static void doPrepareModelShortcut(const sp<IDevice>& device, sp<IPreparedModel>* preparedModel) {
    ASSERT_NE(nullptr, preparedModel);
    Model model = createValidTestModel_1_0();

    // see if service can handle model
    bool fullySupportsModel = false;
    Return<void> supportedOpsLaunchStatus = device->getSupportedOperations(
        model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
            ASSERT_EQ(ErrorStatus::NONE, status);
            ASSERT_NE(0ul, supported.size());
            fullySupportsModel =
                std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
        });
    ASSERT_TRUE(supportedOpsLaunchStatus.isOk());

    // launch prepare model
    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
    ASSERT_NE(nullptr, preparedModelCallback.get());
    Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
    ASSERT_TRUE(prepareLaunchStatus.isOk());
    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));

    // retrieve prepared model
    preparedModelCallback->wait();
    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
    *preparedModel = preparedModelCallback->getPreparedModel();

    // The getSupportedOperations call returns a list of operations that are
    // guaranteed not to fail if prepareModel is called, and
    // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
    // If a driver has any doubt that it can prepare an operation, it must
    // return false. So here, if a driver isn't sure if it can support an
    // operation, but reports that it successfully prepared the model, the test
    // can continue.
    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
        ASSERT_EQ(nullptr, preparedModel->get());
        LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
                     "prepare model that it does not support.";
        std::cout << "[          ]   Early termination of test because vendor service cannot "
                     "prepare model that it does not support."
                  << std::endl;
        return;
    }
    ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
    ASSERT_NE(nullptr, preparedModel->get());
}
// supported operations negative test 2
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
    Model model = createInvalidTestModel2_1_0();
    Return<void> ret = device->getSupportedOperations(
        model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
            EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
            (void)supported;
        });
    EXPECT_TRUE(ret.isOk());
}
// supported operations positive test
TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
    Model model = createValidTestModel_1_0();
    Return<void> ret = device->getSupportedOperations(
        model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
            EXPECT_EQ(ErrorStatus::NONE, status);
            EXPECT_EQ(model.operations.size(), supported.size());
        });
    EXPECT_TRUE(ret.isOk());
}
// initialization
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
    Return<void> ret =
        device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
            EXPECT_EQ(ErrorStatus::NONE, status);
            EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
            EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
            EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
            EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
        });
    EXPECT_TRUE(ret.isOk());
}
Esempio n. 5
0
status_t StreamInHalHidl::prepareForReading(size_t bufferSize) {
    std::unique_ptr<CommandMQ> tempCommandMQ;
    std::unique_ptr<DataMQ> tempDataMQ;
    std::unique_ptr<StatusMQ> tempStatusMQ;
    Result retval;
    pid_t halThreadPid, halThreadTid;
    Return<void> ret = mStream->prepareForReading(
            1, bufferSize,
            [&](Result r,
                    const CommandMQ::Descriptor& commandMQ,
                    const DataMQ::Descriptor& dataMQ,
                    const StatusMQ::Descriptor& statusMQ,
                    const ThreadInfo& halThreadInfo) {
                retval = r;
                if (retval == Result::OK) {
                    tempCommandMQ.reset(new CommandMQ(commandMQ));
                    tempDataMQ.reset(new DataMQ(dataMQ));
                    tempStatusMQ.reset(new StatusMQ(statusMQ));
                    if (tempDataMQ->isValid() && tempDataMQ->getEventFlagWord()) {
                        EventFlag::createEventFlag(tempDataMQ->getEventFlagWord(), &mEfGroup);
                    }
                    halThreadPid = halThreadInfo.pid;
                    halThreadTid = halThreadInfo.tid;
                }
            });
    if (!ret.isOk() || retval != Result::OK) {
        return processReturn("prepareForReading", ret, retval);
    }
    if (!tempCommandMQ || !tempCommandMQ->isValid() ||
            !tempDataMQ || !tempDataMQ->isValid() ||
            !tempStatusMQ || !tempStatusMQ->isValid() ||
            !mEfGroup) {
        ALOGE_IF(!tempCommandMQ, "Failed to obtain command message queue for writing");
        ALOGE_IF(tempCommandMQ && !tempCommandMQ->isValid(),
                "Command message queue for writing is invalid");
        ALOGE_IF(!tempDataMQ, "Failed to obtain data message queue for reading");
        ALOGE_IF(tempDataMQ && !tempDataMQ->isValid(), "Data message queue for reading is invalid");
        ALOGE_IF(!tempStatusMQ, "Failed to obtain status message queue for reading");
        ALOGE_IF(tempStatusMQ && !tempStatusMQ->isValid(),
                "Status message queue for reading is invalid");
        ALOGE_IF(!mEfGroup, "Event flag creation for reading failed");
        return NO_INIT;
    }
    requestHalThreadPriority(halThreadPid, halThreadTid);

    mCommandMQ = std::move(tempCommandMQ);
    mDataMQ = std::move(tempDataMQ);
    mStatusMQ = std::move(tempStatusMQ);
    mReaderClient = gettid();
    return OK;
}
// prepare simple model negative test 2
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
    Model model = createInvalidTestModel2_1_0();
    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
    ASSERT_NE(nullptr, preparedModelCallback.get());
    Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
    ASSERT_TRUE(prepareLaunchStatus.isOk());
    EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));

    preparedModelCallback->wait();
    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
    EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
    sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
    EXPECT_EQ(nullptr, preparedModel.get());
}
// execute simple graph negative test 2
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
    sp<IPreparedModel> preparedModel;
    ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
    if (preparedModel == nullptr) {
        return;
    }
    Request request = createInvalidTestRequest2();

    sp<ExecutionCallback> executionCallback = new ExecutionCallback();
    ASSERT_NE(nullptr, executionCallback.get());
    Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
    ASSERT_TRUE(executeLaunchStatus.isOk());
    EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));

    executionCallback->wait();
    ErrorStatus executionReturnStatus = executionCallback->getStatus();
    EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// execute simple graph positive test
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
    std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
    std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
    const uint32_t OUTPUT = 1;

    sp<IPreparedModel> preparedModel;
    ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
    if (preparedModel == nullptr) {
        return;
    }
    Request request = createValidTestRequest();

    auto postWork = [&] {
        sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
        if (outputMemory == nullptr) {
            return false;
        }
        float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
        if (outputPtr == nullptr) {
            return false;
        }
        outputMemory->read();
        std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
        outputMemory->commit();
        return true;
    };

    sp<ExecutionCallback> executionCallback = new ExecutionCallback();
    ASSERT_NE(nullptr, executionCallback.get());
    executionCallback->on_finish(postWork);
    Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
    ASSERT_TRUE(executeLaunchStatus.isOk());
    EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));

    executionCallback->wait();
    ErrorStatus executionReturnStatus = executionCallback->getStatus();
    EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
    EXPECT_EQ(expectedData, outputData);
}
// status test
TEST_F(NeuralnetworksHidlTest, StatusTest) {
    Return<DeviceStatus> status = device->getStatus();
    ASSERT_TRUE(status.isOk());
    EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
}