be provided, as load-time displacement is handled by the loop-subdivision code. none - optional. (loop subdiv can be used without displacement, microdisplacement will not affect the mesh without a displacement map specified) //dmscale float Scale of the displacement (for an LDR map, this is the maximum height of the displacement in meter) 0.1 //dmoffset float Offset of the displacement. 0 //dmnormalsmooth bool Smoothing of the normals of the subdivided faces. Only valid for loop subdivision. true //dmnormalsplit bool Force the mesh to split along breaks in the normal. If a mesh has no normals (flat-shaded) it will rip open on all edges. Only valid for loop subdivision. false //dmsharpboundary bool Try to preserve mesh boundaries during subdivision. Only valid for loop subdivision. false //nsubdivlevels integer Number of subdivision levels. This is only recursive for loop subdivision, microdisplacement will need much larger values (such as 50). 0 bool generatetangents = false; getBool(MString("mtlu_mesh_generatetangents"), meshFn, generatetangents); int subdivscheme = 0; const char *subdAlgos[] = {"loop", "microdisplacement"}; getInt(MString("mtlu_mesh_subAlgo"), meshFn, subdivscheme); const char *subdalgo = subdAlgos[subdivscheme]; float dmscale; getFloat(MString("mtlu_mesh_dmscale"), meshFn, dmscale); float dmoffset; getFloat(MString("mtlu_mesh_dmoffset"), meshFn, dmoffset); MString displacementmap; getString(MString("mtlu_mesh_displacementMap"), meshFn, displacementmap); const char *displacemap = displacementmap.asChar(); bool dmnormalsmooth = true; getBool(MString("mtlu_mesh_dmnormalsmooth"), meshFn, dmnormalsmooth); bool dmnormalsplit = false; getBool(MString("mtlu_mesh_dmnormalsplit"), meshFn, dmnormalsplit); bool dmsharpboundary = false; getBool(MString("mtlu_mesh_dmsharpboundary"), meshFn, dmsharpboundary); int nsubdivlevels = 0; getInt(MString("mtlu_mesh_subdivlevel"), meshFn, nsubdivlevels); // a displacment map needs its own texture defintion MString displacementTextureName = ""; if(displacementmap.length() > 0) { ParamSet dmParams = CreateParamSet(); dmParams->AddString("filename", &displacemap); displacementTextureName = meshFn.name() + "_displacementMap"; this->lux->texture(displacementTextureName.asChar(), "float", "imagemap", boost::get_pointer(dmParams)); } ParamSet triParams = CreateParamSet(); int numPointValues = numTriangles * 3; int numUvValues = numTriangles * 3 * 2; clock_t startTime = clock(); logger.info(MString("Adding mesh values to params.")); triParams->AddInt("indices", triangelVtxIdList, numTriangles * 3); triParams->AddPoint("P", floatPointArray, numPointValues); triParams->AddNormal("N", floatNormalArray, numPointValues); triParams->AddFloat("uv", floatUvArray, numUvValues); if( nsubdivlevels > 0) triParams->AddInt("nsubdivlevels", &nsubdivlevels, 1); triParams->AddBool("generatetangents", &generatetangents, 1); triParams->AddString("subdivscheme", &subdalgo , 1); if(displacementmap.length() > 0) { triParams->AddFloat("dmoffset", &dmoffset, 1); triParams->AddFloat("dmscale", &dmscale, 1); const char *dmft = displacementTextureName.asChar(); triParams->AddString("displacementmap", &dmft); } triParams->AddBool("dmnormalsmooth", &dmnormalsmooth, 1); triParams->AddBool("dmnormalsplit", &dmnormalsplit, 1); triParams->AddBool("dmsharpboundary", &dmsharpboundary, 1); clock_t pTime = clock(); if(!noObjectDef) this->lux->objectBegin(meshFullName.asChar()); this->lux->shape("trianglemesh", boost::get_pointer(triParams)); if(!noObjectDef) this->lux->objectEnd(); clock_t eTime = clock(); logger.info(MString("Timing: Parameters: ") + ((pTime - startTime)/CLOCKS_PER_SEC) + " objTime " + ((eTime - pTime)/CLOCKS_PER_SEC) + " all " + ((eTime - startTime)/CLOCKS_PER_SEC)); return; }
int main(int argc, char *argv[]) { float scale = 1.f, gamma = 2.2f; float bloomRadius = 0.f, bloomWeight = .2f; float bggray = -1.f; char *toneMap = NULL; ParamSet toneMapParams; int argNum = 1; while (argNum < argc && argv[argNum][0] == '-') { #define ARG(name, var) \ else if (!strcmp(argv[argNum], "-" name)) { \ if (argNum+1 == argc) \ usage(); \ var = atof(argv[argNum+1]); \ ++argNum; \ } if (!strcmp(argv[argNum], "-tonemap")) { if (argNum+1 == argc) usage(); toneMap = argv[argNum+1]; ++argNum; } else if (!strcmp(argv[argNum], "-param")) { if (argNum+2 >= argc) usage(); float val = atof(argv[argNum+2]); toneMapParams.AddFloat(argv[argNum+1], &val); argNum += 2; } ARG("scale", scale) ARG("gamma", gamma) ARG("bg", bggray) ARG("bloomRadius", bloomRadius) ARG("bloomWeight", bloomWeight) else usage(); ++argNum; } if (argNum + 2 > argc) usage(); char *inFile = argv[argNum], *outFile = argv[argNum+1]; float *rgba; int xRes, yRes; bool hasAlpha; pbrtInit(); if (ReadEXR(inFile, rgba, xRes, yRes, hasAlpha)) { float *rgb = new float[xRes*yRes*3]; for (int i = 0; i < xRes*yRes; ++i) { for (int j = 0; j < 3; ++j) { rgb[3*i+j] = scale * rgba[4*i+j]; //CO if (rgba[4*i+3] != 0.f) //CO rgb[3*i+j] /= rgba[4*i+3]; if (bggray > 0) rgb[3*i+j] = rgba[4*i+3] * rgb[3*i+j] + (1.f - rgba[4*i+3]) * bggray; } if (bggray > 0) rgba[4*i+3] = 1.f; } ApplyImagingPipeline(rgb, xRes, yRes, NULL, bloomRadius, bloomWeight, toneMap, &toneMapParams, gamma, 0.f, 255); for (int i = 0; i < xRes*yRes; ++i) { for (int j = 0; j < 3; ++j) { rgba[4*i+j] = rgb[3*i+j]; if (rgba[4*i+3] != 0.f) rgba[4*i+j] /= rgba[4*i+3]; } rgba[4*i+3] *= 255.f; } WriteTIFF(outFile, rgba, xRes, yRes, hasAlpha); } pbrtCleanup(); return 0; }
void LuxRenderer::defineCamera() { std::shared_ptr<MayaScene> mayaScene = MayaTo::getWorldPtr()->worldScenePtr; std::shared_ptr<RenderGlobals> renderGlobals = MayaTo::getWorldPtr()->worldRenderGlobalsPtr; std::shared_ptr<MayaObject> mo = mayaScene->camList[0]; MMatrix cm = mo->dagPath.inclusiveMatrix(); MFnCamera camFn(mo->mobject); this->transformCamera(mo.get(), renderGlobals->doMb && (mo->transformMatrices.size() > 1)); // lux uses the fov of the smallest image edge double hFov = RadToDeg(camFn.horizontalFieldOfView()); double vFov = RadToDeg(camFn.verticalFieldOfView()); float fov = hFov; int width, height; renderGlobals->getWidthHeight(width, height); if( height < width) fov = vFov; // focaldist float focusDist = (float)camFn.focusDistance() * renderGlobals->sceneScale; float focalLen = (float)camFn.focalLength(); float fStop = (float)camFn.fStop(); bool useDOF = false; getBool(MString("depthOfField"), camFn, useDOF); useDOF = useDOF && renderGlobals->doDof; // hither, yon float hither = (float)camFn.nearClippingPlane(); float yon = (float)camFn.farClippingPlane(); // render region int left, bottom, right, top; renderGlobals->getRenderRegion(left, bottom, right, top); int ybot = (height - bottom); int ytop = (height - top); int ymin = ybot < ytop ? ybot : ytop; int ymax = ybot > ytop ? ybot : ytop; float lensradius = (focalLen / 1000.0) / ( 2.0 * fStop ); int blades = 0; getInt(MString("mtlu_diaphragm_blades"), camFn, blades); bool autofocus = false; getBool(MString("mtlu_autofocus"), camFn, autofocus); int dist = 0; getInt(MString("mtlu_distribution"), camFn, dist); logger.debug(MString("Lens distribution: ") + dist + " " + LensDistributions[dist]); float power = 1.0f; getFloat(MString("mtlu_power"), camFn, power); const char *lensdistribution = LensDistributions[dist]; float shutterOpen = 0.0f; float shutterClose = renderGlobals->mbLength; ParamSet cp = CreateParamSet(); cp->AddFloat("fov", &fov); cp->AddFloat("focaldistance", &focusDist); cp->AddFloat("hither", &hither); cp->AddFloat("yon", &yon); cp->AddFloat("shutteropen", &shutterOpen); cp->AddFloat("shutterclose", &shutterClose); if( blades > 0) cp->AddInt("blades", &blades); if( useDOF ) { cp->AddFloat("lensradius", &lensradius); cp->AddBool("autofocus", &autofocus); cp->AddString("distribution", &lensdistribution); cp->AddFloat("power", &power); } lux->camera("perspective", boost::get_pointer(cp)); if( renderGlobals->exportSceneFile) this->luxFile << "Camera \"perspective\" "<< "\"float fov\" [" << fov << "]" <<"\n"; }
void NURBS::Refine(vector<Reference<Shape> > &refined) const { // Compute NURBS dicing rates int diceu = 30, dicev = 30; float *ueval = new float[diceu]; float *veval = new float[dicev]; Point *evalPs = new Point[diceu*dicev]; Normal *evalNs = new Normal[diceu*dicev]; int i; for (i = 0; i < diceu; ++i) ueval[i] = Lerp((float)i / (float)(diceu-1), umin, umax); for (i = 0; i < dicev; ++i) veval[i] = Lerp((float)i / (float)(dicev-1), vmin, vmax); // Evaluate NURBS over grid of points memset(evalPs, 0, diceu*dicev*sizeof(Point)); memset(evalNs, 0, diceu*dicev*sizeof(Point)); float *uvs = new float[2*diceu*dicev]; // Turn NURBS into triangles Homogeneous3 *Pw = (Homogeneous3 *)P; if (!isHomogeneous) { Pw = (Homogeneous3 *)alloca(nu*nv*sizeof(Homogeneous3)); for (int i = 0; i < nu*nv; ++i) { Pw[i].x = P[3*i]; Pw[i].y = P[3*i+1]; Pw[i].z = P[3*i+2]; Pw[i].w = 1.; } } for (int v = 0; v < dicev; ++v) { for (int u = 0; u < diceu; ++u) { uvs[2*(v*diceu+u)] = ueval[u]; uvs[2*(v*diceu+u)+1] = veval[v]; Vector dPdu, dPdv; Point pt = NURBSEvaluateSurface(uorder, uknot, nu, ueval[u], vorder, vknot, nv, veval[v], Pw, &dPdu, &dPdv); evalPs[v*diceu + u].x = pt.x; evalPs[v*diceu + u].y = pt.y; evalPs[v*diceu + u].z = pt.z; evalNs[v*diceu + u] = Normal(Normalize(Cross(dPdu, dPdv))); } } // Generate points-polygons mesh int nTris = 2*(diceu-1)*(dicev-1); int *vertices = new int[3 * nTris]; int *vertp = vertices; // Compute the vertex offset numbers for the triangles for (int v = 0; v < dicev-1; ++v) { for (int u = 0; u < diceu-1; ++u) { #define VN(u,v) ((v)*diceu+(u)) *vertp++ = VN(u, v); *vertp++ = VN(u+1, v); *vertp++ = VN(u+1, v+1); *vertp++ = VN(u, v); *vertp++ = VN(u+1, v+1); *vertp++ = VN(u, v+1); #undef VN } } int nVerts = diceu*dicev; ParamSet paramSet; paramSet.AddInt("indices", vertices, 3*nTris); paramSet.AddPoint("P", evalPs, nVerts); paramSet.AddFloat("uv", uvs, 2 * nVerts); paramSet.AddNormal("N", evalNs, nVerts); refined.push_back(MakeShape("trianglemesh", ObjectToWorld, reverseOrientation, paramSet)); // Cleanup from NURBS refinement delete[] uvs; delete[] ueval; delete[] veval; delete[] evalPs; delete[] evalNs; delete[] vertices; }