int main(int argc, char **argv) { std::cout << "Starting\n"; std::ifstream in (argc == 1 ? "data/moebius.cin" : argv[1]); std::istream_iterator<Gt::Point_2> start (in); std::istream_iterator<Gt::Point_2> stop; std::cout << "File opened\n"; M dia; std::cout << "Created\n"; int n = dia.init (start, stop); std::cout << "Initialized " << n << std::endl; Rt rt (dia.rt ()); std::cout << "Copied\n"; rt.is_valid (); std::cout << "Validated\n"; dia.build (); std::cout << "Built\n"; return 0; }
int main() { // generate points on a 3D grid std::vector<Weighted_point> P; int number_of_points = 0; for (int z=0 ; z<5 ; z++) for (int y=0 ; y<5 ; y++) for (int x=0 ; x<5 ; x++) { Point p(x, y, z); Weight w = (x+y-z*y*x)*2.0; // let's say this is the weight. P.push_back(Weighted_point(p, w)); ++number_of_points; } Rt T; // insert all points in a row (this is faster than one insert() at a time). T.insert (P.begin(), P.end()); assert( T.is_valid() ); assert( T.dimension() == 3 ); std::cout << "Number of vertices : " << T.number_of_vertices() << std::endl; // removal of all vertices int count = 0; while (T.number_of_vertices() > 0) { T.remove (T.finite_vertices_begin()); ++count; } assert( count == number_of_points ); return 0; }
// Constructs regular triangulation of weighted points. // Builds graph of cells with voids. Finds connected components of this graph (voids as clusters of cells). // For each component calculates total void volume and area. // Excludes roughs on the surface (components, connected to the infinite cell). bool regular_triangulation_voids(const Wpi_container& points, Voids_result &res) { typedef typename boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS, Cell_handle> CellGraph; typedef typename boost::graph_traits<CellGraph>::vertex_descriptor GVertex; typedef typename boost::graph_traits<CellGraph>::vertex_iterator GVertex_iterator; Rt T; // regular triangulation CellGraph G; // Voronoi subgraph where cells_sqr_r > 0 and edges_sqr_r > 0 (cells and edges with voids) GVertex_iterator vi, vi_end; res.out_log << "Number of input points for RT : " << points.size() << std::endl; T.insert(points.begin(), points.end()); // insert all points in a row (this is faster than one insert() at a time). T.infinite_vertex()->info().atom_id = -1; // set special atom_id for dummy infinite triangulation vertex assert(T.dimension() == 3); /*res.out_log << "Is valid : " << T.is_valid() << std::endl;*/ res.out_log << "Number of vertices in RT : " << T.number_of_vertices() << std::endl; res.out_log << "Number of cells : " << T.number_of_cells() << std::endl; res.out_log << "Number of finite cells : " << T.number_of_finite_cells() << std::endl; /*res.out_log << "Inf. vert. atom id : " << T.infinite_vertex()->info().atom_id << std::endl;*/ // Add finite cells having sqr_r > 0 as graph verticies Finite_cells_iterator cit, cit_end = T.finite_cells_end(); for (cit = T.finite_cells_begin(); cit != cit_end; cit++) { if (cit->weighted_circumcenter().weight() > 0) // cached weighted circumcenter computation cit->id() = add_vertex(Cell_handle(cit), G); // store corresponding graph vertex descriptor in cell's id() } // store one of infinite cells in graph: it will represent all of them. It should be the last vertex in graph with maximal vertex_descriptor. const GVertex inf_graph_v = add_vertex(T.infinite_cell(), G); res.out_log << "inf_graph_v descriptor : " << inf_graph_v << std::endl; // Add graph edges connecting cells with void for (boost::tie(vi, vi_end) = vertices(G); vi != vi_end; ++vi) { const GVertex v1 = *vi; // current graph vertex if (v1 != inf_graph_v) { // check edges only from finite cells const Cell_handle c1 = G[v1]; // current cell for (int i = 0; i < 4; i++) { // for each of four neighbor cells const Cell_handle c2 = c1->neighbor(i); bool ends_in_void = false; // do both corresponding Voronoi verticies lie in void space? bool on_same_side = false; // do both ends lie on the same side of corresponding cell facet? const Weighted_point &p1 = c1->vertex((i+1)&3)->point(); // weighted points of common facet between c and c2 cells const Weighted_point &p2 = c1->vertex((i+2)&3)->point(); const Weighted_point &p3 = c1->vertex((i+3)&3)->point(); const Point &wcc = c1->weighted_circumcenter().point(); GVertex v2; // neighbor vertex in graph to construct edge to if (c2->id() != -1) { // neighbor cell is finite and in graph: id()=vertex_descriptor v2 = c2->id(); ends_in_void = true; on_same_side = (orientation(p1.point(), p2.point(), p3.point(), wcc) == orientation(p1.point(), p2.point(), p3.point(), c2->weighted_circumcenter().point())); } else if (T.is_infinite(c2)) { v2 = inf_graph_v; // use our infinite graph vertex as destination if neighbor cell is infinite ends_in_void = true; on_same_side = (orientation(p1.point(), p2.point(), p3.point(), wcc) != orientation(p1.point(), p2.point(), p3.point(), c1->vertex(i)->point().point())); // same side with infinite vertex = different sides with cell vertex } typename K::Compute_squared_radius_smallest_orthogonal_sphere_3 r_mouth; // facet bottleneck squared radius (facet closed if < 0) if (ends_in_void && (v2 > v1) && (on_same_side || r_mouth(p1, p2, p3) > 0)) add_edge(v1, v2, G); // use ordering v2>v1 to rule out most of the parallel edges: rely on v_inf>v1 for all finite vertices } } } res.out_log << "Number of vertices in G : " << num_vertices(G) << std::endl; res.out_log << "Number of edges in G : " << num_edges(G) << std::endl; // Find connected components on this Voronoi subnetwork std::vector<int> component(num_vertices(G)); int num_components = boost::connected_components(G, &component[0]); const int inf_comp_id = component[inf_graph_v]; // component of infinite vertex res.out_log << "Number of connected components : " << num_components << std::endl; res.out_log << "Component id of infinite vertex : " << inf_comp_id << std::endl; // Reserve storage for results res.voids.resize(num_components); std::fill(res.atom_surf.begin(), res.atom_surf.end(), 0.0L); // Calculate total volume of each finite component for (boost::tie(vi, vi_end) = vertices(G); vi != vi_end; ++vi) { const int comp_id = component[*vi]; if (comp_id != inf_comp_id) { // skip infinite component Cell_handle cell = G[*vi]; // current cell double Vc, Sc; // cell volume and surface Array_double_4 Sa; // per atom surface in cell Vc = cell_void_volume(cell, Sc, Sa); // void volume of cell and its surface area res.voids[comp_id].volume += Vc; // add to volume of component res.voids[comp_id].surface += Sc; for (int k = 0; k < 4; k++) { // process four cell atoms int atom_id = cell->vertex(k)->info().atom_id; res.atom_surf[atom_id] += Sa[k]; // atom exposed surface res.voids[comp_id].atoms.insert(atom_id); // add to set of cavity atoms } } } // Remove skipped infinite component with zero values res.voids.erase(res.voids.begin() + inf_comp_id); // Sort cavities by volume std::sort(res.voids.begin(), res.voids.end(), void_greater); return true; }