Esempio n. 1
0
void
CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
                                  llvm::SmallVector<llvm::Value*, 16> &Args) {
  const RecordType *RT = Ty->getAsStructureType();
  assert(RT && "Can only expand structure types.");

  RecordDecl *RD = RT->getDecl();
  assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
  llvm::Value *Addr = RV.getAggregateAddr();
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i) {
    FieldDecl *FD = *i;
    QualType FT = FD->getType();

    // FIXME: What are the right qualifiers here?
    LValue LV = EmitLValueForField(Addr, FD, false, 0);
    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
      ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
    } else {
      RValue RV = EmitLoadOfLValue(LV, FT);
      assert(RV.isScalar() &&
             "Unexpected non-scalar rvalue during struct expansion.");
      Args.push_back(RV.getScalarVal());
    }
  }
}
Esempio n. 2
0
llvm::Function::arg_iterator
CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
                                    llvm::Function::arg_iterator AI) {
  const RecordType *RT = Ty->getAsStructureType();
  assert(RT && "Can only expand structure types.");

  RecordDecl *RD = RT->getDecl();
  assert(LV.isSimple() &&
         "Unexpected non-simple lvalue during struct expansion.");
  llvm::Value *Addr = LV.getAddress();
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i) {
    FieldDecl *FD = *i;
    QualType FT = FD->getType();

    // FIXME: What are the right qualifiers here?
    LValue LV = EmitLValueForField(Addr, FD, false, 0);
    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
      AI = ExpandTypeFromArgs(FT, LV, AI);
    } else {
      EmitStoreThroughLValue(RValue::get(AI), LV, FT);
      ++AI;
    }
  }

  return AI;
}
Esempio n. 3
0
 //--------------------------------------------------------- 
 void VisitExpr(Expr* Node)
 {
   for (RecordDecl::field_iterator i = RD->field_begin(), 
        e = RD->field_end(); i != e; ++i)
   {
     compoundStmts.push_back(Assign_(
       MemberPoint_(Paren_(Clone_(LHS)), *i), 
       MemberPoint_(Paren_(Clone_(Node)), *i)));
   }
 }
Esempio n. 4
0
/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
/// non-zero bytes that will be stored when outputting the initializer for the
/// specified initializer expression.
static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
  E = E->IgnoreParens();

  // 0 and 0.0 won't require any non-zero stores!
  if (isSimpleZero(E, CGF)) return CharUnits::Zero();

  // If this is an initlist expr, sum up the size of sizes of the (present)
  // elements.  If this is something weird, assume the whole thing is non-zero.
  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
  if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
    return CGF.getContext().getTypeSizeInChars(E->getType());
  
  // InitListExprs for structs have to be handled carefully.  If there are
  // reference members, we need to consider the size of the reference, not the
  // referencee.  InitListExprs for unions and arrays can't have references.
  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
    if (!RT->isUnionType()) {
      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
      CharUnits NumNonZeroBytes = CharUnits::Zero();
      
      unsigned ILEElement = 0;
      for (RecordDecl::field_iterator Field = SD->field_begin(),
           FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
        // We're done once we hit the flexible array member or run out of
        // InitListExpr elements.
        if (Field->getType()->isIncompleteArrayType() ||
            ILEElement == ILE->getNumInits())
          break;
        if (Field->isUnnamedBitfield())
          continue;

        const Expr *E = ILE->getInit(ILEElement++);
        
        // Reference values are always non-null and have the width of a pointer.
        if (Field->getType()->isReferenceType())
          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
              CGF.getContext().getTargetInfo().getPointerWidth(0));
        else
          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
      }
      
      return NumNonZeroBytes;
    }
  }
  
  
  CharUnits NumNonZeroBytes = CharUnits::Zero();
  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
  return NumNonZeroBytes;
}
Esempio n. 5
0
  //--------------------------------------------------------- 
  void VisitInitListExpr(InitListExpr *RHS) 
  {
    unsigned elementNo = 0;
    for (RecordDecl::field_iterator i = RD->field_begin(), 
         e = RD->field_end(); i != e; ++i)
    {
      // how to handle?
      if (i->isUnnamedBitfield())
        continue;
    
      compoundStmts.push_back(Assign_(
        MemberPoint_(Paren_(Clone_(LHS)), *i), 
        elementNo < RHS->getNumInits() ?        
          Clone_ (RHS->getInit(elementNo)) : 
          Int_(0)));

      elementNo++;
    }
  }
Esempio n. 6
0
void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
#if 0
  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
  // (Length of globals? Chunks of zeroed-out space?).
  //
  // If we can, prefer a copy from a global; this is a lot less code for long
  // globals, and it's easier for the current optimizers to analyze.
  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    llvm::GlobalVariable* GV =
    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
                             llvm::GlobalValue::InternalLinkage, C, "");
    EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
    return;
  }
#endif
  if (E->hadArrayRangeDesignator())
    CGF.ErrorUnsupported(E, "GNU array range designator extension");

  llvm::Value *DestPtr = Dest.getAddr();

  // Handle initialization of an array.
  if (E->getType()->isArrayType()) {
    llvm::PointerType *APType =
      cast<llvm::PointerType>(DestPtr->getType());
    llvm::ArrayType *AType =
      cast<llvm::ArrayType>(APType->getElementType());

    uint64_t NumInitElements = E->getNumInits();

    if (E->getNumInits() > 0) {
      QualType T1 = E->getType();
      QualType T2 = E->getInit(0)->getType();
      if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
        EmitAggLoadOfLValue(E->getInit(0));
        return;
      }
    }

    uint64_t NumArrayElements = AType->getNumElements();
    assert(NumInitElements <= NumArrayElements);

    QualType elementType = E->getType().getCanonicalType();
    elementType = CGF.getContext().getQualifiedType(
                    cast<ArrayType>(elementType)->getElementType(),
                    elementType.getQualifiers() + Dest.getQualifiers());

    // DestPtr is an array*.  Construct an elementType* by drilling
    // down a level.
    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
    llvm::Value *indices[] = { zero, zero };
    llvm::Value *begin =
      Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");

    // Exception safety requires us to destroy all the
    // already-constructed members if an initializer throws.
    // For that, we'll need an EH cleanup.
    QualType::DestructionKind dtorKind = elementType.isDestructedType();
    llvm::AllocaInst *endOfInit = 0;
    EHScopeStack::stable_iterator cleanup;
    llvm::Instruction *cleanupDominator = 0;
    if (CGF.needsEHCleanup(dtorKind)) {
      // In principle we could tell the cleanup where we are more
      // directly, but the control flow can get so varied here that it
      // would actually be quite complex.  Therefore we go through an
      // alloca.
      endOfInit = CGF.CreateTempAlloca(begin->getType(),
                                       "arrayinit.endOfInit");
      cleanupDominator = Builder.CreateStore(begin, endOfInit);
      CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
                                           CGF.getDestroyer(dtorKind));
      cleanup = CGF.EHStack.stable_begin();

    // Otherwise, remember that we didn't need a cleanup.
    } else {
      dtorKind = QualType::DK_none;
    }

    llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);

    // The 'current element to initialize'.  The invariants on this
    // variable are complicated.  Essentially, after each iteration of
    // the loop, it points to the last initialized element, except
    // that it points to the beginning of the array before any
    // elements have been initialized.
    llvm::Value *element = begin;

    // Emit the explicit initializers.
    for (uint64_t i = 0; i != NumInitElements; ++i) {
      // Advance to the next element.
      if (i > 0) {
        element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");

        // Tell the cleanup that it needs to destroy up to this
        // element.  TODO: some of these stores can be trivially
        // observed to be unnecessary.
        if (endOfInit) Builder.CreateStore(element, endOfInit);
      }

      LValue elementLV = CGF.MakeAddrLValue(element, elementType);
      EmitInitializationToLValue(E->getInit(i), elementLV);
    }

    // Check whether there's a non-trivial array-fill expression.
    // Note that this will be a CXXConstructExpr even if the element
    // type is an array (or array of array, etc.) of class type.
    Expr *filler = E->getArrayFiller();
    bool hasTrivialFiller = true;
    if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
      assert(cons->getConstructor()->isDefaultConstructor());
      hasTrivialFiller = cons->getConstructor()->isTrivial();
    }

    // Any remaining elements need to be zero-initialized, possibly
    // using the filler expression.  We can skip this if the we're
    // emitting to zeroed memory.
    if (NumInitElements != NumArrayElements &&
        !(Dest.isZeroed() && hasTrivialFiller &&
          CGF.getTypes().isZeroInitializable(elementType))) {

      // Use an actual loop.  This is basically
      //   do { *array++ = filler; } while (array != end);

      // Advance to the start of the rest of the array.
      if (NumInitElements) {
        element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
        if (endOfInit) Builder.CreateStore(element, endOfInit);
      }

      // Compute the end of the array.
      llvm::Value *end = Builder.CreateInBoundsGEP(begin,
                        llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
                                                   "arrayinit.end");

      llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
      llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");

      // Jump into the body.
      CGF.EmitBlock(bodyBB);
      llvm::PHINode *currentElement =
        Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
      currentElement->addIncoming(element, entryBB);

      // Emit the actual filler expression.
      LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
      if (filler)
        EmitInitializationToLValue(filler, elementLV);
      else
        EmitNullInitializationToLValue(elementLV);

      // Move on to the next element.
      llvm::Value *nextElement =
        Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");

      // Tell the EH cleanup that we finished with the last element.
      if (endOfInit) Builder.CreateStore(nextElement, endOfInit);

      // Leave the loop if we're done.
      llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
                                               "arrayinit.done");
      llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
      Builder.CreateCondBr(done, endBB, bodyBB);
      currentElement->addIncoming(nextElement, Builder.GetInsertBlock());

      CGF.EmitBlock(endBB);
    }

    // Leave the partial-array cleanup if we entered one.
    if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);

    return;
  }

  assert(E->getType()->isRecordType() && "Only support structs/unions here!");

  // Do struct initialization; this code just sets each individual member
  // to the approprate value.  This makes bitfield support automatic;
  // the disadvantage is that the generated code is more difficult for
  // the optimizer, especially with bitfields.
  unsigned NumInitElements = E->getNumInits();
  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
  
  if (record->isUnion()) {
    // Only initialize one field of a union. The field itself is
    // specified by the initializer list.
    if (!E->getInitializedFieldInUnion()) {
      // Empty union; we have nothing to do.

#ifndef NDEBUG
      // Make sure that it's really an empty and not a failure of
      // semantic analysis.
      for (RecordDecl::field_iterator Field = record->field_begin(),
                                   FieldEnd = record->field_end();
           Field != FieldEnd; ++Field)
        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
#endif
      return;
    }

    // FIXME: volatility
    FieldDecl *Field = E->getInitializedFieldInUnion();

    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
    if (NumInitElements) {
      // Store the initializer into the field
      EmitInitializationToLValue(E->getInit(0), FieldLoc);
    } else {
      // Default-initialize to null.
      EmitNullInitializationToLValue(FieldLoc);
    }

    return;
  }

  // We'll need to enter cleanup scopes in case any of the member
  // initializers throw an exception.
  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
  llvm::Instruction *cleanupDominator = 0;

  // Here we iterate over the fields; this makes it simpler to both
  // default-initialize fields and skip over unnamed fields.
  unsigned curInitIndex = 0;
  for (RecordDecl::field_iterator field = record->field_begin(),
                               fieldEnd = record->field_end();
       field != fieldEnd; ++field) {
    // We're done once we hit the flexible array member.
    if (field->getType()->isIncompleteArrayType())
      break;

    // Always skip anonymous bitfields.
    if (field->isUnnamedBitfield())
      continue;

    // We're done if we reach the end of the explicit initializers, we
    // have a zeroed object, and the rest of the fields are
    // zero-initializable.
    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
        CGF.getTypes().isZeroInitializable(E->getType()))
      break;
    
    // FIXME: volatility
    LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
    // We never generate write-barries for initialized fields.
    LV.setNonGC(true);
    
    if (curInitIndex < NumInitElements) {
      // Store the initializer into the field.
      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
    } else {
      // We're out of initalizers; default-initialize to null
      EmitNullInitializationToLValue(LV);
    }

    // Push a destructor if necessary.
    // FIXME: if we have an array of structures, all explicitly
    // initialized, we can end up pushing a linear number of cleanups.
    bool pushedCleanup = false;
    if (QualType::DestructionKind dtorKind
          = field->getType().isDestructedType()) {
      assert(LV.isSimple());
      if (CGF.needsEHCleanup(dtorKind)) {
        if (!cleanupDominator)
          cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder

        CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
                        CGF.getDestroyer(dtorKind), false);
        cleanups.push_back(CGF.EHStack.stable_begin());
        pushedCleanup = true;
      }
    }
    
    // If the GEP didn't get used because of a dead zero init or something
    // else, clean it up for -O0 builds and general tidiness.
    if (!pushedCleanup && LV.isSimple()) 
      if (llvm::GetElementPtrInst *GEP =
            dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
        if (GEP->use_empty())
          GEP->eraseFromParent();
  }

  // Deactivate all the partial cleanups in reverse order, which
  // generally means popping them.
  for (unsigned i = cleanups.size(); i != 0; --i)
    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);

  // Destroy the placeholder if we made one.
  if (cleanupDominator)
    cleanupDominator->eraseFromParent();
}
Esempio n. 7
0
void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
#if 0
  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
  // (Length of globals? Chunks of zeroed-out space?).
  //
  // If we can, prefer a copy from a global; this is a lot less code for long
  // globals, and it's easier for the current optimizers to analyze.
  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    llvm::GlobalVariable* GV =
    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
                             llvm::GlobalValue::InternalLinkage, C, "");
    EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
    return;
  }
#endif
  if (E->hadArrayRangeDesignator()) {
    CGF.ErrorUnsupported(E, "GNU array range designator extension");
  }

  // Handle initialization of an array.
  if (E->getType()->isArrayType()) {
    const llvm::PointerType *APType =
      cast<llvm::PointerType>(DestPtr->getType());
    const llvm::ArrayType *AType =
      cast<llvm::ArrayType>(APType->getElementType());

    uint64_t NumInitElements = E->getNumInits();

    if (E->getNumInits() > 0) {
      QualType T1 = E->getType();
      QualType T2 = E->getInit(0)->getType();
      if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
        EmitAggLoadOfLValue(E->getInit(0));
        return;
      }
    }

    uint64_t NumArrayElements = AType->getNumElements();
    QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
    ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();

    // FIXME: were we intentionally ignoring address spaces and GC attributes?

    for (uint64_t i = 0; i != NumArrayElements; ++i) {
      llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
      LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
      if (i < NumInitElements)
        EmitInitializationToLValue(E->getInit(i), LV, ElementType);

      else
        EmitNullInitializationToLValue(LV, ElementType);
    }
    return;
  }

  assert(E->getType()->isRecordType() && "Only support structs/unions here!");

  // Do struct initialization; this code just sets each individual member
  // to the approprate value.  This makes bitfield support automatic;
  // the disadvantage is that the generated code is more difficult for
  // the optimizer, especially with bitfields.
  unsigned NumInitElements = E->getNumInits();
  RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
  
  // If we're initializing the whole aggregate, just do it in place.
  // FIXME: This is a hack around an AST bug (PR6537).
  if (NumInitElements == 1 && E->getType() == E->getInit(0)->getType()) {
    EmitInitializationToLValue(E->getInit(0),
                               CGF.MakeAddrLValue(DestPtr, E->getType()),
                               E->getType());
    return;
  }
  
  
  if (E->getType()->isUnionType()) {
    // Only initialize one field of a union. The field itself is
    // specified by the initializer list.
    if (!E->getInitializedFieldInUnion()) {
      // Empty union; we have nothing to do.

#ifndef NDEBUG
      // Make sure that it's really an empty and not a failure of
      // semantic analysis.
      for (RecordDecl::field_iterator Field = SD->field_begin(),
                                   FieldEnd = SD->field_end();
           Field != FieldEnd; ++Field)
        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
#endif
      return;
    }

    // FIXME: volatility
    FieldDecl *Field = E->getInitializedFieldInUnion();
    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);

    if (NumInitElements) {
      // Store the initializer into the field
      EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
    } else {
      // Default-initialize to null
      EmitNullInitializationToLValue(FieldLoc, Field->getType());
    }

    return;
  }

  // Here we iterate over the fields; this makes it simpler to both
  // default-initialize fields and skip over unnamed fields.
  unsigned CurInitVal = 0;
  for (RecordDecl::field_iterator Field = SD->field_begin(),
                               FieldEnd = SD->field_end();
       Field != FieldEnd; ++Field) {
    // We're done once we hit the flexible array member
    if (Field->getType()->isIncompleteArrayType())
      break;

    if (Field->isUnnamedBitfield())
      continue;

    // FIXME: volatility
    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
    // We never generate write-barries for initialized fields.
    FieldLoc.setNonGC(true);
    if (CurInitVal < NumInitElements) {
      // Store the initializer into the field.
      EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
                                 Field->getType());
    } else {
      // We're out of initalizers; default-initialize to null
      EmitNullInitializationToLValue(FieldLoc, Field->getType());
    }
  }
}
Esempio n. 8
0
/// CreateType - get structure or union type.
llvm::DIType CGDebugInfo::CreateType(const RecordType *Ty,
                                     llvm::DICompileUnit Unit) {
  RecordDecl *Decl = Ty->getDecl();
  
  unsigned Tag;
  if (Decl->isStruct())
    Tag = llvm::dwarf::DW_TAG_structure_type;
  else if (Decl->isUnion())
    Tag = llvm::dwarf::DW_TAG_union_type;
  else {
    assert(Decl->isClass() && "Unknown RecordType!");
    Tag = llvm::dwarf::DW_TAG_class_type;
  }

  SourceManager &SM = M->getContext().getSourceManager();

  // Get overall information about the record type for the debug info.
  std::string Name = Decl->getNameAsString();

  llvm::DICompileUnit DefUnit = getOrCreateCompileUnit(Decl->getLocation());
  unsigned Line = SM.getInstantiationLineNumber(Decl->getLocation());
  
  
  // Records and classes and unions can all be recursive.  To handle them, we
  // first generate a debug descriptor for the struct as a forward declaration.
  // Then (if it is a definition) we go through and get debug info for all of
  // its members.  Finally, we create a descriptor for the complete type (which
  // may refer to the forward decl if the struct is recursive) and replace all
  // uses of the forward declaration with the final definition.
  llvm::DIType FwdDecl =
    DebugFactory.CreateCompositeType(Tag, Unit, Name, DefUnit, Line, 0, 0, 0, 0,
                                     llvm::DIType(), llvm::DIArray());
  
  // If this is just a forward declaration, return it.
  if (!Decl->getDefinition(M->getContext()))
    return FwdDecl;

  // Otherwise, insert it into the TypeCache so that recursive uses will find
  // it.
  TypeCache[QualType(Ty, 0).getAsOpaquePtr()] = FwdDecl;

  // Convert all the elements.
  llvm::SmallVector<llvm::DIDescriptor, 16> EltTys;

  const ASTRecordLayout &RL = M->getContext().getASTRecordLayout(Decl);

  unsigned FieldNo = 0;
  for (RecordDecl::field_iterator I = Decl->field_begin(M->getContext()),
                                  E = Decl->field_end(M->getContext()); 
       I != E; ++I, ++FieldNo) {
    FieldDecl *Field = *I;
    llvm::DIType FieldTy = getOrCreateType(Field->getType(), Unit);

    std::string FieldName = Field->getNameAsString();

    // Get the location for the field.
    SourceLocation FieldDefLoc = Field->getLocation();
    llvm::DICompileUnit FieldDefUnit = getOrCreateCompileUnit(FieldDefLoc);
    unsigned FieldLine = SM.getInstantiationLineNumber(FieldDefLoc);

    QualType FType = Field->getType();
    uint64_t FieldSize = 0;
    unsigned FieldAlign = 0;
    if (!FType->isIncompleteArrayType()) {
    
      // Bit size, align and offset of the type.
      FieldSize = M->getContext().getTypeSize(FType);
      Expr *BitWidth = Field->getBitWidth();
      if (BitWidth)
        FieldSize = 
          BitWidth->getIntegerConstantExprValue(M->getContext()).getZExtValue();
      
      FieldAlign =  M->getContext().getTypeAlign(FType);
    }

    uint64_t FieldOffset = RL.getFieldOffset(FieldNo);    
    
    // Create a DW_TAG_member node to remember the offset of this field in the
    // struct.  FIXME: This is an absolutely insane way to capture this
    // information.  When we gut debug info, this should be fixed.
    FieldTy = DebugFactory.CreateDerivedType(llvm::dwarf::DW_TAG_member, Unit,
                                             FieldName, FieldDefUnit,
                                             FieldLine, FieldSize, FieldAlign,
                                             FieldOffset, 0, FieldTy);
    EltTys.push_back(FieldTy);
  }
  
  llvm::DIArray Elements =
    DebugFactory.GetOrCreateArray(&EltTys[0], EltTys.size());

  // Bit size, align and offset of the type.
  uint64_t Size = M->getContext().getTypeSize(Ty);
  uint64_t Align = M->getContext().getTypeAlign(Ty);
  
  llvm::DIType RealDecl =
    DebugFactory.CreateCompositeType(Tag, Unit, Name, DefUnit, Line, Size,
                                     Align, 0, 0, llvm::DIType(), Elements);

  // Now that we have a real decl for the struct, replace anything using the
  // old decl with the new one.  This will recursively update the debug info.
  FwdDecl.getGV()->replaceAllUsesWith(RealDecl.getGV());
  FwdDecl.getGV()->eraseFromParent();
  
  return RealDecl;
}