Esempio n. 1
0
bool PolyhedronIntersectsAABB_OBB(const Polyhedron &p, const T &obj)
{
	if (p.Contains(obj.CenterPoint()))
		return true;
	if (obj.Contains(p.Centroid()))
		return true;

	// Test for each edge of the AABB/OBB whether this polyhedron intersects it.
	for(int i = 0; i < obj.NumEdges(); ++i)
		if (p.Intersects(obj.Edge(i)))
			return true;

	// Test for each edge of this polyhedron whether the AABB/OBB intersects it.
	for(size_t i = 0; i < p.f.size(); ++i)
	{
		assert(!p.f[i].v.empty()); // Cannot have degenerate faces here, and for performance reasons, don't start checking for this condition in release mode!
		int v0 = p.f[i].v.back();
		float3 l0 = p.v[v0];
		for(size_t j = 0; j < p.f[i].v.size(); ++j)
		{
			int v1 = p.f[i].v[j];
			float3 l1 = p.v[v1];
			if (v0 < v1 && obj.Intersects(LineSegment(l0, l1))) // If v0 < v1, then this line segment is the canonical one.
				return true;
			l0 = l1;
			v0 = v1;
		}
	}

	return false;
}
Esempio n. 2
0
/** The algorithm for Polyhedron-Polyhedron intersection is from Christer Ericson's Real-Time Collision Detection, p. 384.
	As noted by the author, the algorithm is very naive (and here unoptimized), and better methods exist. [groupSyntax] */
bool Polyhedron::Intersects(const Polyhedron &polyhedron) const
{
	if (polyhedron.Contains(this->Centroid()))
		return true;
	if (this->Contains(polyhedron.Centroid()))
		return true;

	// This test assumes that both this and the other polyhedron are closed.
	// This means that for each edge running through vertices i and j, there's a face
	// that contains the line segment (i,j) and another neighboring face that contains
	// the line segment (j,i). These represent the same line segment (but in opposite direction)
	// so we only have to test one of them for intersection. Take i < j as the canonical choice
	// and skip the other winding order.

	// Test for each edge of this polyhedron whether the other polyhedron intersects it.
	for(size_t i = 0; i < f.size(); ++i)
	{
		assert(!f[i].v.empty()); // Cannot have degenerate faces here, and for performance reasons, don't start checking for this condition in release mode!
		int v0 = f[i].v.back();
		float3 l0 = v[v0];
		for(size_t j = 0; j < f[i].v.size(); ++j)
		{
			int v1 = f[i].v[j];
			float3 l1 = v[v1];
			if (v0 < v1 && polyhedron.Intersects(LineSegment(l0, l1))) // If v0 < v1, then this line segment is the canonical one.
				return true;
			l0 = l1;
			v0 = v1;
		}
	}

	// Test for each edge of the other polyhedron whether this polyhedron intersects it.
	for(size_t i = 0; i < polyhedron.f.size(); ++i)
	{
		assert(!polyhedron.f[i].v.empty()); // Cannot have degenerate faces here, and for performance reasons, don't start checking for this condition in release mode!
		int v0 = polyhedron.f[i].v.back();
		float3 l0 = polyhedron.v[v0];
		for(size_t j = 0; j < polyhedron.f[i].v.size(); ++j)
		{
			int v1 = polyhedron.f[i].v[j];
			float3 l1 = polyhedron.v[v1];
			if (v0 < v1 && Intersects(LineSegment(l0, l1))) // If v0 < v1, then this line segment is the canonical one.
				return true;
			l0 = l1;
			v0 = v1;
		}
	}

	return false;
}
Esempio n. 3
0
Polyhedron AABB::ToPolyhedron() const
{
	// Note to maintainer: This function is an exact copy of OBB:ToPolyhedron() and Frustum::ToPolyhedron().
	Polyhedron p;
	// Populate the corners of this AABB.
	// The will be in the order 0: ---, 1: --+, 2: -+-, 3: -++, 4: +--, 5: +-+, 6: ++-, 7: +++.
	for(int i = 0; i < 8; ++i)
		p.v.push_back(CornerPoint(i));

	// Generate the 6 faces of this AABB.
	const int faces[6][4] =
	{
		{ 0, 1, 3, 2 }, // X-
		{ 4, 6, 7, 5 }, // X+
		{ 0, 4, 5, 1 }, // Y-
		{ 7, 6, 2, 3 }, // Y+
		{ 0, 2, 6, 4 }, // Z-
		{ 1, 5, 7, 3 }, // Z+
	};

	for(int f = 0; f < 6; ++f)
	{
		Polyhedron::Face face;
		for(int v = 0; v < 4; ++v)
			face.v.push_back(faces[f][v]);
		p.f.push_back(face);
	}
	
	assume(p.IsClosed());
	assume(p.IsConvex());
	assume(p.EulerFormulaHolds());
	assume(p.FaceIndicesValid());
	assume(p.FacesAreNondegeneratePlanar());
	assume(p.Contains(this->CenterPoint()));
	return p;
}