Esempio n. 1
0
/* a * x^2 + b * x + c = 0 */
RootVector SolveEquation2Deg(float a, float b, float c, bool nonNegativeAnswer)
{
  RootVector roots;
  float det = b * b - 4 * a * c, x1, x2;

  if (det < -EPSILON) // No real roots
    return roots;
  else if (det >= -EPSILON && det < EPSILON) 
    roots.push_back(-b / (2.0f * a));
  else
  {
    x1 = (-b - sqrt(det)) / (2.0f * a);
    x2 = (-b + sqrt(det)) / (2.0f * a);
    if (!nonNegativeAnswer || x1 >= EPSILON)
    {
      roots.push_back(x1);
    }
    if (!nonNegativeAnswer || x2 >= EPSILON)
    {
      roots.push_back(x2);
    }
    
  }

  return roots;
}
Esempio n. 2
0
 /// Creates a merged list of Tries for unique stacks that disregards their
 /// thread IDs.
 RootVector mergeAcrossThreads(std::forward_list<StackTrieNode> &NodeStore) {
   RootVector MergedByThreadRoots;
   for (auto MapIter : Roots) {
     const auto &RootNodeVector = MapIter.second;
     for (auto *Node : RootNodeVector) {
       auto MaybeFoundIter =
           find_if(MergedByThreadRoots, [Node](StackTrieNode *elem) {
             return Node->FuncId == elem->FuncId;
           });
       if (MaybeFoundIter == MergedByThreadRoots.end()) {
         MergedByThreadRoots.push_back(Node);
       } else {
         MergedByThreadRoots.push_back(mergeTrieNodes(
             **MaybeFoundIter, *Node, nullptr, NodeStore, mergeStackDuration));
         MergedByThreadRoots.erase(MaybeFoundIter);
       }
     }
   }
   return MergedByThreadRoots;
 }
Esempio n. 3
0
  /// Prints top stacks from looking at all the leaves and ignoring thread IDs.
  /// Stacks that consist of the same function IDs but were called in different
  /// thread IDs are not considered unique in this printout.
  void printIgnoringThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
    RootVector RootValues;

    // Function to pull the values out of a map iterator.
    using RootsType = decltype(Roots.begin())::value_type;
    auto MapValueFn = [](const RootsType &Value) { return Value.second; };

    for (const auto &RootNodeRange :
         make_range(map_iterator(Roots.begin(), MapValueFn),
                    map_iterator(Roots.end(), MapValueFn))) {
      for (auto *RootNode : RootNodeRange)
        RootValues.push_back(RootNode);
    }

    print(OS, FN, RootValues);
  }
Esempio n. 4
0
/* a * x^3 + b * x^2 + c * x + d = 0 */
RootVector SolveEquation3Deg(float a, float b, float c, float d, bool nonNegativeAnswer)
{    
  RootVector roots;       
  double  sub;  
  double  A, B, C;  
  double  sq_A, p, q;  
  double  cb_p, D;  
  
  /* normal form: x^3 + Ax^2 + Bx + C = 0 */  
  
  A = b / a;  
  B = c / a;  
  C = d / a;  
  
  /*  substitute x = y - A/3 to eliminate quadric term: 
  x^3 +px + q = 0 */  
  
  sq_A = A * A;  
  p = 1.0/3 * (- 1.0/3 * sq_A + B);  
  q = 1.0/2 * (2.0/27 * A * sq_A - 1.0/3 * A * B + C);  
  
  /* use Cardano's formula */  
  
  cb_p = p * p * p;  
  D = q * q + cb_p;  
  
  if (D >= -EPSILON && D < EPSILON)  
  {  
    if (q >= -EPSILON && q < EPSILON) /* one triple solution */  
    {  
      roots.push_back(0);  
    }  
    else /* one single and one double solution */  
    {  
      double u = cbrt(-q);  
      roots.push_back(2 * (float)u);  
      roots.push_back(-(float)u);  
    }  
  }  
  else if (D < -EPSILON) /* Casus irreducibilis: three real solutions */  
  {  
    double phi = 1.0/3 * acos(-q / sqrt(-cb_p));  
    double t = 2 * sqrt(-p);  
  
    roots.push_back((float)t * cosf((float)phi));  
    roots.push_back(-(float)t * cosf((float)phi + PI / 3));  
    roots.push_back(-(float)t * cosf((float)phi - PI / 3));  
  }  
  else /* one real solution */  
  {  
    double sqrt_D = sqrt(D);  
    double u = cbrt(sqrt_D - q);  
    double v = - cbrt(sqrt_D + q);  
  
    roots.push_back((float)(u + v)); 
  }  
  
  /* resubstitute */    
  sub = 1.0 / 3 * A;  
  
  for (unsigned i = 0; i < roots.size(); ++i)  
    roots[i] -= (float)sub;

  return roots;
}