Esempio n. 1
0
bool
RODFNet::isFalseSource(const RODFDetector& det, ROEdge* edge, ROEdgeVector& seen,
                       const RODFDetectorCon& detectors) const {
    if (seen.size() == 1000) { // !!!
        WRITE_WARNING("Quitting checking for being a false source for detector '" + det.getID() + "' due to seen edge limit.");
        return false;
    }
    seen.push_back(edge);
    if (edge != getDetectorEdge(det)) {
        // ok, we are at one of the edges coming behind
        if (hasDetector(edge)) {
            const std::vector<std::string>& dets = myDetectorsOnEdges.find(edge)->second;
            for (std::vector<std::string>::const_iterator i = dets.begin(); i != dets.end(); ++i) {
                if (detectors.getDetector(*i).getType() == SINK_DETECTOR) {
                    return false;
                }
                if (detectors.getDetector(*i).getType() == BETWEEN_DETECTOR) {
                    return false;
                }
                if (detectors.getDetector(*i).getType() == SOURCE_DETECTOR) {
                    return true;
                }
            }
        } else {
            if (myAmInHighwayMode && edge->getSpeed() < 19.) {
                return false;
            }
        }
    }

    if (myApproachedEdges.find(edge) == myApproachedEdges.end()) {
        return false;
    }

    const ROEdgeVector& appr  = myApproachedEdges.find(edge)->second;
    bool isall = false;
    for (size_t i = 0; i < appr.size() && !isall; i++) {
        //printf("checking %s->\n", appr[i].c_str());
        bool had = std::find(seen.begin(), seen.end(), appr[i]) != seen.end();
        if (!had) {
            if (isFalseSource(det, appr[i], seen, detectors)) {
                isall = true;
            }
        }
    }
    return isall;
}
Esempio n. 2
0
bool
RODFNet::isDestination(const RODFDetector& det, ROEdge* edge, ROEdgeVector& seen,
                       const RODFDetectorCon& detectors) const {
    if (seen.size() == 1000) { // !!!
        WRITE_WARNING("Quitting checking for being a destination for detector '" + det.getID() + "' due to seen edge limit.");
        return false;
    }
    if (edge == getDetectorEdge(det)) {
        // maybe there is another detector at the same edge
        //  get the list of this/these detector(s)
        const std::vector<std::string>& detsOnEdge = myDetectorsOnEdges.find(edge)->second;
        for (std::vector<std::string>::const_iterator i = detsOnEdge.begin(); i != detsOnEdge.end(); ++i) {
            if ((*i) == det.getID()) {
                continue;
            }
            const RODFDetector& sec = detectors.getDetector(*i);
            if (getAbsPos(sec) > getAbsPos(det)) {
                // ok, there is another detector on the same edge and it is
                //  after this one -> no destination
                return false;
            }
        }
    }
    if (!hasApproached(edge)) {
        if (edge != getDetectorEdge(det)) {
            if (hasDetector(edge)) {
                return false;
            }
        }
        return true;
    }
    if (edge != getDetectorEdge(det)) {
        // ok, we are at one of the edges coming behind
        if (myAmInHighwayMode) {
            if (edge->getSpeed() >= 19.4) {
                if (hasDetector(edge)) {
                    // we are still on the highway and there is another detector
                    return false;
                }
            }
        }
    }

    if (myAmInHighwayMode) {
        if (edge->getSpeed() < 19.4 && edge != getDetectorEdge(det)) {
            if (hasDetector(edge)) {
                return true;
            }
            if (myApproachedEdges.find(edge)->second.size() > 1) {
                return true;
            }

        }
    }

    if (myDetectorsOnEdges.find(edge) != myDetectorsOnEdges.end()
            &&
            myDetectorEdges.find(det.getID())->second != edge) {
        return false;
    }
    const ROEdgeVector& appr  = myApproachedEdges.find(edge)->second;
    bool isall = true;
    size_t no = 0;
    seen.push_back(edge);
    for (size_t i = 0; i < appr.size() && isall; i++) {
        bool had = std::find(seen.begin(), seen.end(), appr[i]) != seen.end();
        if (!had) {
            if (!isDestination(det, appr[i], seen, detectors)) {
                no++;
                isall = false;
            }
        }
    }
    return isall;
}
Esempio n. 3
0
bool
RODFNet::isSource(const RODFDetector& det, ROEdge* edge,
                  ROEdgeVector& seen,
                  const RODFDetectorCon& detectors,
                  bool strict) const {
    if (seen.size() == 1000) { // !!!
        WRITE_WARNING("Quitting checking for being a source for detector '" + det.getID() + "' due to seen edge limit.");
        return false;
    }
    if (edge == getDetectorEdge(det)) {
        // maybe there is another detector at the same edge
        //  get the list of this/these detector(s)
        const std::vector<std::string>& detsOnEdge = myDetectorsOnEdges.find(edge)->second;
        for (std::vector<std::string>::const_iterator i = detsOnEdge.begin(); i != detsOnEdge.end(); ++i) {
            if ((*i) == det.getID()) {
                continue;
            }
            const RODFDetector& sec = detectors.getDetector(*i);
            if (getAbsPos(sec) < getAbsPos(det)) {
                // ok, there is another detector on the same edge and it is
                //  before this one -> no source
                return false;
            }
        }
    }
    // it's a source if no edges are approaching the edge
    if (!hasApproaching(edge)) {
        if (edge != getDetectorEdge(det)) {
            if (hasDetector(edge)) {
                return false;
            }
        }
        return true;
    }
    if (edge != getDetectorEdge(det)) {
        // ok, we are at one of the edges in front
        if (myAmInHighwayMode) {
            if (edge->getSpeed() >= 19.4) {
                if (hasDetector(edge)) {
                    // we are still on the highway and there is another detector
                    return false;
                }
                // the next is a hack for the A100 scenario...
                //  We have to look into further edges herein edges
                const ROEdgeVector& appr = myApproachingEdges.find(edge)->second;
                size_t noOk = 0;
                size_t noFalse = 0;
                size_t noSkipped = 0;
                for (size_t i = 0; i < appr.size(); i++) {
                    if (!hasDetector(appr[i])) {
                        noOk++;
                    } else {
                        noFalse++;
                    }
                }
                if ((noFalse + noSkipped) == appr.size()) {
                    return false;
                }
            }
        }
    }

    if (myAmInHighwayMode) {
        if (edge->getSpeed() < 19.4 && edge != getDetectorEdge(det)) {
            // we have left the highway already
            //  -> the detector will be a highway source
            if (!hasDetector(edge)) {
                return true;
            }
        }
    }
    if (myDetectorsOnEdges.find(edge) != myDetectorsOnEdges.end()
            &&
            myDetectorEdges.find(det.getID())->second != edge) {
        return false;
    }

    // let's check the edges in front
    const ROEdgeVector& appr = myApproachingEdges.find(edge)->second;
    size_t noOk = 0;
    size_t noFalse = 0;
    size_t noSkipped = 0;
    seen.push_back(edge);
    for (size_t i = 0; i < appr.size(); i++) {
        bool had = std::find(seen.begin(), seen.end(), appr[i]) != seen.end();
        if (!had) {
            if (isSource(det, appr[i], seen, detectors, strict)) {
                noOk++;
            } else {
                noFalse++;
            }
        } else {
            noSkipped++;
        }
    }
    if (!strict) {
        return (noFalse + noSkipped) != appr.size();
    } else {
        return (noOk + noSkipped) == appr.size();
    }
}
Esempio n. 4
0
void
RODFNet::revalidateFlows(const RODFDetector* detector,
                         RODFDetectorFlows& flows,
                         SUMOTime startTime, SUMOTime endTime,
                         SUMOTime stepOffset) {
    {
        if (flows.knows(detector->getID())) {
            const std::vector<FlowDef>& detFlows = flows.getFlowDefs(detector->getID());
            for (std::vector<FlowDef>::const_iterator j = detFlows.begin(); j != detFlows.end(); ++j) {
                if ((*j).qPKW > 0 || (*j).qLKW > 0) {
                    return;
                }
            }
        }
    }
    // ok, there is no information for the whole time;
    //  lets find preceding detectors and rebuild the flows if possible
    WRITE_WARNING("Detector '" + detector->getID() + "' has no flows.\n Trying to rebuild.");
    // go back and collect flows
    ROEdgeVector previous;
    {
        std::vector<IterationEdge> missing;
        IterationEdge ie;
        ie.depth = 0;
        ie.edge = getDetectorEdge(*detector);
        missing.push_back(ie);
        bool maxDepthReached = false;
        while (!missing.empty() && !maxDepthReached) {
            IterationEdge last = missing.back();
            missing.pop_back();
            ROEdgeVector approaching = myApproachingEdges[last.edge];
            for (ROEdgeVector::const_iterator j = approaching.begin(); j != approaching.end(); ++j) {
                if (hasDetector(*j)) {
                    previous.push_back(*j);
                } else {
                    ie.depth = last.depth + 1;
                    ie.edge = *j;
                    missing.push_back(ie);
                    if (ie.depth > 5) {
                        maxDepthReached = true;
                    }
                }
            }
        }
        if (maxDepthReached) {
            WRITE_WARNING(" Could not build list of previous flows.");
        }
    }
    // Edges with previous detectors are now in "previous";
    //  compute following
    ROEdgeVector latter;
    {
        std::vector<IterationEdge> missing;
        for (ROEdgeVector::const_iterator k = previous.begin(); k != previous.end(); ++k) {
            IterationEdge ie;
            ie.depth = 0;
            ie.edge = *k;
            missing.push_back(ie);
        }
        bool maxDepthReached = false;
        while (!missing.empty() && !maxDepthReached) {
            IterationEdge last = missing.back();
            missing.pop_back();
            ROEdgeVector approached = myApproachedEdges[last.edge];
            for (ROEdgeVector::const_iterator j = approached.begin(); j != approached.end(); ++j) {
                if (*j == getDetectorEdge(*detector)) {
                    continue;
                }
                if (hasDetector(*j)) {
                    latter.push_back(*j);
                } else {
                    IterationEdge ie;
                    ie.depth = last.depth + 1;
                    ie.edge = *j;
                    missing.push_back(ie);
                    if (ie.depth > 5) {
                        maxDepthReached = true;
                    }
                }
            }
        }
        if (maxDepthReached) {
            WRITE_WARNING(" Could not build list of latter flows.");
            return;
        }
    }
    // Edges with latter detectors are now in "latter";

    // lets not validate them by now - surely this should be done
    // for each time step: collect incoming flows; collect outgoing;
    std::vector<FlowDef> mflows;
    int index = 0;
    for (SUMOTime t = startTime; t < endTime; t += stepOffset, index++) {
        FlowDef inFlow;
        inFlow.qLKW = 0;
        inFlow.qPKW = 0;
        inFlow.vLKW = 0;
        inFlow.vPKW = 0;
        // collect incoming
        {
            // !! time difference is missing
            for (ROEdgeVector::iterator i = previous.begin(); i != previous.end(); ++i) {
                const std::vector<FlowDef>& flows = static_cast<const RODFEdge*>(*i)->getFlows();
                if (flows.size() != 0) {
                    const FlowDef& srcFD = flows[index];
                    inFlow.qLKW += srcFD.qLKW;
                    inFlow.qPKW += srcFD.qPKW;
                    inFlow.vLKW += srcFD.vLKW;
                    inFlow.vPKW += srcFD.vPKW;
                }
            }
        }
        inFlow.vLKW /= (SUMOReal) previous.size();
        inFlow.vPKW /= (SUMOReal) previous.size();
        // collect outgoing
        FlowDef outFlow;
        outFlow.qLKW = 0;
        outFlow.qPKW = 0;
        outFlow.vLKW = 0;
        outFlow.vPKW = 0;
        {
            // !! time difference is missing
            for (ROEdgeVector::iterator i = latter.begin(); i != latter.end(); ++i) {
                const std::vector<FlowDef>& flows = static_cast<const RODFEdge*>(*i)->getFlows();
                if (flows.size() != 0) {
                    const FlowDef& srcFD = flows[index];
                    outFlow.qLKW += srcFD.qLKW;
                    outFlow.qPKW += srcFD.qPKW;
                    outFlow.vLKW += srcFD.vLKW;
                    outFlow.vPKW += srcFD.vPKW;
                }
            }
        }
        outFlow.vLKW /= (SUMOReal) latter.size();
        outFlow.vPKW /= (SUMOReal) latter.size();
        //
        FlowDef mFlow;
        mFlow.qLKW = inFlow.qLKW - outFlow.qLKW;
        mFlow.qPKW = inFlow.qPKW - outFlow.qPKW;
        mFlow.vLKW = (inFlow.vLKW + outFlow.vLKW) / (SUMOReal) 2.;
        mFlow.vPKW = (inFlow.vPKW + outFlow.vPKW) / (SUMOReal) 2.;
        mflows.push_back(mFlow);
    }
    static_cast<RODFEdge*>(getDetectorEdge(*detector))->setFlows(mflows);
    flows.setFlows(detector->getID(), mflows);
}
Esempio n. 5
0
void
RODFNet::buildRoutes(RODFDetectorCon& detcont, bool keepUnfoundEnds, bool includeInBetween,
                     bool keepShortestOnly, int maxFollowingLength) const {
    // build needed information first
    buildDetectorEdgeDependencies(detcont);
    // then build the routes
    std::map<ROEdge*, RODFRouteCont* > doneEdges;
    const std::vector< RODFDetector*>& dets = detcont.getDetectors();
    for (std::vector< RODFDetector*>::const_iterator i = dets.begin(); i != dets.end(); ++i) {
        ROEdge* e = getDetectorEdge(**i);
        if (doneEdges.find(e) != doneEdges.end()) {
            // use previously build routes
            (*i)->addRoutes(new RODFRouteCont(*doneEdges[e]));
            continue;
        }
        ROEdgeVector seen;
        RODFRouteCont* routes = new RODFRouteCont();
        doneEdges[e] = routes;
        RODFRouteDesc rd;
        rd.edges2Pass.push_back(e);
        rd.duration_2 = (e->getLength() / e->getSpeed()); //!!!;
        rd.endDetectorEdge = 0;
        rd.lastDetectorEdge = 0;
        rd.distance = e->getLength();
        rd.distance2Last = 0;
        rd.duration2Last = 0;

        rd.overallProb = 0;

        ROEdgeVector visited;
        visited.push_back(e);
        computeRoutesFor(e, rd, 0, keepUnfoundEnds, keepShortestOnly,
                         visited, **i, *routes, detcont, maxFollowingLength, seen);
        //!!!routes->removeIllegal(illegals);
        (*i)->addRoutes(routes);

        // add routes to in-between detectors if wished
        if (includeInBetween) {
            // go through the routes
            const std::vector<RODFRouteDesc>& r = routes->get();
            for (std::vector<RODFRouteDesc>::const_iterator j = r.begin(); j != r.end(); ++j) {
                const RODFRouteDesc& mrd = *j;
                SUMOReal duration = mrd.duration_2;
                SUMOReal distance = mrd.distance;
                // go through each route's edges
                ROEdgeVector::const_iterator routeend = mrd.edges2Pass.end();
                for (ROEdgeVector::const_iterator k = mrd.edges2Pass.begin(); k != routeend; ++k) {
                    // check whether any detectors lies on the current edge
                    if (myDetectorsOnEdges.find(*k) == myDetectorsOnEdges.end()) {
                        duration -= (*k)->getLength() / (*k)->getSpeed();
                        distance -= (*k)->getLength();
                        continue;
                    }
                    // get the detectors
                    const std::vector<std::string>& dets = myDetectorsOnEdges.find(*k)->second;
                    // go through the detectors
                    for (std::vector<std::string>::const_iterator l = dets.begin(); l != dets.end(); ++l) {
                        const RODFDetector& m = detcont.getDetector(*l);
                        if (m.getType() == BETWEEN_DETECTOR) {
                            RODFRouteDesc nrd;
                            copy(k, routeend, back_inserter(nrd.edges2Pass));
                            nrd.duration_2 = duration;//!!!;
                            nrd.endDetectorEdge = mrd.endDetectorEdge;
                            nrd.lastDetectorEdge = mrd.lastDetectorEdge;
                            nrd.distance = distance;
                            nrd.distance2Last = mrd.distance2Last;
                            nrd.duration2Last = mrd.duration2Last;
                            nrd.overallProb = mrd.overallProb;
                            nrd.factor = mrd.factor;
                            ((RODFDetector&) m).addRoute(nrd);
                        }
                    }
                    duration -= (*k)->getLength() / (*k)->getSpeed();
                    distance -= (*k)->getLength();
                }
            }
        }

    }
}
Esempio n. 6
0
void
RODFNet::computeRoutesFor(ROEdge* edge, RODFRouteDesc& base, int /*no*/,
                          bool keepUnfoundEnds,
                          bool keepShortestOnly,
                          ROEdgeVector& /*visited*/,
                          const RODFDetector& det, RODFRouteCont& into,
                          const RODFDetectorCon& detectors,
                          int maxFollowingLength,
                          ROEdgeVector& seen) const {
    std::vector<RODFRouteDesc> unfoundEnds;
    std::priority_queue<RODFRouteDesc, std::vector<RODFRouteDesc>, DFRouteDescByTimeComperator> toSolve;
    std::map<ROEdge*, ROEdgeVector > dets2Follow;
    dets2Follow[edge] = ROEdgeVector();
    base.passedNo = 0;
    SUMOReal minDist = OptionsCont::getOptions().getFloat("min-route-length");
    toSolve.push(base);
    while (!toSolve.empty()) {
        RODFRouteDesc current = toSolve.top();
        toSolve.pop();
        ROEdge* last = *(current.edges2Pass.end() - 1);
        if (hasDetector(last)) {
            if (dets2Follow.find(last) == dets2Follow.end()) {
                dets2Follow[last] = ROEdgeVector();
            }
            for (ROEdgeVector::reverse_iterator i = current.edges2Pass.rbegin() + 1; i != current.edges2Pass.rend(); ++i) {
                if (hasDetector(*i)) {
                    dets2Follow[*i].push_back(last);
                    break;
                }
            }
        }

        // do not process an edge twice
        if (find(seen.begin(), seen.end(), last) != seen.end() && keepShortestOnly) {
            continue;
        }
        seen.push_back(last);
        // end if the edge has no further connections
        if (!hasApproached(last)) {
            // ok, no further connections to follow
            current.factor = 1.;
            SUMOReal cdist = current.edges2Pass[0]->getFromJunction()->getPosition().distanceTo(current.edges2Pass.back()->getToJunction()->getPosition());
            if (minDist < cdist) {
                into.addRouteDesc(current);
            }
            continue;
        }
        // check for passing detectors:
        //  if the current last edge is not the one the detector is placed on ...
        bool addNextNoFurther = false;
        if (last != getDetectorEdge(det)) {
            // ... if there is a detector ...
            if (hasDetector(last)) {
                if (!hasInBetweenDetectorsOnly(last, detectors)) {
                    // ... and it's not an in-between-detector
                    // -> let's add this edge and the following, but not any further
                    addNextNoFurther = true;
                    current.lastDetectorEdge = last;
                    current.duration2Last = (SUMOTime) current.duration_2;
                    current.distance2Last = current.distance;
                    current.endDetectorEdge = last;
                    if (hasSourceDetector(last, detectors)) {
///!!!                        //toDiscard.push_back(current);
                    }
                    current.factor = 1.;
                    SUMOReal cdist = current.edges2Pass[0]->getFromJunction()->getPosition().distanceTo(current.edges2Pass.back()->getToJunction()->getPosition());
                    if (minDist < cdist) {
                        into.addRouteDesc(current);
                    }
                    continue;
                } else {
                    // ... if it's an in-between-detector
                    // -> mark the current route as to be continued
                    current.passedNo = 0;
                    current.duration2Last = (SUMOTime) current.duration_2;
                    current.distance2Last = current.distance;
                    current.lastDetectorEdge = last;
                }
            }
        }
        // check for highway off-ramps
        if (myAmInHighwayMode) {
            // if it's beside the highway...
            if (last->getSpeed() < 19.4 && last != getDetectorEdge(det)) {
                // ... and has more than one following edge
                if (myApproachedEdges.find(last)->second.size() > 1) {
                    // -> let's add this edge and the following, but not any further
                    addNextNoFurther = true;
                }

            }
        }
        // check for missing end connections
        if (!addNextNoFurther) {
            // ... if this one would be processed, but already too many edge
            //  without a detector occured
            if (current.passedNo > maxFollowingLength) {
                // mark not to process any further
                WRITE_WARNING("Could not close route for '" + det.getID() + "'");
                unfoundEnds.push_back(current);
                current.factor = 1.;
                SUMOReal cdist = current.edges2Pass[0]->getFromJunction()->getPosition().distanceTo(current.edges2Pass.back()->getToJunction()->getPosition());
                if (minDist < cdist) {
                    into.addRouteDesc(current);
                }
                continue;
            }
        }
        // ... else: loop over the next edges
        const ROEdgeVector& appr  = myApproachedEdges.find(last)->second;
        bool hadOne = false;
        for (size_t i = 0; i < appr.size(); i++) {
            if (find(current.edges2Pass.begin(), current.edges2Pass.end(), appr[i]) != current.edges2Pass.end()) {
                // do not append an edge twice (do not build loops)
                continue;
            }
            RODFRouteDesc t(current);
            t.duration_2 += (appr[i]->getLength() / appr[i]->getSpeed()); //!!!
            t.distance += appr[i]->getLength();
            t.edges2Pass.push_back(appr[i]);
            if (!addNextNoFurther) {
                t.passedNo = t.passedNo + 1;
                toSolve.push(t);
            } else {
                if (!hadOne) {
                    t.factor = (SUMOReal) 1. / (SUMOReal) appr.size();
                    SUMOReal cdist = current.edges2Pass[0]->getFromJunction()->getPosition().distanceTo(current.edges2Pass.back()->getToJunction()->getPosition());
                    if (minDist < cdist) {
                        into.addRouteDesc(t);
                    }
                    hadOne = true;
                }
            }
        }
    }
    //
    if (!keepUnfoundEnds) {
        std::vector<RODFRouteDesc>::iterator i;
        ConstROEdgeVector lastDetEdges;
        for (i = unfoundEnds.begin(); i != unfoundEnds.end(); ++i) {
            if (find(lastDetEdges.begin(), lastDetEdges.end(), (*i).lastDetectorEdge) == lastDetEdges.end()) {
                lastDetEdges.push_back((*i).lastDetectorEdge);
            } else {
                bool ok = into.removeRouteDesc(*i);
                assert(ok);
                UNUSED_PARAMETER(ok); // ony used for assertion
            }
        }
    } else {
        // !!! patch the factors
    }
    while (!toSolve.empty()) {
//        RODFRouteDesc d = toSolve.top();
        toSolve.pop();
//        delete d;
    }
}
Esempio n. 7
0
void
RODFDetector::computeSplitProbabilities(const RODFNet* net, const RODFDetectorCon& detectors,
                                        const RODFDetectorFlows& flows,
                                        SUMOTime startTime, SUMOTime endTime, SUMOTime stepOffset) {
    if (myRoutes == 0) {
        return;
    }
    // compute edges to determine split probabilities
    const std::vector<RODFRouteDesc>& routes = myRoutes->get();
    std::vector<RODFEdge*> nextDetEdges;
    std::set<ROEdge*> preSplitEdges;
    for (std::vector<RODFRouteDesc>::const_iterator i = routes.begin(); i != routes.end(); ++i) {
        const RODFRouteDesc& rd = *i;
        bool hadSplit = false;
        for (ROEdgeVector::const_iterator j = rd.edges2Pass.begin(); j != rd.edges2Pass.end(); ++j) {
            if (hadSplit && net->hasDetector(*j)) {
                if (find(nextDetEdges.begin(), nextDetEdges.end(), *j) == nextDetEdges.end()) {
                    nextDetEdges.push_back(static_cast<RODFEdge*>(*j));
                }
                myRoute2Edge[rd.routename] = static_cast<RODFEdge*>(*j);
                break;
            }
            if (!hadSplit) {
                preSplitEdges.insert(*j);
            }
            if ((*j)->getNumSuccessors() > 1) {
                hadSplit = true;
            }
        }
    }
    std::map<ROEdge*, SUMOReal> inFlows;
    if (OptionsCont::getOptions().getBool("respect-concurrent-inflows")) {
        for (std::vector<RODFEdge*>::const_iterator i = nextDetEdges.begin(); i != nextDetEdges.end(); ++i) {
            std::set<ROEdge*> seen(preSplitEdges);
            ROEdgeVector pending;
            pending.push_back(*i);
            seen.insert(*i);
            while (!pending.empty()) {
                ROEdge* e = pending.back();
                pending.pop_back();
                for (ROEdgeVector::const_iterator it = e->getPredecessors().begin(); it != e->getPredecessors().end(); it++) {
                    ROEdge* e2 = *it;
                    if (e2->getNumSuccessors() == 1 && seen.count(e2) == 0) {
                        if (net->hasDetector(e2)) {
                            inFlows[*i] += detectors.getAggFlowFor(e2, 0, 0, flows);
                        } else {
                            pending.push_back(e2);
                        }
                        seen.insert(e2);
                    }
                }
            }
        }
    }
    // compute the probabilities to use a certain direction
    int index = 0;
    for (SUMOTime time = startTime; time < endTime; time += stepOffset, ++index) {
        mySplitProbabilities.push_back(std::map<RODFEdge*, SUMOReal>());
        SUMOReal overallProb = 0;
        // retrieve the probabilities
        for (std::vector<RODFEdge*>::const_iterator i = nextDetEdges.begin(); i != nextDetEdges.end(); ++i) {
            SUMOReal flow = detectors.getAggFlowFor(*i, time, 60, flows) - inFlows[*i];
            overallProb += flow;
            mySplitProbabilities[index][*i] = flow;
        }
        // norm probabilities
        if (overallProb > 0) {
            for (std::vector<RODFEdge*>::const_iterator i = nextDetEdges.begin(); i != nextDetEdges.end(); ++i) {
                mySplitProbabilities[index][*i] = mySplitProbabilities[index][*i] / overallProb;
            }
        }
    }
}