Esempio n. 1
0
float Poly::Selector::Score(Vector3 &pos, float /*camdis*/)
{
	assert (mesh);
	const vector<Vertex>& v=mesh->verts;
	Plane plane;

	Vector3 vrt[3];
	for (int a=0;a<3;a++) 
		transform.apply(&v[poly->verts[a]].pos, &vrt[a]);
    
	plane.MakePlane (vrt[0],vrt[1],vrt[2]);
	float dis = plane.Dis (&pos);
	return fabs (dis);
}
Esempio n. 2
0
// In short, the reason for the complexity of this function is:
//  - creates a list of vertices where every vertex has a unique position (UV ignored)
//  - doesn't allow the same poly normal to be added to the same vertex twice
void PolyMesh::CalculateNormals()
{
	vector<Vector3> vertPos;
	vector<int> old2new;
	GenerateUniqueVectors(verts, vertPos, old2new);
	
	vector<vector<int> > new2old;
	new2old.resize(vertPos.size());
	for (unsigned int a=0;a<old2new.size();a++)
		new2old[old2new[a]].push_back(a);

	vector<std::vector<Vector3> > normals;
	normals.resize(vertPos.size());

	for (unsigned int a=0;a<poly.size();a++) {
		Poly *pl = poly[a];
		Plane plane;
		
		plane.MakePlane(
			vertPos[old2new[pl->verts[0]]],
			vertPos[old2new[pl->verts[1]]],
			vertPos[old2new[pl->verts[2]]]);

		Vector3 plnorm = plane.GetVector();
		for (unsigned int b=0;b<pl->verts.size();b++) {
			vector<Vector3>& norms = normals[old2new[pl->verts[b]]];
			unsigned int c;
			for (c=0;c<norms.size();c++)
				if (norms[c] == plnorm) break;

			if (c == norms.size())
				norms.push_back(plnorm);
		}
	}

	for (unsigned int a=0;a<normals.size();a++) {
		Vector3 sum;
		vector<Vector3>& vn = normals[a];
		for(unsigned int b=0;b<vn.size();b++)
			sum+=vn[b];

		if (sum.length()>0.0f)
			sum.normalize ();

		vector<int>& vlist=new2old[a];
		for(unsigned int b=0;b<vlist.size();b++)
			verts[vlist[b]].normal = sum;
	}
}
Esempio n. 3
0
float Poly::Selector::Score(Vector3 &pos, float camdis)
{
	assert (object);
	const vector<Vertex>& v=object->verts;
	Plane plane;

	Vector3 vrt[3];
	Matrix transform;
	object->GetFullTransform(transform);
	for (int a=0;a<3;a++) 
		transform.apply(&v[poly->verts[a]].pos, &vrt[a]);
    
	plane.MakePlane (vrt[0],vrt[1],vrt[2]);
	float dis = plane.Dis (&pos);
	return fabs (dis);
}
Esempio n. 4
0
void MdlObject::CalculateNormals()
{
	vector<Vector3> normals;
	normals.resize(verts.size());

	for (int a=0;a<poly.size();a++) {
		Poly *pl = poly[a];
		Plane plane;
		
		plane.MakePlane(verts[pl->verts [0]].pos,verts[pl->verts[1]].pos,verts[pl->verts[2]].pos);
		for (int b=0;b<pl->verts.size();b++)
			normals[pl->verts[b]] += plane.GetVector ();
	}

	for (int a=0;a<verts.size();a++) {
		if (normals[a].length()>0.0f)
			normals[a].normalize ();
		verts[a].normal=normals[a];
	}
}
Esempio n. 5
0
int MatchPolygon (MdlObject *root, vector<Vector3>& pverts, int& startVertex)
{
	for (int a=0;a<root->poly.size();a++) {
		Poly *pl = root->poly[a];

		if (pl->verts.size() != pverts.size())
			continue;

		// An early out plane comparision, will also make sure that "double-sided" polgyon pairs
		// are handled correctly
		Plane plane = pl->CalcPlane (root->verts);
		Plane tplane;
		tplane.MakePlane (pverts[0],pverts[1],pverts[2]);
		
		if (!plane.EpsilonCompare(tplane, EPSILON))
			continue;

		// in case the polygon vertices have been reordered, 
		// this takes care of finding "the first" vertex again
		int startv = 0;
		for (;startv < pverts.size();startv++) {
			if ((root->verts[pl->verts [0]].pos-pverts[startv]).length () < EPSILON)
				break;
		}
		// no start vertex has been found
		if (startv == pverts.size())
			continue;

		// compare the polygon vertices with eachother... 
		int v = 0;
		for (;v<pverts.size();v++) {
			if ((root->verts[pl->verts[v]].pos - pverts[(v+startv)%pverts.size()]).length () >= EPSILON)
				break;
		}
		if (v==pverts.size()) {
			startVertex=startv;
			return a;
		}
	}
	return -1;
}
Esempio n. 6
0
Plane Poly::CalcPlane (const vector<Vertex>& vrt) {
	Plane plane;
	plane.MakePlane (vrt[verts[0]].pos,vrt[verts[1]].pos,vrt[verts[2]].pos);
	return plane;
}