Esempio n. 1
0
  /** Append the peaks from a .peaks file into the workspace
   * @param outWS :: the workspace in which to place the information
   * @param filename :: path to the .peaks file
   */
  void LoadIsawPeaks::appendFile( PeaksWorkspace_sptr outWS, std::string filename )
  {

    // Open the file
    std::ifstream in( filename.c_str() );


    // Read the header, load the instrument
    double T0;
    std::string s = readHeader( outWS, in , T0);
    // set T0 in the run parameters
    API::Run & m_run = outWS->mutableRun();
    m_run.addProperty<double>("T0", T0, true);

    if( !in.good() || s.length() < 1 )
      throw std::runtime_error( "End of Peaks file before peaks" );

    if( s.compare( std::string( "0" ) ) != 0 )
      throw std::logic_error( "No header for Peak segments"  );

    readToEndOfLine( in ,  true );
    s = getWord( in , false );

    int run, bankNum;
    double chi , phi , omega , monCount;

    // Build the universal goniometer that will build the rotation matrix.
    Mantid::Geometry::Goniometer uniGonio;
    uniGonio.makeUniversalGoniometer();

    // TODO: Can we find the number of peaks to get better progress reporting?
    Progress prog(this, 0.0, 1.0, 100);

    while( in.good() )
    {
      // Read the header if necessary
      s = readPeakBlockHeader( s ,  in  , run , bankNum , chi , phi ,
          omega , monCount );
      // Build the Rotation matrix using phi,chi,omega
      uniGonio.setRotationAngle("phi", phi);
      uniGonio.setRotationAngle("chi", chi);
      uniGonio.setRotationAngle("omega", omega);
      //Put goniometer into peaks workspace
      outWS->mutableRun().setGoniometer(uniGonio, false);


      std::ostringstream oss;
      std::string bankString = "bank";
      if (outWS->getInstrument()->getName() == "WISH") bankString = "WISHpanel0";
      oss << bankString << bankNum;
      std::string bankName = oss.str();

      int seqNum = -1;

      try
      {
        // Read the peak
        Peak peak = readPeak(outWS, s, in, seqNum, bankName);

        // Get the calculated goniometer matrix
        Matrix<double> gonMat = uniGonio.getR();

        peak.setGoniometerMatrix(gonMat);
        peak.setRunNumber(run);
        peak.setMonitorCount( monCount );

        double tof = peak.getTOF();
        Kernel::Units::Wavelength wl;

        wl.initialize(peak.getL1(), peak.getL2(), peak.getScattering(), 0,
                  peak.getInitialEnergy(), 0.0);

        peak.setWavelength(wl.singleFromTOF( tof));
        // Add the peak to workspace
        outWS->addPeak(peak);
      }
      catch (std::runtime_error & e)
      {
        g_log.warning() << "Error reading peak SEQN " << seqNum << " : " << e.what() << std::endl;
      }

      prog.report();
    }

  }
Esempio n. 2
0
  void FindPeaksMD::findPeaks(typename MDEventWorkspace<MDE, nd>::sptr ws)
  {
    if (nd < 3)
      throw std::invalid_argument("Workspace must have at least 3 dimensions.");

    progress(0.01, "Refreshing Centroids");

    // TODO: This might be slow, progress report?
    // Make sure all centroids are fresh
    ws->getBox()->refreshCentroid();

    typedef IMDBox<MDE,nd>* boxPtr;

    if (ws->getNumExperimentInfo() == 0)
      throw std::runtime_error("No instrument was found in the MDEventWorkspace. Cannot find peaks.");

    // TODO: Do we need to pick a different instrument info?
    ExperimentInfo_sptr ei = ws->getExperimentInfo(0);
    // Instrument associated with workspace
    Geometry::Instrument_const_sptr inst = ei->getInstrument();
    // Find the run number
    int runNumber = ei->getRunNumber();

    // Check that the workspace dimensions are in Q-sample-frame or Q-lab-frame.
    eDimensionType dimType;

    std::string dim0 = ws->getDimension(0)->getName();
    if (dim0 == "H")
    {
      dimType = HKL;
      throw std::runtime_error("Cannot find peaks in a workspace that is already in HKL space.");
    }
    else if (dim0 == "Q_lab_x")
    {
      dimType = QLAB;
    }
    else if (dim0 == "Q_sample_x")
      dimType = QSAMPLE;
    else
      throw std::runtime_error("Unexpected dimensions: need either Q_lab_x or Q_sample_x.");

    // Find the goniometer rotation matrix
    Mantid::Kernel::Matrix<double> goniometer(3,3, true); // Default IDENTITY matrix
    try
    {
      goniometer = ei->mutableRun().getGoniometerMatrix();
    }
    catch (std::exception & e)
    {
      g_log.warning() << "Error finding goniometer matrix. It will not be set in the peaks found." << std::endl;
      g_log.warning() << e.what() << std::endl;
    }

    /// Arbitrary scaling factor for density to make more manageable numbers, especially for older file formats.
    signal_t densityScalingFactor = 1e-6;

    // Calculate a threshold below which a box is too diffuse to be considered a peak.
    signal_t thresholdDensity = 0.0;
    thresholdDensity = ws->getBox()->getSignalNormalized() * DensityThresholdFactor * densityScalingFactor;
    g_log.notice() << "Threshold signal density: " << thresholdDensity << std::endl;

    // We will fill this vector with pointers to all the boxes (up to a given depth)
    typename std::vector<boxPtr> boxes;

    // Get all the MDboxes
    progress(0.10, "Getting Boxes");
    ws->getBox()->getBoxes(boxes, 1000, true);



    // TODO: Here keep only the boxes > e.g. 3 * mean.
    typedef std::pair<double, boxPtr> dens_box;

    // Map that will sort the boxes by increasing density. The key = density; value = box *.
    typename std::multimap<double, boxPtr> sortedBoxes;

    progress(0.20, "Sorting Boxes by Density");
    typename std::vector<boxPtr>::iterator it1;
    typename std::vector<boxPtr>::iterator it1_end = boxes.end();
    for (it1 = boxes.begin(); it1 != it1_end; it1++)
    {
      boxPtr box = *it1;
      double density = box->getSignalNormalized() * densityScalingFactor;
      // Skip any boxes with too small a signal density.
      if (density > thresholdDensity)
        sortedBoxes.insert(dens_box(density,box));
    }

    // List of chosen possible peak boxes.
    std::vector<boxPtr> peakBoxes;

    prog = new Progress(this, 0.30, 0.95, MaxPeaks);

    int64_t numBoxesFound = 0;
    // Now we go (backwards) through the map
    // e.g. from highest density down to lowest density.
    typename std::multimap<double, boxPtr>::reverse_iterator it2;
    typename std::multimap<double, boxPtr>::reverse_iterator it2_end = sortedBoxes.rend();
    for (it2 = sortedBoxes.rbegin(); it2 != it2_end; it2++)
    {
      signal_t density = it2->first;
      boxPtr box = it2->second;
#ifndef MDBOX_TRACK_CENTROID
      coord_t boxCenter[nd];
      box->calculateCentroid(boxCenter);
#else
      const coord_t * boxCenter = box->getCentroid();
#endif

      // Compare to all boxes already picked.
      bool badBox = false;
      for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++)
      {

#ifndef MDBOX_TRACK_CENTROID
        coord_t otherCenter[nd];
        (*it3)->calculateCentroid(otherCenter);
#else
        const coord_t * otherCenter = (*it3)->getCentroid();
#endif

        // Distance between this box and a box we already put in.
        coord_t distSquared = 0.0;
        for (size_t d=0; d<nd; d++)
        {
          coord_t dist = otherCenter[d] - boxCenter[d];
          distSquared += (dist * dist);
        }

        // Reject this box if it is too close to another previously found box.
        if (distSquared < peakRadiusSquared)
        {
          badBox = true;
          break;
        }
      }

      // The box was not rejected for another reason.
      if (!badBox)
      {
        if (numBoxesFound++ >= MaxPeaks)
        {
          g_log.notice() << "Number of peaks found exceeded the limit of " << MaxPeaks << ". Stopping peak finding." << std::endl;
          break;
        }

        peakBoxes.push_back(box);
        g_log.information() << "Found box at ";
        for (size_t d=0; d<nd; d++)
          g_log.information() << (d>0?",":"") << boxCenter[d];
        g_log.information() << "; Density = " << density << std::endl;
        // Report progres for each box found.
        prog->report("Finding Peaks");
      }
    }

    prog->resetNumSteps(numBoxesFound, 0.95, 1.0);

    // Copy the instrument, sample, run to the peaks workspace.
    peakWS->copyExperimentInfoFrom(ei.get());

    // --- Convert the "boxes" to peaks ----
    for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++)
    {
      // The center of the box = Q in the lab frame
      boxPtr box = *it3;
#ifndef MDBOX_TRACK_CENTROID
      coord_t boxCenter[nd];
      box->calculateCentroid(boxCenter);
#else
      const coord_t * boxCenter = box->getCentroid();
#endif

      V3D Q(boxCenter[0], boxCenter[1], boxCenter[2]);

      // Create a peak and add it
      // Empty starting peak.
      Peak p;
      try
      {
        if (dimType == QLAB)
        {
          // Build using the Q-lab-frame constructor
          p = Peak(inst, Q);
          // Save gonio matrix for later
          p.setGoniometerMatrix(goniometer);
        }
        else if (dimType == QSAMPLE)
        {
          // Build using the Q-sample-frame constructor
          p = Peak(inst, Q, goniometer);
        }
      }
      catch (std::exception &e)
      {
        g_log.notice() << "Error creating peak at " << Q << " because of '" << e.what() << "'. Peak will be skipped." << std::endl;
        continue;
      }

      try
      { // Look for a detector
        p.findDetector();
      }
      catch (...)
      { /* Ignore errors in ray-tracer TODO: Handle for WISH data later */ }

      // The "bin count" used will be the box density.
      p.setBinCount( box->getSignalNormalized() * densityScalingFactor);

      // Save the run number found before.
      p.setRunNumber(runNumber);

      peakWS->addPeak(p);

      // Report progres for each box found.
      prog->report("Adding Peaks");

    } // for each box found

  }