Esempio n. 1
0
void ObjCMigrateASTConsumer::migrateObjCInterfaceDecl(ASTContext &Ctx,
                                                      ObjCInterfaceDecl *D) {
  for (ObjCContainerDecl::method_iterator M = D->meth_begin(), MEnd = D->meth_end();
       M != MEnd; ++M) {
    ObjCMethodDecl *Method = (*M);
    if (Method->isPropertyAccessor() ||  Method->param_size() != 0)
      continue;
    // Is this method candidate to be a getter?
    QualType GRT = Method->getResultType();
    if (GRT->isVoidType())
      continue;
    Selector GetterSelector = Method->getSelector();
    IdentifierInfo *getterName = GetterSelector.getIdentifierInfoForSlot(0);
    Selector SetterSelector =
      SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
                                             PP.getSelectorTable(),
                                             getterName);
    if (ObjCMethodDecl *SetterMethod = D->lookupMethod(SetterSelector, true)) {
      // Is this a valid setter, matching the target getter?
      QualType SRT = SetterMethod->getResultType();
      if (!SRT->isVoidType())
        continue;
      const ParmVarDecl *argDecl = *SetterMethod->param_begin();
      QualType ArgType = argDecl->getType();
      if (!Ctx.hasSameType(ArgType, GRT))
          continue;
        edit::Commit commit(*Editor);
        edit::rewriteToObjCProperty(Method, SetterMethod, *NSAPIObj, commit);
        Editor->commit(commit);
      }
  }
}
Esempio n. 2
0
  void ReturnSynthesizer::Transform() {
    if (!getTransaction()->getCompilationOpts().ResultEvaluation)
      return;

    FunctionDecl* FD = getTransaction()->getWrapperFD();

    int foundAtPos = -1;
    Expr* lastExpr = utils::Analyze::GetOrCreateLastExpr(FD, &foundAtPos, 
                                                         /*omitDS*/false,
                                                         m_Sema);
    if (lastExpr) {
      QualType RetTy = lastExpr->getType();
      if (!RetTy->isVoidType() && RetTy.isTriviallyCopyableType(*m_Context)) {
        // Change the void function's return type
        // We can't PushDeclContext, because we don't have scope.
        Sema::ContextRAII pushedDC(*m_Sema, FD);
        FunctionProtoType::ExtProtoInfo EPI;
        QualType FnTy
          = m_Context->getFunctionType(RetTy, llvm::ArrayRef<QualType>(), EPI);
        FD->setType(FnTy);
        CompoundStmt* CS = cast<CompoundStmt>(FD->getBody());
        assert(CS && "Missing body?");
        // Change it to a return stmt (Avoid dealloc/alloc of all el.)
        *(CS->body_begin() + foundAtPos)
          = m_Sema->ActOnReturnStmt(lastExpr->getExprLoc(), 
                                    lastExpr).take();
      }
    } else if (foundAtPos >= 0) {
      // check for non-void return statement
      CompoundStmt* CS = cast<CompoundStmt>(FD->getBody());
      Stmt* CSS = *(CS->body_begin() + foundAtPos);
      if (ReturnStmt* RS = dyn_cast<ReturnStmt>(CSS)) {
        if (Expr* RetV = RS->getRetValue()) {
          QualType RetTy = RetV->getType();
          // Any return statement will have been "healed" by Sema
          // to correspond to the original void return type of the
          // wrapper, using a ImplicitCastExpr 'void' <ToVoid>.
          // Remove that.
          if (RetTy->isVoidType()) {
            ImplicitCastExpr* VoidCast = dyn_cast<ImplicitCastExpr>(RetV);
            if (VoidCast) {
              RS->setRetValue(VoidCast->getSubExpr());
              RetTy = VoidCast->getSubExpr()->getType();
            }
          }

          if (!RetTy->isVoidType()
              && RetTy.isTriviallyCopyableType(*m_Context)) {
            Sema::ContextRAII pushedDC(*m_Sema, FD);
            FunctionProtoType::ExtProtoInfo EPI;
            QualType FnTy
              = m_Context->getFunctionType(RetTy, llvm::ArrayRef<QualType>(),
                                           EPI);
            FD->setType(FnTy);
          } // not returning void
        } // have return value
      } // is a return statement
    } // have a statement
  }
Esempio n. 3
0
SVal StoreManager::evalDynamicCast(SVal Base, QualType DerivedType,
                                   bool &Failed) {
  Failed = false;

  loc::MemRegionVal *BaseRegVal = dyn_cast<loc::MemRegionVal>(&Base);
  if (!BaseRegVal)
    return UnknownVal();
  const MemRegion *BaseRegion = BaseRegVal->stripCasts(/*StripBases=*/false);

  // Assume the derived class is a pointer or a reference to a CXX record.
  DerivedType = DerivedType->getPointeeType();
  assert(!DerivedType.isNull());
  const CXXRecordDecl *DerivedDecl = DerivedType->getAsCXXRecordDecl();
  if (!DerivedDecl && !DerivedType->isVoidType())
    return UnknownVal();

  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
  // derived to base).
  const MemRegion *SR = BaseRegion;
  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
    QualType BaseType = TSR->getLocationType()->getPointeeType();
    assert(!BaseType.isNull());
    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
    if (!SRDecl)
      return UnknownVal();

    // If found the derived class, the cast succeeds.
    if (SRDecl == DerivedDecl)
      return loc::MemRegionVal(TSR);

    if (!DerivedType->isVoidType()) {
      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
      // only happen when multiple or virtual inheritance is involved.
      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
                         /*DetectVirtual=*/false);
      if (SRDecl->isDerivedFrom(DerivedDecl, Paths))
        return evalDerivedToBase(loc::MemRegionVal(TSR), Paths.front());
    }

    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
      // Drill down the chain to get the derived classes.
      SR = R->getSuperRegion();
    else {
      // We reached the bottom of the hierarchy.

      // If this is a cast to void*, return the region.
      if (DerivedType->isVoidType())
        return loc::MemRegionVal(TSR);

      // We did not find the derived class. We we must be casting the base to
      // derived, so the cast should fail.
      Failed = true;
      return UnknownVal();
    }
  }
  
  return UnknownVal();
}
Esempio n. 4
0
void ReturnUndefChecker::checkPreStmt(const ReturnStmt *RS,
                                      CheckerContext &C) const {
  const Expr *RetE = RS->getRetValue();
  if (!RetE)
    return;
  SVal RetVal = C.getSVal(RetE);

  const StackFrameContext *SFC = C.getStackFrame();
  QualType RT = CallEvent::getDeclaredResultType(SFC->getDecl());

  if (RetVal.isUndef()) {
    // "return;" is modeled to evaluate to an UndefinedVal. Allow UndefinedVal
    // to be returned in functions returning void to support this pattern:
    //   void foo() {
    //     return;
    //   }
    //   void test() {
    //     return foo();
    //   }
    if (RT.isNull() || !RT->isVoidType())
      emitUndef(C, RetE);
    return;
  }

  if (RT.isNull())
    return;

  if (RT->isReferenceType()) {
    checkReference(C, RetE, RetVal.castAs<DefinedOrUnknownSVal>());
    return;
  }
}
Esempio n. 5
0
long long clang_Type_getSizeOf(CXType T) {
  if (T.kind == CXType_Invalid)
    return CXTypeLayoutError_Invalid;
  ASTContext &Ctx = cxtu::getASTUnit(GetTU(T))->getASTContext();
  QualType QT = GetQualType(T);
  // [expr.sizeof] p2: if reference type, return size of referenced type
  if (QT->isReferenceType())
    QT = QT.getNonReferenceType();
  // [expr.sizeof] p1: return -1 on: func, incomplete, bitfield, incomplete
  //                   enumeration
  // Note: We get the cxtype, not the cxcursor, so we can't call
  //       FieldDecl->isBitField()
  // [expr.sizeof] p3: pointer ok, function not ok.
  // [gcc extension] lib/AST/ExprConstant.cpp:1372 HandleSizeof : vla == error
  if (QT->isIncompleteType())
    return CXTypeLayoutError_Incomplete;
  if (QT->isDependentType())
    return CXTypeLayoutError_Dependent;
  if (!QT->isConstantSizeType())
    return CXTypeLayoutError_NotConstantSize;
  // [gcc extension] lib/AST/ExprConstant.cpp:1372
  //                 HandleSizeof : {voidtype,functype} == 1
  // not handled by ASTContext.cpp:1313 getTypeInfoImpl
  if (QT->isVoidType() || QT->isFunctionType())
    return 1;
  return Ctx.getTypeSizeInChars(QT).getQuantity();
}
Esempio n. 6
0
/// \brief Build a function type.
///
/// This routine checks the function type according to C++ rules and
/// under the assumption that the result type and parameter types have
/// just been instantiated from a template. It therefore duplicates
/// some of the behavior of GetTypeForDeclarator, but in a much
/// simpler form that is only suitable for this narrow use case.
///
/// \param T The return type of the function.
///
/// \param ParamTypes The parameter types of the function. This array
/// will be modified to account for adjustments to the types of the
/// function parameters.
///
/// \param NumParamTypes The number of parameter types in ParamTypes.
///
/// \param Variadic Whether this is a variadic function type.
///
/// \param Quals The cvr-qualifiers to be applied to the function type.
///
/// \param Loc The location of the entity whose type involves this
/// function type or, if there is no such entity, the location of the
/// type that will have function type.
///
/// \param Entity The name of the entity that involves the function
/// type, if known.
///
/// \returns A suitable function type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildFunctionType(QualType T,
                                 QualType *ParamTypes, 
                                 unsigned NumParamTypes,
                                 bool Variadic, unsigned Quals,
                                 SourceLocation Loc, DeclarationName Entity) {
  if (T->isArrayType() || T->isFunctionType()) {
    Diag(Loc, diag::err_func_returning_array_function) << T;
    return QualType();
  }
  
  bool Invalid = false;
  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
    if (ParamType->isVoidType()) {
      Diag(Loc, diag::err_param_with_void_type);
      Invalid = true;
    }

    ParamTypes[Idx] = ParamType;
  }

  if (Invalid)
    return QualType();

  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic, 
                                 Quals);
}
Esempio n. 7
0
/// Recursively check if the pointer types are equal modulo const, volatile,
/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
/// Assumes the input types are canonical.
static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
                                                         QualType FromTy) {
  while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
    Qualifiers Quals1, Quals2;
    ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
    FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);

    // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
    // spaces) are identical.
    Quals1.removeCVRQualifiers();
    Quals2.removeCVRQualifiers();
    if (Quals1 != Quals2)
      return false;
  }

  // If we are casting to void, the 'From' value can be used to represent the
  // 'To' value.
  if (ToTy->isVoidType())
    return true;

  if (ToTy != FromTy)
    return false;

  return true;
}
Esempio n. 8
0
/// Recursively check if the pointer types are equal modulo const, volatile,
/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
/// Assumes the input types are canonical.
static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
                                                         QualType FromTy) {
  while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
    Qualifiers Quals1, Quals2;
    ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
    FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);

    // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
    // spaces) are identical.
    Quals1.removeCVRQualifiers();
    Quals2.removeCVRQualifiers();
    if (Quals1 != Quals2)
      return false;
  }

  // If we are casting to void, the 'From' value can be used to represent the
  // 'To' value.
  //
  // FIXME: Doing this after unwrapping the types doesn't make any sense. A
  // cast from 'int**' to 'void**' is not special in the way that a cast from
  // 'int*' to 'void*' is.
  if (ToTy->isVoidType())
    return true;

  if (ToTy != FromTy)
    return false;

  return true;
}
Esempio n. 9
0
SVal Environment::getSVal(const Stmt *E, SValBuilder& svalBuilder) const {
  for (;;) {
    switch (E->getStmtClass()) {
      case Stmt::AddrLabelExprClass:
        return svalBuilder.makeLoc(cast<AddrLabelExpr>(E));
      case Stmt::ParenExprClass:
        // ParenExprs are no-ops.
        E = cast<ParenExpr>(E)->getSubExpr();
        continue;
      case Stmt::CharacterLiteralClass: {
        const CharacterLiteral* C = cast<CharacterLiteral>(E);
        return svalBuilder.makeIntVal(C->getValue(), C->getType());
      }
      case Stmt::CXXBoolLiteralExprClass: {
        const SVal *X = ExprBindings.lookup(E);
        if (X) 
          return *X;
        else 
          return svalBuilder.makeIntVal(cast<CXXBoolLiteralExpr>(E));
      }
      case Stmt::IntegerLiteralClass: {
        // In C++, this expression may have been bound to a temporary object.
        SVal const *X = ExprBindings.lookup(E);
        if (X)
          return *X;
        else
          return svalBuilder.makeIntVal(cast<IntegerLiteral>(E));
      }
      case Stmt::ImplicitCastExprClass:
      case Stmt::CStyleCastExprClass: {
        // We blast through no-op casts to get the descendant
        // subexpression that has a value.
        const CastExpr* C = cast<CastExpr>(E);
        QualType CT = C->getType();
        if (CT->isVoidType())
          return UnknownVal();
        if (C->getCastKind() == CK_NoOp) {
          E = C->getSubExpr();
          continue;
        }
        break;
      }
      case Stmt::ExprWithCleanupsClass:
        E = cast<ExprWithCleanups>(E)->getSubExpr();
        continue;
      case Stmt::CXXBindTemporaryExprClass:
        E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
        continue;
      case Stmt::CXXFunctionalCastExprClass:
        E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
        continue;        
      // Handle all other Stmt* using a lookup.
      default:
        break;
    };
    break;
  }
  return lookupExpr(E);
}
Esempio n. 10
0
static bool isVoidPointerToNonConst(QualType T) {
  if (const PointerType *PT = T->getAs<PointerType>()) {
    QualType PointeeTy = PT->getPointeeType();
    if (PointeeTy.isConstQualified())
      return false;
    return PointeeTy->isVoidType();
  } else
    return false;
}
void AdjustedReturnValueChecker::checkPostStmt(const CallExpr *CE,
                                               CheckerContext &C) const {
  
  // Get the result type of the call.
  QualType expectedResultTy = CE->getType();

  // Fetch the signature of the called function.
  const ProgramState *state = C.getState();
  const LocationContext *LCtx = C.getLocationContext();

  SVal V = state->getSVal(CE, LCtx);
  
  if (V.isUnknown())
    return;
  
  // Casting to void?  Discard the value.
  if (expectedResultTy->isVoidType()) {
    C.addTransition(state->BindExpr(CE, LCtx, UnknownVal()));
    return;
  }                   

  const MemRegion *callee = state->getSVal(CE->getCallee(), LCtx).getAsRegion();
  if (!callee)
    return;

  QualType actualResultTy;
  
  if (const FunctionTextRegion *FT = dyn_cast<FunctionTextRegion>(callee)) {
    const FunctionDecl *FD = FT->getDecl();
    actualResultTy = FD->getResultType();
  }
  else if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(callee)) {
    const BlockTextRegion *BR = BD->getCodeRegion();
    const BlockPointerType *BT=BR->getLocationType()->getAs<BlockPointerType>();
    const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
    actualResultTy = FT->getResultType();
  }

  // Can this happen?
  if (actualResultTy.isNull())
    return;

  // For now, ignore references.
  if (actualResultTy->getAs<ReferenceType>())
    return;
  

  // Are they the same?
  if (expectedResultTy != actualResultTy) {
    // FIXME: Do more checking and actual emit an error. At least performing
    // the cast avoids some assertion failures elsewhere.
    SValBuilder &svalBuilder = C.getSValBuilder();
    V = svalBuilder.evalCast(V, expectedResultTy, actualResultTy);
    C.addTransition(state->BindExpr(CE, LCtx, V));
  }
}
Esempio n. 12
0
SVal Environment::GetSVal(const Stmt *E, ValueManager& ValMgr) const {

  for (;;) {

    switch (E->getStmtClass()) {

      case Stmt::AddrLabelExprClass:
        return ValMgr.makeLoc(cast<AddrLabelExpr>(E));

        // ParenExprs are no-ops.

      case Stmt::ParenExprClass:
        E = cast<ParenExpr>(E)->getSubExpr();
        continue;

      case Stmt::CharacterLiteralClass: {
        const CharacterLiteral* C = cast<CharacterLiteral>(E);
        return ValMgr.makeIntVal(C->getValue(), C->getType());
      }

      case Stmt::IntegerLiteralClass: {
        return ValMgr.makeIntVal(cast<IntegerLiteral>(E));
      }

      // Casts where the source and target type are the same
      // are no-ops.  We blast through these to get the descendant
      // subexpression that has a value.

      case Stmt::ImplicitCastExprClass:
      case Stmt::CStyleCastExprClass: {
        const CastExpr* C = cast<CastExpr>(E);
        QualType CT = C->getType();

        if (CT->isVoidType())
          return UnknownVal();

        break;
      }

        // Handle all other Stmt* using a lookup.

      default:
        break;
    };

    break;
  }

  return LookupExpr(E);
}
Esempio n. 13
0
  // We need to artificially create:
  // cling_PrintValue(void* (ASTContext)C, void* (Expr)E, const void* (&i)
  Expr* ValuePrinterSynthesizer::SynthesizeVP(Expr* E) {
    QualType QT = E->getType();
    // For now we skip void and function pointer types.
    if (!QT.isNull() && (QT->isVoidType() || QT->isFunctionType()))
      return 0;

    // Find cling_PrintValue
    SourceLocation NoSLoc = SourceLocation();
    DeclarationName PVName = &m_Context->Idents.get("cling_PrintValue");
    LookupResult R(*m_Sema, PVName, NoSLoc, Sema::LookupOrdinaryName,
                   Sema::ForRedeclaration);

    Scope* S = m_Sema->getScopeForContext(m_Sema->CurContext);
    m_Sema->LookupName(R, S);
    assert(!R.empty() && "Cannot find cling_PrintValue(...)");

    CXXScopeSpec CSS;
    Expr* UnresolvedLookup
      = m_Sema->BuildDeclarationNameExpr(CSS, R, /*ADL*/ false).take();


    Expr* VoidEArg = utils::Synthesize::CStyleCastPtrExpr(m_Sema, 
                                                          m_Context->VoidPtrTy,
                                                          (uint64_t)E);
    Expr* VoidCArg = utils::Synthesize::CStyleCastPtrExpr(m_Sema, 
                                                          m_Context->VoidPtrTy,
                                                          (uint64_t)m_Context);

    if (!QT->isPointerType()) {
      while(ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E))
        E = ICE->getSubExpr();
      E = m_Sema->BuildUnaryOp(S, NoSLoc, UO_AddrOf, E).take();
    }

    llvm::SmallVector<Expr*, 4> CallArgs;
    CallArgs.push_back(VoidEArg);
    CallArgs.push_back(VoidCArg);
    CallArgs.push_back(E);

    Expr* Result = m_Sema->ActOnCallExpr(S, UnresolvedLookup, NoSLoc,
                                         CallArgs, NoSLoc).take();
    assert(Result && "Cannot create value printer!");

    return Result;
  }
Esempio n. 14
0
 bool GetFuncType(const FunctionType * f, Obj * typ) {
     Obj returns,parameters;
     resulttable->newlist(&returns);
     resulttable->newlist(&parameters);
     
     bool valid = true; //decisions about whether this function can be exported or not are delayed until we have seen all the potential problems
     QualType RT = f->getResultType();
     if(!RT->isVoidType()) {
         Obj rt;
         if(!GetType(RT,&rt)) {
             valid = false;
         } else {
             rt.push();
             returns.addentry();
         }
     }
    
     
     const FunctionProtoType * proto = f->getAs<FunctionProtoType>();
     //proto is null if the function was declared without an argument list (e.g. void foo() and not void foo(void))
     //we don't support old-style C parameter lists, we just treat them as empty
     if(proto) {
         for(size_t i = 0; i < proto->getNumArgs(); i++) {
             QualType PT = proto->getArgType(i);
             Obj pt;
             if(!GetType(PT,&pt)) {
                 valid = false; //keep going with attempting to parse type to make sure we see all the reasons why we cannot support this function
             } else if(valid) {
                 pt.push();
                 parameters.addentry();
             }
         }
     }
     
     if(valid) {
         PushTypeFunction("functype");
         parameters.push();
         returns.push();
         lua_pushboolean(L, proto ? proto->isVariadic() : false);
         lua_call(L, 3, 1);
         typ->initFromStack(L,ref_table);
     }
     
     return valid;
 }
Esempio n. 15
0
bool Sema::CXXCheckCStyleCast(SourceRange R, QualType CastTy, Expr *&CastExpr,
                              CastExpr::CastKind &Kind, bool FunctionalStyle)
{
  // This test is outside everything else because it's the only case where
  // a non-lvalue-reference target type does not lead to decay.
  // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
  if (CastTy->isVoidType())
    return false;

  // If the type is dependent, we won't do any other semantic analysis now.
  if (CastTy->isDependentType() || CastExpr->isTypeDependent())
    return false;

  if (!CastTy->isLValueReferenceType())
    DefaultFunctionArrayConversion(CastExpr);

  // C++ [expr.cast]p5: The conversions performed by
  //   - a const_cast,
  //   - a static_cast,
  //   - a static_cast followed by a const_cast,
  //   - a reinterpret_cast, or
  //   - a reinterpret_cast followed by a const_cast,
  //   can be performed using the cast notation of explicit type conversion.
  //   [...] If a conversion can be interpreted in more than one of the ways
  //   listed above, the interpretation that appears first in the list is used,
  //   even if a cast resulting from that interpretation is ill-formed.
  // In plain language, this means trying a const_cast ...
  unsigned msg = diag::err_bad_cxx_cast_generic;
  TryCastResult tcr = TryConstCast(*this, CastExpr, CastTy, /*CStyle*/true,msg);
  if (tcr == TC_NotApplicable) {
    // ... or if that is not possible, a static_cast, ignoring const, ...
    tcr = TryStaticCast(*this, CastExpr, CastTy, /*CStyle*/true, R, Kind, msg);
    if (tcr == TC_NotApplicable) {
      // ... and finally a reinterpret_cast, ignoring const.
      tcr = TryReinterpretCast(*this, CastExpr, CastTy, /*CStyle*/true, R, msg);
    }
  }

  if (tcr != TC_Success && msg != 0)
    Diag(R.getBegin(), msg) << (FunctionalStyle ? CT_Functional : CT_CStyle)
      << CastExpr->getType() << CastTy << R;

  return tcr != TC_Success;
}
Esempio n. 16
0
  // We need to artificially create:
  // cling_PrintValue(void* (ASTContext)C, void* (Expr)E, const void* (&i)
  Expr* ValuePrinterSynthesizer::SynthesizeVP(Expr* E) {
    QualType QT = E->getType();
    // For now we skip void and function pointer types.
    if (!QT.isNull() && (QT->isVoidType() || QT->isFunctionType()))
      return 0;

    // Find cling_PrintValue
    if (!m_LookupResult)
      FindAndCacheRuntimeLookupResult(E->getLocStart());


    Expr* VoidEArg = utils::Synthesize::CStyleCastPtrExpr(m_Sema,
                                                          m_Context->VoidPtrTy,
                                                          (uint64_t)E);
    Expr* VoidCArg = utils::Synthesize::CStyleCastPtrExpr(m_Sema,
                                                          m_Context->VoidPtrTy,
                                                          (uint64_t)m_Context);

    SourceLocation NoSLoc = SourceLocation();
    Scope* S = m_Sema->getScopeForContext(m_Sema->CurContext);
    if (!QT->isPointerType()) {
      while(ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E))
        E = ICE->getSubExpr();
      E = m_Sema->BuildUnaryOp(S, NoSLoc, UO_AddrOf, E).get();
    }

    llvm::SmallVector<Expr*, 4> CallArgs;
    CallArgs.push_back(VoidEArg);
    CallArgs.push_back(VoidCArg);
    CallArgs.push_back(E);

    CXXScopeSpec CSS;
    Expr* unresolvedLookup
      = m_Sema->BuildDeclarationNameExpr(CSS, *m_LookupResult,
                                         /*ADL*/ false).get();

    Expr* Result = m_Sema->ActOnCallExpr(S, unresolvedLookup, E->getLocStart(),
                                         CallArgs, E->getLocEnd()).get();
    assert(Result && "Cannot create value printer!");

    return Result;
  }
void ReturnUndefChecker::checkPreStmt(const ReturnStmt *RS,
                                      CheckerContext &C) const {
  const Expr *RetE = RS->getRetValue();
  if (!RetE)
    return;
  SVal RetVal = C.getSVal(RetE);

  const StackFrameContext *SFC = C.getStackFrame();
  QualType RT = CallEvent::getDeclaredResultType(SFC->getDecl());

  if (RetVal.isUndef()) {
    // "return;" is modeled to evaluate to an UndefinedVal. Allow UndefinedVal
    // to be returned in functions returning void to support this pattern:
    //   void foo() {
    //     return;
    //   }
    //   void test() {
    //     return foo();
    //   }
    if (!RT.isNull() && RT->isVoidType())
      return;

    // Not all blocks have explicitly-specified return types; if the return type
    // is not available, but the return value expression has 'void' type, assume
    // Sema already checked it.
    if (RT.isNull() && isa<BlockDecl>(SFC->getDecl()) &&
        RetE->getType()->isVoidType())
      return;

    emitUndef(C, RetE);
    return;
  }

  if (RT.isNull())
    return;

  if (RT->isReferenceType()) {
    checkReference(C, RetE, RetVal.castAs<DefinedOrUnknownSVal>());
    return;
  }
}
Esempio n. 18
0
/// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
/// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
/// implicit conversions explicit and getting rid of data loss warnings.
void
CheckStaticCast(Sema &Self, Expr *&SrcExpr, QualType DestType,
                const SourceRange &OpRange, CastExpr::CastKind &Kind)
{
  // This test is outside everything else because it's the only case where
  // a non-lvalue-reference target type does not lead to decay.
  // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
  if (DestType->isVoidType()) {
    return;
  }

  if (!DestType->isLValueReferenceType())
    Self.DefaultFunctionArrayConversion(SrcExpr);

  unsigned msg = diag::err_bad_cxx_cast_generic;
  if (TryStaticCast(Self, SrcExpr, DestType, /*CStyle*/false, OpRange, 
                    Kind, msg)
      != TC_Success && msg != 0)
    Self.Diag(OpRange.getBegin(), msg) << CT_Static
      << SrcExpr->getType() << DestType << OpRange;
}
Esempio n. 19
0
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
Action::OwningExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
                     bool ArrayForm, ExprArg Operand)
{
  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
  //   having a single conversion function to a pointer type. The result has
  //   type void."
  // DR599 amends "pointer type" to "pointer to object type" in both cases.

  Expr *Ex = (Expr *)Operand.get();
  if (!Ex->isTypeDependent()) {
    QualType Type = Ex->getType();

    if (Type->isRecordType()) {
      // FIXME: Find that one conversion function and amend the type.
    }

    if (!Type->isPointerType())
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
        << Type << Ex->getSourceRange());

    QualType Pointee = Type->getAsPointerType()->getPointeeType();
    if (Pointee->isFunctionType() || Pointee->isVoidType())
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
        << Type << Ex->getSourceRange());
    else if (!Pointee->isDependentType() &&
             RequireCompleteType(StartLoc, Pointee, 
                                 diag::warn_delete_incomplete,
                                 Ex->getSourceRange()))
      return ExprError();

    // FIXME: Look up the correct operator delete overload and pass a pointer
    // along.
    // FIXME: Check access and ambiguity of operator delete and destructor.
  }

  Operand.release();
  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
                                           0, Ex, StartLoc));
}
/// CheckSpecifiedExceptionType - Check if the given type is valid in an
/// exception specification. Incomplete types, or pointers to incomplete types
/// other than void are not allowed.
bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {

  // This check (and the similar one below) deals with issue 437, that changes
  // C++ 9.2p2 this way:
  // Within the class member-specification, the class is regarded as complete
  // within function bodies, default arguments, exception-specifications, and
  // constructor ctor-initializers (including such things in nested classes).
  if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
    return false;
    
  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
  //   an incomplete type.
  if (RequireCompleteType(Range.getBegin(), T,
      PDiag(diag::err_incomplete_in_exception_spec) << /*direct*/0 << Range))
    return true;

  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
  //   an incomplete type a pointer or reference to an incomplete type, other
  //   than (cv) void*.
  int kind;
  if (const PointerType* IT = T->getAs<PointerType>()) {
    T = IT->getPointeeType();
    kind = 1;
  } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
    T = IT->getPointeeType();
    kind = 2;
  } else
    return false;

  // Again as before
  if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
    return false;
    
  if (!T->isVoidType() && RequireCompleteType(Range.getBegin(), T,
      PDiag(diag::err_incomplete_in_exception_spec) << kind << Range))
    return true;

  return false;
}
void CastToStructChecker::checkPreStmt(const CastExpr *CE,
                                       CheckerContext &C) const {
    const Expr *E = CE->getSubExpr();
    ASTContext &Ctx = C.getASTContext();
    QualType OrigTy = Ctx.getCanonicalType(E->getType());
    QualType ToTy = Ctx.getCanonicalType(CE->getType());

    const PointerType *OrigPTy = dyn_cast<PointerType>(OrigTy.getTypePtr());
    const PointerType *ToPTy = dyn_cast<PointerType>(ToTy.getTypePtr());

    if (!ToPTy || !OrigPTy)
        return;

    QualType OrigPointeeTy = OrigPTy->getPointeeType();
    QualType ToPointeeTy = ToPTy->getPointeeType();

    if (!ToPointeeTy->isStructureOrClassType())
        return;

    // We allow cast from void*.
    if (OrigPointeeTy->isVoidType())
        return;

    // Now the cast-to-type is struct pointer, the original type is not void*.
    if (!OrigPointeeTy->isRecordType()) {
        if (ExplodedNode *N = C.addTransition()) {
            if (!BT)
                BT.reset(
                    new BuiltinBug(this, "Cast from non-struct type to struct type",
                                   "Casting a non-structure type to a structure type "
                                   "and accessing a field can lead to memory access "
                                   "errors or data corruption."));
            BugReport *R = new BugReport(*BT,BT->getDescription(), N);
            R->addRange(CE->getSourceRange());
            C.emitReport(R);
        }
    }
}
Esempio n. 22
0
Optional<SVal> GenericTaintChecker::getPointedToSVal(CheckerContext &C,
                                                     const Expr *Arg) {
  ProgramStateRef State = C.getState();
  SVal AddrVal = C.getSVal(Arg->IgnoreParens());
  if (AddrVal.isUnknownOrUndef())
    return None;

  Optional<Loc> AddrLoc = AddrVal.getAs<Loc>();
  if (!AddrLoc)
    return None;

  QualType ArgTy = Arg->getType().getCanonicalType();
  if (!ArgTy->isPointerType())
    return None;

  QualType ValTy = ArgTy->getPointeeType();

  // Do not dereference void pointers. Treat them as byte pointers instead.
  // FIXME: we might want to consider more than just the first byte.
  if (ValTy->isVoidType())
    ValTy = C.getASTContext().CharTy;

  return State->getSVal(*AddrLoc, ValTy);
}
Esempio n. 23
0
 bool GetFuncType(const FunctionType * f, Obj * typ) {
     Obj returntype,parameters;
     resulttable->newlist(&parameters);
     
     bool valid = true; //decisions about whether this function can be exported or not are delayed until we have seen all the potential problems
 #if LLVM_VERSION <= 34
     QualType RT = f->getResultType();
 #else
     QualType RT = f->getReturnType();
 #endif
     if(RT->isVoidType()) {
         PushTypeField("unit");
         returntype.initFromStack(L, ref_table);
     } else {
         if(!GetType(RT,&returntype))
             valid = false;
     }
    
     
     const FunctionProtoType * proto = f->getAs<FunctionProtoType>();
     //proto is null if the function was declared without an argument list (e.g. void foo() and not void foo(void))
     //we don't support old-style C parameter lists, we just treat them as empty
     if(proto) {
     #if LLVM_VERSION >= 35
         for(size_t i = 0; i < proto->getNumParams(); i++) {
             QualType PT = proto->getParamType(i);
     #else
         for(size_t i = 0; i < proto->getNumArgs(); i++) {
             QualType PT = proto->getArgType(i);
     #endif
             Obj pt;
             if(!GetType(PT,&pt)) {
                 valid = false; //keep going with attempting to parse type to make sure we see all the reasons why we cannot support this function
             } else if(valid) {
                 pt.push();
                 parameters.addentry();
             }
         }
     }
     
     if(valid) {
         PushTypeField("functype");
         parameters.push();
         returntype.push();
         lua_pushboolean(L, proto ? proto->isVariadic() : false);
         lua_call(L, 3, 1);
         typ->initFromStack(L,ref_table);
     }
     
     return valid;
 }
 bool TraverseFunctionDecl(FunctionDecl *f) {
      // Function name
     DeclarationName DeclName = f->getNameInfo().getName();
     std::string FuncName = DeclName.getAsString();
     const FunctionType * fntyp = f->getType()->getAs<FunctionType>();
     
     if(!fntyp)
         return true;
     
     if(f->getStorageClass() == clang::SC_Static) {
         ImportError("cannot import static functions.");
         SetErrorReport(FuncName.c_str());
         return true;
     }
     
     Obj typ;
     if(!GetFuncType(fntyp,&typ)) {
         SetErrorReport(FuncName.c_str());
         return true;
     }
     std::string InternalName = FuncName;
     AsmLabelAttr * asmlabel = f->getAttr<AsmLabelAttr>();
     if(asmlabel) {
         InternalName = asmlabel->getLabel();
         #ifndef __linux__
             //In OSX and Windows LLVM mangles assembler labels by adding a '\01' prefix
             InternalName.insert(InternalName.begin(), '\01');
         #endif
     }
     CreateFunction(FuncName,InternalName,&typ);
     
     KeepFunctionLive(f);//make sure this function is live in codegen by creating a dummy reference to it (void) is to suppress unused warnings
     
     return true;
 }
Esempio n. 24
0
void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Constant *CalleePtr,
                                                const ThunkInfo *Thunk) {
  assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
         "Please use a new CGF for this thunk");
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());

  // Adjust the 'this' pointer if necessary
  llvm::Value *AdjustedThisPtr =
    Thunk ? CGM.getCXXABI().performThisAdjustment(
                          *this, LoadCXXThisAddress(), Thunk->This)
          : LoadCXXThis();

  if (CurFnInfo->usesInAlloca()) {
    // We don't handle return adjusting thunks, because they require us to call
    // the copy constructor.  For now, fall through and pretend the return
    // adjustment was empty so we don't crash.
    if (Thunk && !Thunk->Return.isEmpty()) {
      CGM.ErrorUnsupported(
          MD, "non-trivial argument copy for return-adjusting thunk");
    }
    EmitMustTailThunk(MD, AdjustedThisPtr, CalleePtr);
    return;
  }

  // Start building CallArgs.
  CallArgList CallArgs;
  QualType ThisType = MD->getThisType(getContext());
  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);

  if (isa<CXXDestructorDecl>(MD))
    CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);

#ifndef NDEBUG
  unsigned PrefixArgs = CallArgs.size() - 1;
#endif
  // Add the rest of the arguments.
  for (const ParmVarDecl *PD : MD->parameters())
    EmitDelegateCallArg(CallArgs, PD, SourceLocation());

  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();

#ifndef NDEBUG
  const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
      CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD), PrefixArgs);
  assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
         CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
         CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
  assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
         similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
                 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
  assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
  for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
    assert(similar(CallFnInfo.arg_begin()[i].info,
                   CallFnInfo.arg_begin()[i].type,
                   CurFnInfo->arg_begin()[i].info,
                   CurFnInfo->arg_begin()[i].type));
#endif

  // Determine whether we have a return value slot to use.
  QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
                            ? ThisType
                            : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
                                  ? CGM.getContext().VoidPtrTy
                                  : FPT->getReturnType();
  ReturnValueSlot Slot;
  if (!ResultType->isVoidType() &&
      CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
      !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());

  // Now emit our call.
  llvm::Instruction *CallOrInvoke;
  CGCallee Callee = CGCallee::forDirect(CalleePtr, MD);
  RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, &CallOrInvoke);

  // Consider return adjustment if we have ThunkInfo.
  if (Thunk && !Thunk->Return.isEmpty())
    RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
  else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
    Call->setTailCallKind(llvm::CallInst::TCK_Tail);

  // Emit return.
  if (!ResultType->isVoidType() && Slot.isNull())
    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);

  // Disable the final ARC autorelease.
  AutoreleaseResult = false;

  FinishThunk();
}
Esempio n. 25
0
void CodeGenFunction::EmitCallAndReturnForThunk(GlobalDecl GD,
                                                llvm::Value *Callee,
                                                const ThunkInfo *Thunk) {
  assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
         "Please use a new CGF for this thunk");
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());

  // Adjust the 'this' pointer if necessary
  llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment(
                                             *this, LoadCXXThis(), Thunk->This)
                                       : LoadCXXThis();

  // Start building CallArgs.
  CallArgList CallArgs;
  QualType ThisType = MD->getThisType(getContext());
  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);

  if (isa<CXXDestructorDecl>(MD))
    CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, GD, CallArgs);

  // Add the rest of the arguments.
  for (FunctionDecl::param_const_iterator I = MD->param_begin(),
       E = MD->param_end(); I != E; ++I)
    EmitDelegateCallArg(CallArgs, *I, (*I)->getLocStart());

  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();

#ifndef NDEBUG
  const CGFunctionInfo &CallFnInfo =
    CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
                                       RequiredArgs::forPrototypePlus(FPT, 1));
  assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
         CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
         CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
  assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
         similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
                 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
  assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
  for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
    assert(similar(CallFnInfo.arg_begin()[i].info,
                   CallFnInfo.arg_begin()[i].type,
                   CurFnInfo->arg_begin()[i].info,
                   CurFnInfo->arg_begin()[i].type));
#endif

  // Determine whether we have a return value slot to use.
  QualType ResultType =
      CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getReturnType();
  ReturnValueSlot Slot;
  if (!ResultType->isVoidType() &&
      CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
      !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
  
  // Now emit our call.
  RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD);
  
  // Consider return adjustment if we have ThunkInfo.
  if (Thunk && !Thunk->Return.isEmpty())
    RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);

  // Emit return.
  if (!ResultType->isVoidType() && Slot.isNull())
    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);

  // Disable the final ARC autorelease.
  AutoreleaseResult = false;

  FinishFunction();
}
Esempio n. 26
0
clang::analyze_format_string::ArgType::MatchKind
ArgType::matchesType(ASTContext &C, QualType argTy) const {
  if (Ptr) {
    // It has to be a pointer.
    const PointerType *PT = argTy->getAs<PointerType>();
    if (!PT)
      return NoMatch;

    // We cannot write through a const qualified pointer.
    if (PT->getPointeeType().isConstQualified())
      return NoMatch;

    argTy = PT->getPointeeType();
  }

  switch (K) {
    case InvalidTy:
      llvm_unreachable("ArgType must be valid");

    case UnknownTy:
      return Match;

    case AnyCharTy: {
      if (const EnumType *ETy = argTy->getAs<EnumType>())
        argTy = ETy->getDecl()->getIntegerType();

      if (const BuiltinType *BT = argTy->getAs<BuiltinType>())
        switch (BT->getKind()) {
          default:
            break;
          case BuiltinType::Char_S:
          case BuiltinType::SChar:
          case BuiltinType::UChar:
          case BuiltinType::Char_U:
            return Match;
        }
      return NoMatch;
    }

    case SpecificTy: {
      if (const EnumType *ETy = argTy->getAs<EnumType>())
        argTy = ETy->getDecl()->getIntegerType();
      argTy = C.getCanonicalType(argTy).getUnqualifiedType();

      if (T == argTy)
        return Match;
      // Check for "compatible types".
      if (const BuiltinType *BT = argTy->getAs<BuiltinType>())
        switch (BT->getKind()) {
          default:
            break;
          case BuiltinType::Char_S:
          case BuiltinType::SChar:
          case BuiltinType::Char_U:
          case BuiltinType::UChar:
            return T == C.UnsignedCharTy || T == C.SignedCharTy ? Match
                                                                : NoMatch;
          case BuiltinType::Short:
            return T == C.UnsignedShortTy ? Match : NoMatch;
          case BuiltinType::UShort:
            return T == C.ShortTy ? Match : NoMatch;
          case BuiltinType::Int:
            return T == C.UnsignedIntTy ? Match : NoMatch;
          case BuiltinType::UInt:
            return T == C.IntTy ? Match : NoMatch;
          case BuiltinType::Long:
            return T == C.UnsignedLongTy ? Match : NoMatch;
          case BuiltinType::ULong:
            return T == C.LongTy ? Match : NoMatch;
          case BuiltinType::LongLong:
            return T == C.UnsignedLongLongTy ? Match : NoMatch;
          case BuiltinType::ULongLong:
            return T == C.LongLongTy ? Match : NoMatch;
        }
      return NoMatch;
    }

    case CStrTy: {
      const PointerType *PT = argTy->getAs<PointerType>();
      if (!PT)
        return NoMatch;
      QualType pointeeTy = PT->getPointeeType();
      if (const BuiltinType *BT = pointeeTy->getAs<BuiltinType>())
        switch (BT->getKind()) {
          case BuiltinType::Void:
          case BuiltinType::Char_U:
          case BuiltinType::UChar:
          case BuiltinType::Char_S:
          case BuiltinType::SChar:
            return Match;
          default:
            break;
        }

      return NoMatch;
    }

    case WCStrTy: {
      const PointerType *PT = argTy->getAs<PointerType>();
      if (!PT)
        return NoMatch;
      QualType pointeeTy =
        C.getCanonicalType(PT->getPointeeType()).getUnqualifiedType();
      return pointeeTy == C.getWideCharType() ? Match : NoMatch;
    }

    case WIntTy: {

      QualType PromoArg = 
        argTy->isPromotableIntegerType()
          ? C.getPromotedIntegerType(argTy) : argTy;

      QualType WInt = C.getCanonicalType(C.getWIntType()).getUnqualifiedType();
      PromoArg = C.getCanonicalType(PromoArg).getUnqualifiedType();

      // If the promoted argument is the corresponding signed type of the
      // wint_t type, then it should match.
      if (PromoArg->hasSignedIntegerRepresentation() &&
          C.getCorrespondingUnsignedType(PromoArg) == WInt)
        return Match;

      return WInt == PromoArg ? Match : NoMatch;
    }

    case CPointerTy:
      if (argTy->isVoidPointerType()) {
        return Match;
      } if (argTy->isPointerType() || argTy->isObjCObjectPointerType() ||
            argTy->isBlockPointerType() || argTy->isNullPtrType()) {
        return NoMatchPedantic;
      } else {
        return NoMatch;
      }

    case ObjCPointerTy: {
      if (argTy->getAs<ObjCObjectPointerType>() ||
          argTy->getAs<BlockPointerType>())
        return Match;

      // Handle implicit toll-free bridging.
      if (const PointerType *PT = argTy->getAs<PointerType>()) {
        // Things such as CFTypeRef are really just opaque pointers
        // to C structs representing CF types that can often be bridged
        // to Objective-C objects.  Since the compiler doesn't know which
        // structs can be toll-free bridged, we just accept them all.
        QualType pointee = PT->getPointeeType();
        if (pointee->getAsStructureType() || pointee->isVoidType())
          return Match;
      }
      return NoMatch;
    }
  }

  llvm_unreachable("Invalid ArgType Kind!");
}
  Expr* ValueExtractionSynthesizer::SynthesizeSVRInit(Expr* E) {
    if (!m_gClingVD)
      FindAndCacheRuntimeDecls();

    // Build a reference to gCling
    ExprResult gClingDRE
      = m_Sema->BuildDeclRefExpr(m_gClingVD, m_Context->VoidPtrTy,
                                 VK_RValue, SourceLocation());
    // We have the wrapper as Sema's CurContext
    FunctionDecl* FD = cast<FunctionDecl>(m_Sema->CurContext);

    ExprWithCleanups* Cleanups = 0;
    // In case of ExprWithCleanups we need to extend its 'scope' to the call.
    if (E && isa<ExprWithCleanups>(E)) {
      Cleanups = cast<ExprWithCleanups>(E);
      E = Cleanups->getSubExpr();
    }

    // Build a reference to Value* in the wrapper, should be
    // the only argument of the wrapper.
    SourceLocation locStart = (E) ? E->getLocStart() : FD->getLocStart();
    SourceLocation locEnd = (E) ? E->getLocEnd() : FD->getLocEnd();
    ExprResult wrapperSVRDRE
      = m_Sema->BuildDeclRefExpr(FD->getParamDecl(0), m_Context->VoidPtrTy,
                                 VK_RValue, locStart);
    QualType ETy = (E) ? E->getType() : m_Context->VoidTy;
    QualType desugaredTy = ETy.getDesugaredType(*m_Context);

    // The expr result is transported as reference, pointer, array, float etc
    // based on the desugared type. We should still expose the typedef'ed
    // (sugared) type to the cling::Value.
    if (desugaredTy->isRecordType() && E->getValueKind() == VK_LValue) {
      // returning a lvalue (not a temporary): the value should contain
      // a reference to the lvalue instead of copying it.
      desugaredTy = m_Context->getLValueReferenceType(desugaredTy);
      ETy = m_Context->getLValueReferenceType(ETy);
    }
    Expr* ETyVP
      = utils::Synthesize::CStyleCastPtrExpr(m_Sema, m_Context->VoidPtrTy,
                                             (uint64_t)ETy.getAsOpaquePtr());
    Expr* ETransaction
      = utils::Synthesize::CStyleCastPtrExpr(m_Sema, m_Context->VoidPtrTy,
                                             (uint64_t)getTransaction());

    llvm::SmallVector<Expr*, 6> CallArgs;
    CallArgs.push_back(gClingDRE.take());
    CallArgs.push_back(wrapperSVRDRE.take());
    CallArgs.push_back(ETyVP);
    CallArgs.push_back(ETransaction);

    ExprResult Call;
    SourceLocation noLoc;
    if (desugaredTy->isVoidType()) {
      // In cases where the cling::Value gets reused we need to reset the
      // previous settings to void.
      // We need to synthesize setValueNoAlloc(...), E, because we still need
      // to run E.

      // FIXME: Suboptimal: this discards the already created AST nodes.
      QualType vpQT = m_Context->VoidPtrTy;
      QualType vQT = m_Context->VoidTy;
      Expr* vpQTVP
        = utils::Synthesize::CStyleCastPtrExpr(m_Sema, vpQT,
                                               (uint64_t)vQT.getAsOpaquePtr());
      CallArgs[2] = vpQTVP;


      Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedNoAlloc,
                                   locStart, CallArgs, locEnd);

      if (E)
        Call = m_Sema->CreateBuiltinBinOp(locStart, BO_Comma, Call.take(), E);

    }
    else if (desugaredTy->isRecordType() || desugaredTy->isConstantArrayType()){
      // 2) object types :
      // check existance of copy constructor before call
      if (!availableCopyConstructor(desugaredTy, m_Sema))
        return E;
      // call new (setValueWithAlloc(gCling, &SVR, ETy)) (E)
      Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedWithAlloc,
                                   locStart, CallArgs, locEnd);
      Expr* placement = Call.take();
      if (const ConstantArrayType* constArray
          = dyn_cast<ConstantArrayType>(desugaredTy.getTypePtr())) {
        CallArgs.clear();
        CallArgs.push_back(E);
        CallArgs.push_back(placement);
        uint64_t arrSize
          = m_Context->getConstantArrayElementCount(constArray);
        Expr* arrSizeExpr
          = utils::Synthesize::IntegerLiteralExpr(*m_Context, arrSize);

        CallArgs.push_back(arrSizeExpr);
        // 2.1) arrays:
        // call copyArray(T* src, void* placement, int size)
        Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedCopyArray,
                                     locStart, CallArgs, locEnd);

      }
      else {
        TypeSourceInfo* ETSI
          = m_Context->getTrivialTypeSourceInfo(ETy, noLoc);

        Call = m_Sema->BuildCXXNew(E->getSourceRange(),
                                   /*useGlobal ::*/true,
                                   /*placementLParen*/ noLoc,
                                   MultiExprArg(placement),
                                   /*placementRParen*/ noLoc,
                                   /*TypeIdParens*/ SourceRange(),
                                   /*allocType*/ ETSI->getType(),
                                   /*allocTypeInfo*/ETSI,
                                   /*arraySize*/0,
                                   /*directInitRange*/E->getSourceRange(),
                                   /*initializer*/E,
                                   /*mayContainAuto*/false
                                   );
      }
    }
    else if (desugaredTy->isIntegralOrEnumerationType()
             || desugaredTy->isReferenceType()
             || desugaredTy->isPointerType()
             || desugaredTy->isFloatingType()) {
      if (desugaredTy->isIntegralOrEnumerationType()) {
        // 1)  enum, integral, float, double, referece, pointer types :
        //      call to cling::internal::setValueNoAlloc(...);

        // If the type is enum or integral we need to force-cast it into
        // uint64 in order to pick up the correct overload.
        if (desugaredTy->isIntegralOrEnumerationType()) {
          QualType UInt64Ty = m_Context->UnsignedLongLongTy;
          TypeSourceInfo* TSI
            = m_Context->getTrivialTypeSourceInfo(UInt64Ty, noLoc);
          Expr* castedE
            = m_Sema->BuildCStyleCastExpr(noLoc, TSI, noLoc, E).take();
          CallArgs.push_back(castedE);
        }
      }
      else if (desugaredTy->isReferenceType()) {
        // we need to get the address of the references
        Expr* AddrOfE = m_Sema->BuildUnaryOp(/*Scope*/0, noLoc, UO_AddrOf,
                                             E).take();
        CallArgs.push_back(AddrOfE);
      }
      else if (desugaredTy->isPointerType()) {
        // function pointers need explicit void* cast.
        QualType VoidPtrTy = m_Context->VoidPtrTy;
        TypeSourceInfo* TSI
          = m_Context->getTrivialTypeSourceInfo(VoidPtrTy, noLoc);
        Expr* castedE
          = m_Sema->BuildCStyleCastExpr(noLoc, TSI, noLoc, E).take();
        CallArgs.push_back(castedE);
      }
      else if (desugaredTy->isFloatingType()) {
        // floats and double will fall naturally in the correct
        // case, because of the overload resolution.
        CallArgs.push_back(E);
      }
      Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedNoAlloc,
                                   locStart, CallArgs, locEnd);
    }
    else
      assert(0 && "Unhandled code path?");

    assert(!Call.isInvalid() && "Invalid Call");

    // Extend the scope of the temporary cleaner if applicable.
    if (Cleanups) {
      Cleanups->setSubExpr(Call.take());
      Cleanups->setValueKind(Call.take()->getValueKind());
      Cleanups->setType(Call.take()->getType());
      return Cleanups;
    }
    return Call.take();
  }
Esempio n. 28
0
llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *V,
                                              const CXXDynamicCastExpr *DCE) {
  QualType CastTy = DCE->getTypeAsWritten();
  QualType InnerType = CastTy->getPointeeType();
  QualType ArgTy = DCE->getSubExpr()->getType();
  const llvm::Type *LArgTy = ConvertType(ArgTy);
  const llvm::Type *LTy = ConvertType(DCE->getType());

  bool CanBeZero = false;
  bool ToVoid = false;
  bool ThrowOnBad = false;
  if (CastTy->isPointerType()) {
    // FIXME: if PointerType->hasAttr<NonNullAttr>(), we don't set this
    CanBeZero = true;
    if (InnerType->isVoidType())
      ToVoid = true;
  } else {
    LTy = LTy->getPointerTo();
    ThrowOnBad = true;
  }

  CXXRecordDecl *SrcTy;
  QualType Ty = ArgTy;
  if (ArgTy.getTypePtr()->isPointerType()
      || ArgTy.getTypePtr()->isReferenceType())
    Ty = Ty.getTypePtr()->getPointeeType();
  CanQualType CanTy = CGM.getContext().getCanonicalType(Ty);
  Ty = CanTy.getUnqualifiedType();
  SrcTy = cast<CXXRecordDecl>(Ty->getAs<RecordType>()->getDecl());

  llvm::BasicBlock *ContBlock = createBasicBlock();
  llvm::BasicBlock *NullBlock = 0;
  llvm::BasicBlock *NonZeroBlock = 0;
  if (CanBeZero) {
    NonZeroBlock = createBasicBlock();
    NullBlock = createBasicBlock();
    llvm::Value *Zero = llvm::Constant::getNullValue(LArgTy);
    Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero),
                         NonZeroBlock, NullBlock);
    EmitBlock(NonZeroBlock);
  }

  llvm::BasicBlock *BadCastBlock = 0;

  const llvm::Type *PtrDiffTy = ConvertType(getContext().getSizeType());

  // See if this is a dynamic_cast(void*)
  if (ToVoid) {
    llvm::Value *This = V;
    V = Builder.CreateBitCast(This, PtrDiffTy->getPointerTo()->getPointerTo());
    V = Builder.CreateLoad(V, "vtable");
    V = Builder.CreateConstInBoundsGEP1_64(V, -2ULL);
    V = Builder.CreateLoad(V, "offset to top");
    This = Builder.CreateBitCast(This, llvm::Type::getInt8PtrTy(VMContext));
    V = Builder.CreateInBoundsGEP(This, V);
    V = Builder.CreateBitCast(V, LTy);
  } else {
    /// Call __dynamic_cast
    const llvm::Type *ResultType = llvm::Type::getInt8PtrTy(VMContext);
    const llvm::FunctionType *FTy;
    std::vector<const llvm::Type*> ArgTys;
    const llvm::Type *PtrToInt8Ty
      = llvm::Type::getInt8Ty(VMContext)->getPointerTo();
    ArgTys.push_back(PtrToInt8Ty);
    ArgTys.push_back(PtrToInt8Ty);
    ArgTys.push_back(PtrToInt8Ty);
    ArgTys.push_back(PtrDiffTy);
    FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
    CXXRecordDecl *DstTy;
    Ty = CastTy.getTypePtr()->getPointeeType();
    CanTy = CGM.getContext().getCanonicalType(Ty);
    Ty = CanTy.getUnqualifiedType();
    DstTy = cast<CXXRecordDecl>(Ty->getAs<RecordType>()->getDecl());

    // FIXME: Calculate better hint.
    llvm::Value *hint = llvm::ConstantInt::get(PtrDiffTy, -1ULL);
    llvm::Value *SrcArg = CGM.GenerateRttiRef(SrcTy);
    llvm::Value *DstArg = CGM.GenerateRttiRef(DstTy);
    V = Builder.CreateBitCast(V, PtrToInt8Ty);
    V = Builder.CreateCall4(CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"),
                            V, SrcArg, DstArg, hint);
    V = Builder.CreateBitCast(V, LTy);

    if (ThrowOnBad) {
      BadCastBlock = createBasicBlock();

      llvm::Value *Zero = llvm::Constant::getNullValue(LTy);
      Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero),
                           ContBlock, BadCastBlock);
      EmitBlock(BadCastBlock);
      /// Call __cxa_bad_cast
      ResultType = llvm::Type::getVoidTy(VMContext);
      const llvm::FunctionType *FBadTy;
      FBadTy = llvm::FunctionType::get(ResultType, false);
      llvm::Value *F = CGM.CreateRuntimeFunction(FBadTy, "__cxa_bad_cast");
      Builder.CreateCall(F)->setDoesNotReturn();
      Builder.CreateUnreachable();
    }
  }
  
  if (CanBeZero) {
    Builder.CreateBr(ContBlock);
    EmitBlock(NullBlock);
    Builder.CreateBr(ContBlock);
  }
  EmitBlock(ContBlock);
  if (CanBeZero) {
    llvm::PHINode *PHI = Builder.CreatePHI(LTy);
    PHI->reserveOperandSpace(2);
    PHI->addIncoming(V, NonZeroBlock);
    PHI->addIncoming(llvm::Constant::getNullValue(LTy), NullBlock);
    V = PHI;
  }

  return V;
}
Esempio n. 29
0
bool OSAtomicChecker::evalOSAtomicCompareAndSwap(CheckerContext &C, 
                                                 const CallExpr *CE) {
  // Not enough arguments to match OSAtomicCompareAndSwap?
  if (CE->getNumArgs() != 3)
    return false;

  ASTContext &Ctx = C.getASTContext();
  const Expr *oldValueExpr = CE->getArg(0);
  QualType oldValueType = Ctx.getCanonicalType(oldValueExpr->getType());

  const Expr *newValueExpr = CE->getArg(1);
  QualType newValueType = Ctx.getCanonicalType(newValueExpr->getType());

  // Do the types of 'oldValue' and 'newValue' match?
  if (oldValueType != newValueType)
    return false;

  const Expr *theValueExpr = CE->getArg(2);
  const PointerType *theValueType=theValueExpr->getType()->getAs<PointerType>();

  // theValueType not a pointer?
  if (!theValueType)
    return false;

  QualType theValueTypePointee =
    Ctx.getCanonicalType(theValueType->getPointeeType()).getUnqualifiedType();

  // The pointee must match newValueType and oldValueType.
  if (theValueTypePointee != newValueType)
    return false;

  static SimpleProgramPointTag OSAtomicLoadTag("OSAtomicChecker : Load");
  static SimpleProgramPointTag OSAtomicStoreTag("OSAtomicChecker : Store");
  
  // Load 'theValue'.
  ExprEngine &Engine = C.getEngine();
  const ProgramState *state = C.getState();
  ExplodedNodeSet Tmp;
  SVal location = state->getSVal(theValueExpr);
  // Here we should use the value type of the region as the load type, because
  // we are simulating the semantics of the function, not the semantics of 
  // passing argument. So the type of theValue expr is not we are loading.
  // But usually the type of the varregion is not the type we want either,
  // we still need to do a CastRetrievedVal in store manager. So actually this
  // LoadTy specifying can be omitted. But we put it here to emphasize the 
  // semantics.
  QualType LoadTy;
  if (const TypedValueRegion *TR =
      dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) {
    LoadTy = TR->getValueType();
  }
  Engine.evalLoad(Tmp, theValueExpr, C.getPredecessor(), 
                  state, location, &OSAtomicLoadTag, LoadTy);

  if (Tmp.empty()) {
    // If no nodes were generated, other checkers must generated sinks. But 
    // since the builder state was restored, we set it manually to prevent 
    // auto transition.
    // FIXME: there should be a better approach.
    C.getNodeBuilder().BuildSinks = true;
    return true;
  }
 
  for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end();
       I != E; ++I) {

    ExplodedNode *N = *I;
    const ProgramState *stateLoad = N->getState();

    // Use direct bindings from the environment since we are forcing a load
    // from a location that the Environment would typically not be used
    // to bind a value.
    SVal theValueVal_untested = stateLoad->getSVal(theValueExpr, true);

    SVal oldValueVal_untested = stateLoad->getSVal(oldValueExpr);

    // FIXME: Issue an error.
    if (theValueVal_untested.isUndef() || oldValueVal_untested.isUndef()) {
      return false;
    }
    
    DefinedOrUnknownSVal theValueVal =
      cast<DefinedOrUnknownSVal>(theValueVal_untested);
    DefinedOrUnknownSVal oldValueVal =
      cast<DefinedOrUnknownSVal>(oldValueVal_untested);

    SValBuilder &svalBuilder = Engine.getSValBuilder();

    // Perform the comparison.
    DefinedOrUnknownSVal Cmp =
      svalBuilder.evalEQ(stateLoad,theValueVal,oldValueVal);

    const ProgramState *stateEqual = stateLoad->assume(Cmp, true);

    // Were they equal?
    if (stateEqual) {
      // Perform the store.
      ExplodedNodeSet TmpStore;
      SVal val = stateEqual->getSVal(newValueExpr);

      // Handle implicit value casts.
      if (const TypedValueRegion *R =
          dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) {
        val = svalBuilder.evalCast(val,R->getValueType(), newValueExpr->getType());
      }

      Engine.evalStore(TmpStore, NULL, theValueExpr, N, 
                       stateEqual, location, val, &OSAtomicStoreTag);

      if (TmpStore.empty()) {
        // If no nodes were generated, other checkers must generated sinks. But 
        // since the builder state was restored, we set it manually to prevent 
        // auto transition.
        // FIXME: there should be a better approach.
        C.getNodeBuilder().BuildSinks = true;
        return true;
      }

      // Now bind the result of the comparison.
      for (ExplodedNodeSet::iterator I2 = TmpStore.begin(),
           E2 = TmpStore.end(); I2 != E2; ++I2) {
        ExplodedNode *predNew = *I2;
        const ProgramState *stateNew = predNew->getState();
        // Check for 'void' return type if we have a bogus function prototype.
        SVal Res = UnknownVal();
        QualType T = CE->getType();
        if (!T->isVoidType())
          Res = Engine.getSValBuilder().makeTruthVal(true, T);
        C.generateNode(stateNew->BindExpr(CE, Res), predNew);
      }
    }

    // Were they not equal?
    if (const ProgramState *stateNotEqual = stateLoad->assume(Cmp, false)) {
      // Check for 'void' return type if we have a bogus function prototype.
      SVal Res = UnknownVal();
      QualType T = CE->getType();
      if (!T->isVoidType())
        Res = Engine.getSValBuilder().makeTruthVal(false, CE->getType());
      C.generateNode(stateNotEqual->BindExpr(CE, Res), N);
    }
  }

  return true;
}
Esempio n. 30
0
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
Action::OwningExprResult
Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
                                SourceLocation LParenLoc,
                                MultiExprArg exprs,
                                SourceLocation *CommaLocs,
                                SourceLocation RParenLoc) {
  assert(TypeRep && "Missing type!");
  QualType Ty = QualType::getFromOpaquePtr(TypeRep);
  unsigned NumExprs = exprs.size();
  Expr **Exprs = (Expr**)exprs.get();
  SourceLocation TyBeginLoc = TypeRange.getBegin();
  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);

  if (Ty->isDependentType() ||
      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
    exprs.release();
    return Owned(new (Context) CXXTemporaryObjectExpr(0, Ty, TyBeginLoc,
                                                      Exprs, NumExprs,
                                                      RParenLoc));
  }


  // C++ [expr.type.conv]p1:
  // If the expression list is a single expression, the type conversion
  // expression is equivalent (in definedness, and if defined in meaning) to the
  // corresponding cast expression.
  //
  if (NumExprs == 1) {
    if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
      return ExprError();
    exprs.release();
    return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
                                                     Ty, TyBeginLoc, Exprs[0],
                                                     RParenLoc));
  }

  if (const RecordType *RT = Ty->getAsRecordType()) {
    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());

    if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
      CXXConstructorDecl *Constructor
        = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
                                             TypeRange.getBegin(),
                                             SourceRange(TypeRange.getBegin(),
                                                         RParenLoc),
                                             DeclarationName(),
                                             IK_Direct);

      if (!Constructor)
        return ExprError();

      exprs.release();
      return Owned(new (Context) CXXTemporaryObjectExpr(Constructor, Ty,
                                                        TyBeginLoc,  Exprs,
                                                        NumExprs, RParenLoc));
    }

    // Fall through to value-initialize an object of class type that
    // doesn't have a user-declared default constructor.
  }

  // C++ [expr.type.conv]p1:
  // If the expression list specifies more than a single value, the type shall
  // be a class with a suitably declared constructor.
  //
  if (NumExprs > 1)
    return ExprError(Diag(CommaLocs[0],
                          diag::err_builtin_func_cast_more_than_one_arg)
      << FullRange);

  assert(NumExprs == 0 && "Expected 0 expressions");

  // C++ [expr.type.conv]p2:
  // The expression T(), where T is a simple-type-specifier for a non-array
  // complete object type or the (possibly cv-qualified) void type, creates an
  // rvalue of the specified type, which is value-initialized.
  //
  if (Ty->isArrayType())
    return ExprError(Diag(TyBeginLoc,
                          diag::err_value_init_for_array_type) << FullRange);
  if (!Ty->isDependentType() && !Ty->isVoidType() &&
      RequireCompleteType(TyBeginLoc, Ty,
                          diag::err_invalid_incomplete_type_use, FullRange))
    return ExprError();

  if (RequireNonAbstractType(TyBeginLoc, Ty,
                             diag::err_allocation_of_abstract_type))
    return ExprError();
  
  exprs.release();
  return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
}