bool Mesh::getIntersection(const Ray & ray, float & t, Vec3<float> & normal) const{ Plane plane; Vec3<float> normalOutput, vertices4; bool colision=false; float pointIntersection; t=inf; for(size_t i = 0; i < poligons.size(); i++) { plane.setPlane(poligons[i].vertices1,poligons[i].vertices2,poligons[i].vertices3); if(plane.getIntersection(ray,pointIntersection,normal)) { vertices4 = ray.eval(pointIntersection); if(getIntersectionTriangle(poligons[i].vertices1, poligons[i].vertices2, poligons[i].vertices3, vertices4) && pointIntersection < t) { t=pointIntersection; normalOutput=normal; colision=true; } } } if(colision) { normal = normalOutput; return true; } return false; }
bool Box::intersect(const Ray & ray, Intersection & it) { Vector3f normal0, normal1, normalVec; float t0 = 0, t1 = FLT_MAX; float _t0, _t1; for (int i = 0; i < 3; ++i) { if (slabs[i].normal.dot(ray.D)) { float NdotQ = slabs[i].normal.dot(ray.Q); float NdotD = slabs[i].normal.dot(ray.D); _t0 = -(slabs[i].d0 + NdotQ) / NdotD; _t1 = -(slabs[i].d1 + NdotQ) / NdotD; if (_t0 > _t1) { float temp = _t0; _t0 = _t1; _t1 = temp; } normalVec = slabs[i].normal; } else { float NdotQ = slabs[i].normal.dot(ray.Q); float s0 = NdotQ + slabs[i].d0; float s1 = NdotQ + slabs[i].d1; if (s0 * s1 < 0.0f) { _t0 = 0.0f; _t1 = FLT_MAX; } else return false; } if (t0 < _t0) { t0 = _t0; normal0 = normalVec; } if (t1 > _t1) { t1 = _t1; normal1 = normalVec; } } if (t0 > t1) return false; else if (t0 > epsilon) { it.t = t0; it.normal = normal0; } else if (t1 > epsilon) { it.t = t1; it.normal = normal1; } else return false; it.pos = ray.eval(it.t); it.normal.normalize(); Vector3f cornerToIt = it.pos - corner; if (cornerToIt[0] < epsilon || cornerToIt[1] < epsilon || cornerToIt[2] < epsilon) { if (it.normal.dot(diag) > 0.0f) it.normal *= -1; } else if (it.normal.dot(diag) < 0.0f) it.normal *= -1; it.pS = this; return true; }
bool Sphere::intersect(const Ray & ray, Intersection & it) { Vector3f Qbar = ray.Q - center; float QdotD = Qbar.dot(ray.D); float fvar = sqrt(QdotD*QdotD - Qbar.dot(Qbar) + radius*radius); if (-QdotD - fvar > epsilon) it.t = -QdotD - fvar; else if (-QdotD + fvar > epsilon) it.t = -QdotD + fvar; else return false; it.pos = ray.eval(it.t); it.normal = (it.pos - center).normalized(); it.pS = this; return true; }
/** * Calculates whether a ray intersects with a sphere. Returns true or false, * storing the collision point in result if true. */ bool Sphere::intersection(Ray prim_ray, Vec3 &result) { double t0, t1; Vec3 obj_center(pos); Vec3 L = (*prim_ray.p1) - obj_center; double a = prim_ray.p2->dot(*prim_ray.p2); double b = 2 * prim_ray.p2->dot(L); double c = L.dot(L) - (radius * radius); if(!solve_quadratic(a, b, c, t0, t1)) { return false; } else { prim_ray.eval(t0, result); return true; } }
bool Triangle::intersect(const Ray & ray, Intersection & it) { Vector3f e1 = v1 - v0; Vector3f e2 = v2 - v0; Vector3f p = ray.D.cross(e2); float d = p.dot(e1); if (abs(d) < epsilon) return false; Vector3f s = ray.Q - v0; float u = (p.dot(s)) / d; if (u < 0.0f || u >1) return false; Vector3f q = s.cross(e1); float v = ray.D.dot(q) / d; if (v < 0.0f || u + v > 1.0f) return false; float t = e2.dot(q) / d; if (t < 0.0f)return false; it.t = t; it.pos = ray.eval(t); it.normal = e1.cross(e2); it.normal.normalize(); it.pS = this; return true; }
bool Cylinder::intersect(const Ray & ray, Intersection & it) { Vector3f Q = q._transformVector(ray.Q - base); Vector3f D = q._transformVector(ray.D); float t0 = 0, t1 = FLT_MAX; double b0, b1; Vector3f normalVec; if (slab.normal.dot(D)) { double NdotQ = slab.normal.dot(Q); double NdotD = slab.normal.dot(D); b0 = -(slab.d0 + NdotQ) / NdotD; b1 = -(slab.d1 + NdotQ) / NdotD; if (b0 > b1) { double temp = b0; b0 = b1; b1 = temp; } } else { float NdotQ = slab.normal.dot(Q); float s0 = NdotQ + slab.d0; float s1 = NdotQ + slab.d1; if (s0 * s1 < 0.0f) { b0 = 0.0f; b1 = FLT_MAX; } else return false; } double a = D[0] * D[0] + D[1] * D[1]; double b = 2 * (D[0] * Q[0] + D[1] * Q[1]); double c = Q[0] * Q[0] + Q[1] * Q[1] - radius * radius; double deter = b * b - 4.0f * a * c; if (deter < 0) return false; double c0 = (-b - sqrt(deter)) / 2.0f / a; double c1 = (-b + sqrt(deter)) / 2.0f / a; Vector3f normal0, normal1, M; if (b0 > c0) { t0 = b0; if (D[2] > epsilon) normal0 = Vector3f(0.0f, 0.0f, -1.0f); else normal0 = Vector3f(0.0f, 0.0f, 1.0f); } else { t0 = c0; M = Q + t0*D; normal0 = Vector3f(M[0], M[1], 0.0f); } if (b1 < c1) { t1 = b1; if (D[2] > epsilon) normal1 = Vector3f(0.0f, 0.0f, 1.0f); else normal1 = Vector3f(0.0f, 0.0f, -1.0f); } else { t1 = c1; M = Q + t1*D; normal1 = Vector3f(M[0], M[1], 0.0f); } if (t0 > t1) return false; else if (t0 > epsilon) { it.t = t0; it.normal = q.conjugate()._transformVector(normal0); } else if (t1 > epsilon) { it.t = t1; it.normal = q.conjugate()._transformVector(normal1); } else return false; it.pos = ray.eval(it.t); it.pS = this; it.normal.normalize(); return true; }
bool Cube::getIntersection(const Ray & ray, float & t, Vec3<float> & normal) const { Plane add1(Vec3<float>(min.x, min.y, min.z), Vec3<float>(max.x, min.y, min.z), Vec3<float>(max.x, min.y, max.z)); Plane dd1c1(Vec3<float>(max.x, min.y, min.z), Vec3<float>(max.x, min.y, max.z), Vec3<float>(max.x, max.y, max.z)); Plane adc(Vec3<float>(min.x, min.y, min.z), Vec3<float>(max.x, min.y, min.z), Vec3<float>(max.x, max.y, min.z)); Plane abb1(Vec3<float>(min.x, min.y, min.z), Vec3<float>(min.x, max.y, min.z), Vec3<float>(min.x, max.y, max.z)); Plane bcc1(Vec3<float>(min.x, max.y, min.z), Vec3<float>(max.x, max.y, min.z), Vec3<float>(max.x, max.y, max.z)); Plane a1b1c1(Vec3<float>(min.x, min.y, max.z), Vec3<float>(min.x, max.y, max.z), Vec3<float>(max.x, max.y, max.z)); Vec3<float> pointIntersection, minValue, maxValue, normal1, normalP; float t1, tP; t1 = inf; if(add1.getIntersection(ray, tP, normalP)) { pointIntersection = ray.eval(tP); minValue.x = min.x; minValue.y = min.y; minValue.z = min.z; maxValue.x = max.x; maxValue.y = min.y; maxValue.z = max.z; if ((pointIntersection >= minValue) && (pointIntersection <= maxValue)) { if(tP < t1) { t1 = tP; normal1 = normalP; } } } if(dd1c1.getIntersection(ray, tP, normalP)) { pointIntersection = ray.eval(tP); minValue.x = max.x; minValue.y = min.y; minValue.z = min.z; maxValue.x = max.x; maxValue.y = max.y; maxValue.z = max.z; if (pointIntersection >= minValue && pointIntersection <= maxValue) { if(tP < t1) { t1 = tP; normal1 = normalP; } } } if(adc.getIntersection(ray, tP, normalP)) { pointIntersection = ray.eval(tP); minValue.x = min.x; minValue.y = min.y; minValue.z = min.z; maxValue.x = max.x; maxValue.y = max.y; maxValue.z = min.z; if (pointIntersection >= minValue && pointIntersection <= maxValue) { if(tP < t1) { t1 = tP; normal1 = normalP; } } } if(abb1.getIntersection(ray, tP, normalP)) { pointIntersection = ray.eval(tP); minValue.x = min.x; minValue.y = min.y; minValue.z = min.z; maxValue.x = min.x; maxValue.y = max.y; maxValue.z = max.z; if (pointIntersection >= minValue && pointIntersection <= maxValue) { if(tP < t1) { t1 = t; normal1 = normalP; } } } if(bcc1.getIntersection(ray, tP, normalP)) { pointIntersection = ray.eval(tP); minValue.x = min.x; minValue.y = max.y; minValue.z = min.z; maxValue.x = max.x; maxValue.y = max.y; maxValue.z = max.z; if (pointIntersection >= minValue && pointIntersection <= maxValue) { if(tP < t1) { t1 = tP; normal1 = normalP; } } } if(a1b1c1.getIntersection(ray, tP, normalP)) { pointIntersection = ray.eval(tP); minValue.x = min.x; minValue.y = min.y; minValue.z = max.z; maxValue.x = max.x; maxValue.y = max.y; maxValue.z = max.z; if (pointIntersection >= minValue && pointIntersection <= maxValue) { if(tP < t1) { t1 = tP; normal1 = normalP; } } } if(t1 == Math::inf) { return false; } t = t1; normal = normal1; return true; }