void draw_data_mgg(TString folderName,bool blind=true,float min=103,float max=160) { TFile inputFile(folderName+"/data.root"); const int nCat = 5; TString cats[5] = {"HighPt","Hbb","Zbb","HighRes","LowRes"}; TCanvas cv; for(int iCat=0; iCat < nCat; iCat++) { RooWorkspace *ws = (RooWorkspace*)inputFile.Get(cats[iCat]+"_mgg_workspace"); RooFitResult* res = (RooFitResult*)ws->obj("fitresult_pdf_data"); RooRealVar * mass = ws->var("mgg"); mass->setRange("all",min,max); mass->setRange("blind",121,130); mass->setRange("low",106,121); mass->setRange("high",130,160); mass->setUnit("GeV"); mass->SetTitle("m_{#gamma#gamma}"); RooAbsPdf * pdf = ws->pdf("pdf"); RooPlot *plot = mass->frame(min,max,max-min); plot->SetTitle(""); RooAbsData* data = ws->data("data")->reduce(Form("mgg > %f && mgg < %f",min,max)); double nTot = data->sumEntries(); if(blind) data = data->reduce("mgg < 121 || mgg>130"); double nBlind = data->sumEntries(); double norm = nTot/nBlind; //normalization for the plot data->plotOn(plot); pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::Range("Full"),RooFit::LineWidth(0.1) ); plot->Print(); //add the fix error band RooCurve* c = plot->getCurve("pdf_Norm[mgg]_Range[Full]_NormRange[Full]"); const int Nc = c->GetN(); //TGraphErrors errfix(Nc); //TGraphErrors errfix2(Nc); TGraphAsymmErrors errfix(Nc); TGraphAsymmErrors errfix2(Nc); Double_t *x = c->GetX(); Double_t *y = c->GetY(); double NtotalFit = ws->var("Nbkg1")->getVal()*ws->var("Nbkg1")->getVal() + ws->var("Nbkg2")->getVal()*ws->var("Nbkg2")->getVal(); for( int i = 0; i < Nc; i++ ) { errfix.SetPoint(i,x[i],y[i]); errfix2.SetPoint(i,x[i],y[i]); mass->setVal(x[i]); double shapeErr = pdf->getPropagatedError(*res)*NtotalFit; //double totalErr = TMath::Sqrt( shapeErr*shapeErr + y[i] ); //total normalization error double totalErr = TMath::Sqrt( shapeErr*shapeErr + y[i]*y[i]/NtotalFit ); if ( y[i] - totalErr > .0 ) { errfix.SetPointError(i, 0, 0, totalErr, totalErr ); } else { errfix.SetPointError(i, 0, 0, y[i] - 0.01, totalErr ); } //2sigma if ( y[i] - 2.*totalErr > .0 ) { errfix2.SetPointError(i, 0, 0, 2.*totalErr, 2.*totalErr ); } else { errfix2.SetPointError(i, 0, 0, y[i] - 0.01, 2.*totalErr ); } /* std::cout << x[i] << " " << y[i] << " " << " ,pdf get Val: " << pdf->getVal() << " ,pdf get Prop Err: " << pdf->getPropagatedError(*res)*NtotalFit << " stat uncertainty: " << TMath::Sqrt(y[i]) << " Ntot: " << NtotalFit << std::endl; */ } errfix.SetFillColor(kYellow); errfix2.SetFillColor(kGreen); //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kGreen),RooFit::Range("Full"), RooFit::VisualizeError(*res,2.0,kFALSE)); //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kYellow),RooFit::Range("Full"), RooFit::VisualizeError(*res,1.0,kFALSE)); //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kGreen),RooFit::Range("Full"), RooFit::VisualizeError(*res,2.0,kTRUE)); //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kYellow),RooFit::Range("Full"), RooFit::VisualizeError(*res,1.0,kTRUE)); plot->addObject(&errfix,"4"); plot->addObject(&errfix2,"4"); plot->addObject(&errfix,"4"); data->plotOn(plot); TBox blindBox(121,plot->GetMinimum()-(plot->GetMaximum()-plot->GetMinimum())*0.015,130,plot->GetMaximum()); blindBox.SetFillColor(kGray); if(blind) { plot->addObject(&blindBox); pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kGreen),RooFit::Range("Full"), RooFit::VisualizeError(*res,2.0,kTRUE)); pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kYellow),RooFit::Range("Full"), RooFit::VisualizeError(*res,1.0,kTRUE)); } //plot->addObject(&errfix,"4"); //data->plotOn(plot); //pdf->plotOn(plot,RooFit::Normalization( norm ) ); //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::Range("Full"),RooFit::LineWidth(1.5) ); pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::Range("Full"), RooFit::LineWidth(1)); data->plotOn(plot); /* pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::Range("all"),RooFit::LineWidth(0.8) ); //pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kGreen),RooFit::Range("all"), RooFit::VisualizeError(*res,2.0,kFALSE)); //pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kYellow),RooFit::Range("all"), RooFit::VisualizeError(*res,1.0,kFALSE)); pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kGreen),RooFit::Range("all"), RooFit::VisualizeError(*res,2.0,kTRUE)); pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kYellow),RooFit::Range("all"), RooFit::VisualizeError(*res,1.0,kTRUE)); data->plotOn(plot); pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::Range("all"),RooFit::LineWidth(0.8) ); */ TLatex lbl0(0.1,0.96,"CMS Preliminary"); lbl0.SetNDC(); lbl0.SetTextSize(0.042); plot->addObject(&lbl0); TLatex lbl(0.4,0.96,Form("%s Box",cats[iCat].Data())); lbl.SetNDC(); lbl.SetTextSize(0.042); plot->addObject(&lbl); TLatex lbl2(0.6,0.96,"#sqrt{s}=8 TeV L = 19.78 fb^{-1}"); lbl2.SetNDC(); lbl2.SetTextSize(0.042); plot->addObject(&lbl2); int iObj=-1; TNamed *obj; while( (obj = (TNamed*)plot->getObject(++iObj)) ) { obj->SetName(Form("Object_%d",iObj)); } plot->Draw(); TString tag = (blind ? "_BLIND" : ""); cv.SaveAs(folderName+"/figs/mgg_data_"+cats[iCat]+tag+TString(Form("_%0.0f_%0.0f",min,max))+".png"); cv.SaveAs(folderName+"/figs/mgg_data_"+cats[iCat]+tag+TString(Form("_%0.0f_%0.0f",min,max))+".pdf"); cv.SaveAs(folderName+"/figs/mgg_data_"+cats[iCat]+tag+TString(Form("_%0.0f_%0.0f",min,max))+".C"); } }
int main() { float min_logL1 = 5986.94; float min_logL0 = 5987.16; string filepath="FINAL_RESULT_AB.root_RESULT__RESULT"; filepath="/shome/buchmann/KillerKoala/CBAF/Development/exchange/RooFit__WorkSpace__Exchange_201417_175622__RNSG_46692.4.root__RESULT__RESULT"; // final MCwS filepath="/shome/buchmann/KillerKoala/CBAF/Development/exchange/RooFit__WorkSpace__Exchange_201417_175622__RNSG_46692.4.root__RESULT__RESULT"; filepath="/shome/buchmann/KillerKoala/CBAF/Development/exchange/RooFit__WorkSpace__Exchange_201417_141126__RNSG_97048.1.root__RESULT__RESULT"; // ************************************************************************************* setlumi(PlottingSetup::luminosity); setessentialcut(PlottingSetup::essential); // this sets the essential cut; this one is used in the draw command so it is AUTOMATICALLY applied everywhere. IMPORTANT: Do NOT store weights here! stringstream resultsummary; // write_analysis_type(PlottingSetup::RestrictToMassPeak,PlottingSetup::DoBTag); do_png(true); do_pdf(true); do_eps(false); do_C(true); do_root(false); PlottingSetup::directoryname = "pValuePlot"; gROOT->SetStyle("Plain"); bool do_fat_line = false; // if you want to have HistLineWidth=1 and FuncWidth=1 as it was before instead of 2 setTDRStyle(do_fat_line); gStyle->SetTextFont(42); bool showList = true; set_directory(PlottingSetup::directoryname); // Indicate the directory name where you'd like to save the output files in Setup.C set_treename("events"); // you can set the treename here to be used; options are "events" (for reco) for "PFevents" (for particle flow) TFile *f = new TFile(filepath.c_str()); if(f->IsZombie()) { cout << "Seems to be a zombie. goodbye." << endl; return -1; } RooWorkspace *wa = (RooWorkspace*)f->Get("transferSpace"); RooPlot *plot = (RooPlot*) wa->obj("frame_mlledge_109fde50"); // cout << plot << endl; wa->Print("v"); TCanvas *can = new TCanvas("can","can"); cout << "Address of plot : " << plot << endl; // plot->Draw(); float pVal_mllmin=35; float pVal_mllmax=90; int is_data=PlottingSetup::data; vector < std::pair < float, float> > loglikelihoods; string function=""; for(int i=0; i< plot->numItems();i++){ string name = plot->getObject(i)->GetName(); if (plot->getObject(i)->IsA()->InheritsFrom( "RooCurve" ))function=name; } RooCurve* curve = (RooCurve*) plot->findObject(function.c_str(),RooCurve::Class()) ; if (!curve) { dout << "RooPlot::residHist(" << plot->GetName() << ") cannot find curve" << endl ; return 0 ; } int iMinimum=0; float min=1e7; for(int i=0;i<curve->GetN();i++) { double x,y; curve->GetPoint(i,x,y); if(y<min & y>=0) { min=y; iMinimum=i; } } double x,y; curve->GetPoint(iMinimum,x,y); cout << "Minimum is at " << x << " : " << y << endl; loglikelihoods.push_back(make_pair(x,y+min_logL1)); //move right starting from the minimum for(int i=iMinimum+1;i<curve->GetN();i++) { float yold=y; curve->GetPoint(i,x,y); //if(abs((y-yold)/yold)>0.5) continue; loglikelihoods.push_back(make_pair(x,y+min_logL1)); } /* for(int i=0;i<curve->GetN();i++) { double x,y; curve->GetPoint(i,x,y); loglikelihoods.push_back(make_pair(x,y+min_logL1)); }*/ cout << "The whole thing contains " << loglikelihoods.size() << " points " << endl; ProduceSignificancePlots(min_logL0, loglikelihoods, pVal_mllmin, pVal_mllmax, is_data, "", ""); can->SaveAs("Crap.png"); delete can; delete plot; delete wa; f->Close(); return 0; }