Esempio n. 1
0
void SubgraphPlanarizer::CrossingStructure::restore(PlanRep &PG, int cc)
{
	//PG.initCC(cc);
	
	Array<node> id2Node(0,m_numCrossings-1,0);
	
	SListPure<edge> edges;
	PG.allEdges(edges);

	for(SListConstIterator<edge> itE = edges.begin(); itE.valid(); ++itE)
	{
		edge ePG = *itE;
		edge e = PG.original(ePG);
		
		SListConstIterator<int> it;
		for(it = m_crossings[e].begin(); it.valid(); ++it)
		{
			node x = id2Node[*it];
			edge ePGOld = ePG;
			ePG = PG.split(ePG);
			node y = ePG->source();
			
			if(x == 0) {
				id2Node[*it] = y;
			} else {
				PG.moveTarget(ePGOld, x);
				PG.moveSource(ePG, x);
				PG.delNode(y);
			}
		}
	}
}
Esempio n. 2
0
	//
	// D e s t r u c t o r
	//
	DinoUmlToGraphConverter::~DinoUmlToGraphConverter()
	{
		// Delete diagram graphs in UMLGraph format
		SListConstIterator<UMLGraph*> umlgIt;
		for (umlgIt = m_diagramGraphsInUMLGraphFormat.begin(); umlgIt.valid(); ++umlgIt){
			const Graph & associatedGraph = (const Graph &)(**umlgIt);
			delete *umlgIt;
			delete &associatedGraph;
		}
		m_diagramGraphsInUMLGraphFormat.clear();

		
		// Delete diagram graphs
		SListConstIterator<DinoUmlDiagramGraph*> dgIt;
		for (dgIt = m_diagramGraphs.begin(); dgIt.valid(); ++dgIt){
			delete *dgIt;
		}
		m_diagramGraphs.clear();
		
		// Destroy model graph
		delete m_modelGraph;

		// Destroy parser
		delete m_xmlParser;
	}
Esempio n. 3
0
void SpringEmbedderFRExact::ArrayGraph::initCC(int i)
{
	System::alignedMemoryFree(m_orig);
	System::alignedMemoryFree(m_src);
	System::alignedMemoryFree(m_tgt);
	System::alignedMemoryFree(m_x);
	System::alignedMemoryFree(m_y);
	System::alignedMemoryFree(m_nodeWeight);

	m_numNodes = m_nodesInCC[i].size();
	m_numEdges = 0;

	m_orig       = (node *)   System::alignedMemoryAlloc16(m_numNodes*sizeof(node));
	m_x          = (double *) System::alignedMemoryAlloc16(m_numNodes*sizeof(double));
	m_y          = (double *) System::alignedMemoryAlloc16(m_numNodes*sizeof(double));
	m_nodeWeight = (double *) System::alignedMemoryAlloc16(m_numNodes*sizeof(double));

	int j = 0;
	SListConstIterator<node> it;
	for(it = m_nodesInCC[i].begin(); it.valid(); ++it, ++j) {
		node v = *it;

		m_orig[j] = v;
		m_mapNode[v] = j;

		m_x[j] = m_ga->x(v);
		m_y[j] = m_ga->y(v);
		
		if (m_useNodeWeight)
			m_nodeWeight[j] = (m_ga->attributes() & GraphAttributes::nodeWeight) ? m_ga->weight(v) : 1.0;
		else
			m_nodeWeight[j] = 1.0;
		adjEntry adj;
		forall_adj(adj,v)
			if(v->index() < adj->twinNode()->index())
				++m_numEdges;
	}

	m_src = (int *) System::alignedMemoryAlloc16(m_numEdges*sizeof(int));
	m_tgt = (int *) System::alignedMemoryAlloc16(m_numEdges*sizeof(int));

	j = 0;
	int srcId;
	for(it = m_nodesInCC[i].begin(), srcId = 0; it.valid(); ++it, ++srcId) {
		node v = *it;

		adjEntry adj;
		forall_adj(adj,v) {
			node w = adj->twinNode();
			if(v->index() < w->index()) {
				m_src[j] = srcId;
				m_tgt[j] = m_mapNode[w];
				++j;
			}
		}
	}
Esempio n. 4
0
void FaceSinkGraph::doInit()
{
	const ConstCombinatorialEmbedding &E = *m_pE;

	NodeArray<node> sinkSwitch(E,nullptr); // corresponding node in F (if any)
	NodeArray<bool> isSinkSwitch(E,true);

	NodeArray<int> visited(E,-1);
	int faceNo = -1;
	for(face f : E.faces)
	{
		faceNo++;
		node faceNode = newNode();
		m_originalFace[faceNode] = f;

		SListPure<node> nodesInF;

		adjEntry adj1 = f->firstAdj(), adj = adj1;
		do {
			node v = adj->theNode();
			// if the graph is not biconnected, then node v can visited more than once
			if (visited[v] != faceNo) {
				nodesInF.pushBack(v);
				visited[v] = faceNo;
			}

			if (v == m_source)
				m_containsSource[faceNode] = true;

			isSinkSwitch[adj->theEdge()->source()] = false;

			adj = adj->twin()->cyclicPred();
		} while (adj != adj1);

		SListConstIterator<node> it;
		for(it = nodesInF.begin(); it.valid(); ++it)
		{
			node v = *it;
			if(isSinkSwitch[v])	{
				if (sinkSwitch[v] == nullptr) {
					node vF = newNode();
					m_originalNode[vF] = v;
					sinkSwitch[v] = vF;
				}

				newEdge(faceNode,sinkSwitch[v]);
			}
		}

		for(it = nodesInF.begin(); it.valid(); ++it)
			isSinkSwitch[*it] = true;
	}
}
	//
	// o u t p u t O p e r a t o r  for DinoUmlDiagramGraph
	//
	ostream &operator<<(ostream &os, const DinoUmlDiagramGraph &diagramGraph)
	{
		// Header with diagram name and type
		os << "\n--- " << diagramGraph.getDiagramTypeString() 
		   << " \"" << diagramGraph.m_diagramName << "\" ---\n" << endl;

		// Nodes

		// Initialize iterators
		SListConstIterator<NodeElement*> nodeIt = diagramGraph.m_containedNodes.begin();
		SListConstIterator<double> xIt = diagramGraph.m_x.begin();
		SListConstIterator<double> yIt = diagramGraph.m_y.begin();
		SListConstIterator<double> wIt = diagramGraph.m_w.begin();
		SListConstIterator<double> hIt = diagramGraph.m_h.begin();

		// Traverse lists
		while (nodeIt.valid()){

			os << "Node " << diagramGraph.m_modelGraph.getNodeLabel(*nodeIt) 
			   << " with geometry ("
			   << *xIt << ", "
			   << *yIt << ", "
			   << *wIt << ", "
			   << *hIt << ")." << endl;
		
			++nodeIt;
			++xIt;
			++yIt;
			++wIt;
			++hIt;

		} // while

		// Edges

		// Traverse lists
		SListConstIterator<EdgeElement*> edgeIt = diagramGraph.m_containedEdges.begin();
		for (edgeIt = diagramGraph.m_containedEdges.begin();
			 edgeIt.valid();
			 ++edgeIt)
		{
			os << "Edge between " 
			   << diagramGraph.m_modelGraph.getNodeLabel((*edgeIt)->source()) 
			   << " and "
			   << diagramGraph.m_modelGraph.getNodeLabel((*edgeIt)->target())
			   << endl;
		}

		return os;

	} // <<
Esempio n. 6
0
void UMLGraph::undoGenMergers()
{
	SListConstIterator<edge> it;
	for(it = m_mergeEdges.begin(); it.valid(); ++it)
	{
		edge eMerge = *it;
		node u = eMerge->source();
		const DPolyline &common = bends(eMerge);

		adjEntry adj, adjSucc;
		for(adj = u->firstAdj(); adj != nullptr; adj = adjSucc) {
			adjSucc = adj->succ();

			edge e = adj->theEdge();
			if(e->target() != u) continue;

			DPolyline &dpl = bends(e);
			dpl.pushBack(DPoint(x(u),y(u)));

			ListConstIterator<DPoint> itDp;
			for(itDp = common.begin(); itDp.valid(); ++itDp)
				dpl.pushBack(*itDp);

			m_pG->moveTarget(e,eMerge->target());
		}

		m_pG->delNode(u);
	}

	m_mergeEdges.clear();
}
Esempio n. 7
0
// computes coordinates pos of horizontal (resp. vertical) segments by
// computing longest paths in the constraint graph D
void LongestPathCompaction::computeCoords(
	const CompactionConstraintGraph<int> &D,
	NodeArray<int> &pos)
{
	const Graph &Gd = D.getGraph();

	// compute a first ranking with usual longest paths
	applyLongestPaths(D,pos);


	if (m_tighten == true)
	{
		// improve cost of ranking by moving pseudo-components
		moveComponents(D,pos);


		// find node with minimal position
		SListConstIterator<node> it = m_pseudoSources.begin();
		int min = pos[*it];
		for(++it; it.valid(); ++it) {
			if (pos[*it] < min)
				min = pos[*it];
		}

		// move all nodes such that node with minimum position has position 0
		for(node v : Gd.nodes)
			pos[v] -= min;
	}

	// free resources
	m_pseudoSources.clear();
	m_component.init();
}
void FaceSinkGraph::doInit()
{
	const ConstCombinatorialEmbedding &E = *m_pE;

	NodeArray<node> sinkSwitch(E,0); // corresponding node in F (if any)
	NodeArray<bool> isSinkSwitch(E,true);

	face f;
	forall_faces(f,E)
	{
		node faceNode = newNode();
		m_originalFace[faceNode] = f;

		SListPure<node> nodesInF;

		adjEntry adj1 = f->firstAdj(), adj = adj1;
		do {
			node v = adj->theNode();
			nodesInF.pushBack(v);

			if (v == m_source)
				m_containsSource[faceNode] = true;

			isSinkSwitch[adj->theEdge()->source()] = false;

			adj = adj->twin()->cyclicPred();
		} while (adj != adj1);

		SListConstIterator<node> it;
		for(it = nodesInF.begin(); it.valid(); ++it)
		{
			node v = *it;
			if(isSinkSwitch[v])	{
				if (sinkSwitch[v] == 0) {
					node vF = newNode();
					m_originalNode[vF] = v;
					sinkSwitch[v] = vF;
				}

				newEdge(faceNode,sinkSwitch[v]);
			}
		}

		for(it = nodesInF.begin(); it.valid(); ++it)
			isSinkSwitch[*it] = true;
	}
void BCandSPQRtrees::insertEdgePath (edge eOrig, const SList<adjEntry>& crossedEdges)
{
    SList<edge> ti;
    SList<node> tj;
    SListConstIterator<adjEntry> kt;
    for (kt=crossedEdges.begin(); kt.valid(); ++kt) {
        ti.pushBack((*kt)->theEdge());
        tj.pushBack((*kt)->theEdge()->target());
    }

    m_pPG->insertEdgePath(eOrig,crossedEdges);

    Graph::EdgeType typeOfEOrig = m_forbidCrossingGens ? m_pPG->typeOrig(eOrig) : Graph::association;
    int costOfEOrig = m_costOrig ? eOrig ? (*m_costOrig)[eOrig] : 0 : 1;

    node v = m_pPG->copy(eOrig->source());
    SListConstIterator<edge> it = ti.begin();
    SListConstIterator<node> jt = tj.begin();
    for (kt=crossedEdges.begin(); it.valid(); ++it, ++jt, ++kt) {
        edge e = *it;
        node u = e->target();
        adjEntry a;
        for (a=u->firstAdj(); a->theEdge()->target()!=*jt; a=a->succ());
        edge f = a->theEdge();
        m_dynamicSPQRForest.updateInsertedNode(e,f);
        e = m_dynamicSPQRForest.rep(e);
        f = m_dynamicSPQRForest.rep(f);
        m_typeOf[f] = m_typeOf[e];
        m_cost[f] = m_cost[e];
        for (a=u->firstAdj(); a->theEdge()->source()!=v; a=a->succ());
        f = a->theEdge();
        m_dynamicSPQRForest.updateInsertedEdge(f);
        f = m_dynamicSPQRForest.rep(f);
        m_typeOf[f] = typeOfEOrig;
        m_cost[f] = costOfEOrig;
        v = u;
    }
    node u = m_pPG->copy(eOrig->target());
    adjEntry a;
    for (a=v->firstAdj(); a->theEdge()->target()!=u; a=a->succ());
    edge f = a->theEdge();
    m_dynamicSPQRForest.updateInsertedEdge(f);
    f = m_dynamicSPQRForest.rep(f);
    m_typeOf[f] = typeOfEOrig;
    m_cost[f] = costOfEOrig;
}
Esempio n. 10
0
KuratowskiConstraint::KuratowskiConstraint(ABA_MASTER *master, int nEdges, SListPure<nodePair> &ks) :
	ABA_CONSTRAINT(master, 0, ABA_CSENSE::Less, nEdges-1, true, false, true)
{
	SListConstIterator<nodePair> it;
	for (it = ks.begin(); it.valid(); ++it) {
		m_subdivision.pushBack(*it);
	}
}
Esempio n. 11
0
void UpwardPlanarSubgraphSimple::call(const Graph &G, List<edge> &delEdges)
{
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G);

	for(node v : G.nodes)
		mapToH[v] = H.newNode();


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	for(edge eG : G.edges)
	{
		if(visitedEdge[eG] == true)
			continue;

		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		if (UpwardPlanarity::isUpwardPlanar_singleSource(H) == false) {
			H.delEdge(eH);
			delEdges.pushBack(eG);
		}
	}

}
Esempio n. 12
0
// builds expansion graph of i-th biconnected component of the original graph
void ExpansionGraph::init(int i)
{
	OGDF_ASSERT(0 <= i);
	OGDF_ASSERT(i <= m_component.high());

	// remove previous component
	for(node v : nodes) {
		node vOrig = m_vOrig[v];
		if (vOrig)
			m_vCopy[vOrig] = nullptr;
	}
	clear();


	// create new component
	SListConstIterator<edge> it;
	for(it = m_component[i].begin(); it.valid(); ++it)
	{
		edge e = *it;

		edge eCopy = newEdge(getCopy(e->source()),getCopy(e->target()));
		m_eOrig[eCopy] = e;
	}

	// expand vertices
	for(node v : nodes)
	{
		if (original(v) && v->indeg() >= 1 && v->outdeg() >= 1) {
			node vPrime = newNode();
			m_vRep[vPrime] = m_vOrig[v];

			SListPure<edge> edges;
			v->outEdges(edges);

			SListConstIterator<edge> it;
			for(it = edges.begin(); it.valid(); ++it)
				moveSource(*it,vPrime);

			newEdge(v,vPrime);
		}
	}
}
Esempio n. 13
0
// test if graphAcyclicTest plus edges in tmpAugmented is acyclic
// removes added edges again
bool UpwardPlanarSubgraphSimple::checkAcyclic(
	GraphCopySimple &graphAcyclicTest,
	SList<Tuple2<node,node> > &tmpAugmented)
{
	SListPure<edge> added;

	SListConstIterator<Tuple2<node,node> > it;
	for(it = tmpAugmented.begin(); it.valid(); ++it)
		added.pushBack(graphAcyclicTest.newEdge(
			graphAcyclicTest.copy((*it).x1()),
			graphAcyclicTest.copy((*it).x2())));

	bool acyclic = isAcyclic(graphAcyclicTest);

	SListConstIterator<edge> itE;
	for(itE = added.begin(); itE.valid(); ++itE)
		graphAcyclicTest.delEdge(*itE);

	return acyclic;
}
Esempio n. 14
0
// Transforms KuratowskiWrapper in KuratowskiSubdivision
void BoyerMyrvold::transform(
	const KuratowskiWrapper& source,
	KuratowskiSubdivision& target,
	NodeArray<int>& count,
	EdgeArray<int>& countEdge)
{
	// init linear counting structure
	node kn[6];
	int p = 0;
	SListConstIterator<edge> itE;
	for (itE = source.edgeList.begin(); itE.valid(); ++itE) {
		const edge& e(*itE);
		OGDF_ASSERT(!countEdge[e]);
		countEdge[e] = 1;
		if (++count[e->source()] == 3) kn[p++] = e->source();
		if (++count[e->target()] == 3) kn[p++] = e->target();
	}

	// transform edgelist of KuratowskiSubdivision to KuratowskiWrapper
	OGDF_ASSERT(p==5 || p==6);
	node n;
	edge e,f,h;
	List<edge> L;
	if (p==5) { // K5
		kn[5] = 0;
		target.init(10);
		for (int k = 0; k<5; k++) {
			forall_adj_edges(e,kn[k]) {
				if (!countEdge[e]) continue;
				n = kn[k];
				f = e;
				// traverse degree-2-path
				while (count[n = f->opposite(n)] == 2) {
					L.pushBack(f);
					forall_adj_edges(h,n) {
						if (countEdge[h] && h != f) {
							f = h;
							break;
						}
					}
				}
				L.pushBack(f);
				int i = 0;
				while (kn[i] != n) i++;
				if (i > k) {
					if (k==0) i--;
					else if (k==1) i+=2;
					else i += k+2;
					target[i].conc(L);
				} else L.clear();
			}
		}
	} else { // k33
Esempio n. 15
0
void OptimalRanking::call (const Graph& G, NodeArray<int> &rank)
{
	List<edge> R;

	m_subgraph.get().call(G,R);

	EdgeArray<bool> reversed(G,false);
	for (edge e : R)
		reversed[e] = true;
	R.clear();

	EdgeArray<int> length(G,1);

	if(m_separateMultiEdges) {
		SListPure<edge> edges;
		EdgeArray<int> minIndex(G), maxIndex(G);
		parallelFreeSortUndirected(G, edges, minIndex, maxIndex);

		SListConstIterator<edge> it = edges.begin();
		if(it.valid())
		{
			int prevSrc = minIndex[*it];
			int prevTgt = maxIndex[*it];

			for(it = it.succ(); it.valid(); ++it) {
				edge e = *it;
				if (minIndex[e] == prevSrc && maxIndex[e] == prevTgt)
					length[e] = 2;
				else {
					prevSrc = minIndex[e];
					prevTgt = maxIndex[e];
				}
			}
		}
	}

	EdgeArray<int> cost(G,1);
	doCall(G, rank, reversed, length, cost);
}
Esempio n. 16
0
bool isParallelFree(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return true;

    SListPure<edge> edges;
    parallelFreeSort(G,edges);

    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (ePrev->source() == e->source() && ePrev->target() == e->target())
            return false;
    }

    return true;
}
Esempio n. 17
0
bool isParallelFreeUndirected(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return true;

    SListPure<edge> edges;
    EdgeArray<int> minIndex(G), maxIndex(G);
    parallelFreeSortUndirected(G,edges,minIndex,maxIndex);

    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (minIndex[ePrev] == minIndex[e] && maxIndex[ePrev] == maxIndex[e])
            return false;
    }

    return true;
}
Esempio n. 18
0
int numParallelEdges(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return 0;

    SListPure<edge> edges;
    parallelFreeSort(G,edges);

    int num = 0;
    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (ePrev->source() == e->source() && ePrev->target() == e->target())
            ++num;
    }

    return num;
}
Esempio n. 19
0
	//
	// p r i n t D i a g r a m s I n U M L G r a p h F o r m a t
	//
	void DinoUmlToGraphConverter::printDiagramsInUMLGraphFormat(ofstream &os)
	{
		// Traverse diagrams 
		SListConstIterator<UMLGraph*> diagramIt;
		for (diagramIt = m_diagramGraphsInUMLGraphFormat.begin(); diagramIt.valid(); ++diagramIt)
		{
			// Get underlying graphs
			const Graph &G = (const Graph &)**diagramIt;
			const GraphAttributes &AG = **diagramIt;

			// Nodes
			os << "Classes:" << endl;
			NodeElement *v;
			forall_nodes(v,G) 
			{
				os << "\t" << AG.labelNode(v);

				os << " with geometry (" 
					 << AG.x(v) << ", " 
					 << AG.y(v) << ", " 
					 << AG.width(v) << ", " 
					 << AG.height(v) << ")";

				os << endl;
			}

			// Edges
			EdgeElement *e;
			os << "Relations:" << endl;
			forall_edges(e,G) 
			{
				os << "\t";
				
				if (AG.type(e) == Graph::association)
					os << "Association between ";
				if (AG.type(e) == Graph::generalization)
					os << "Generalization between ";

				os << AG.labelNode(e->source()) << " and " 
					 << AG.labelNode(e->target()) << endl;
			}
Esempio n. 20
0
// original variant of st-augmentation
// Inserts also new nodes representing faces into G.
void FaceSinkGraph::stAugmentation(
	node h,                       // node corresponding to external face
	Graph &G,                     // original graph (not const)
	SList<node> &augmentedNodes,  // list of augmented nodes
	SList<edge> &augmentedEdges)  // list of augmented edges
{
	SListPure<node> roots;
	for(node v : nodes) {
		node vOrig = m_originalNode[v];
		if (vOrig != nullptr && vOrig->indeg() > 0 && vOrig->outdeg() > 0)
			roots.pushBack(v);
	}

	node vh = dfsStAugmentation(h,nullptr,G,augmentedNodes,augmentedEdges);

	SListConstIterator<node> it;
	for(it = roots.begin(); it.valid(); ++it)
		dfsStAugmentation(*it,nullptr,G,augmentedNodes,augmentedEdges);

	augmentedEdges.pushBack(G.newEdge(m_source,vh));

}
Esempio n. 21
0
// builds expansion graph of graph G
// for debugging purposes only
void ExpansionGraph::init(const Graph &G)
{
	// remove previous component
	for(node v : nodes) {
		node vOrig = m_vOrig[v];
		if (vOrig)
			m_vCopy[vOrig] = nullptr;
	}
	clear();


	// create new component
	for(node v : G.nodes)
		getCopy(v);

	for(edge e : G.edges)
	{
		edge eCopy = newEdge(getCopy(e->source()),getCopy(e->target()));
		m_eOrig[eCopy] = e;
	}

	// expand vertices
	for(node v : nodes)
	{
		if (original(v) && v->indeg() >= 1 && v->outdeg() >= 1) {
			node vPrime = newNode();

			SListPure<edge> edges;
			v->outEdges(edges);

			SListConstIterator<edge> it;
			for(it = edges.begin(); it.valid(); ++it)
				moveSource(*it,vPrime);

			newEdge(v,vPrime);
		}
	}
}
Esempio n. 22
0
// compute grouping for sons of nodes on level i
void RadialTreeLayout::ComputeGrouping(int i)
{
	SListConstIterator<node> it;
	for(it = m_nodes[i].begin(); it.valid(); ++it)
	{
		node v = *it;
		node p = m_parent[v];

		Grouping &grouping = m_grouping[v];
		ListIterator<Group> currentGroup;

		adjEntry adj = v->firstAdj();
		adjEntry adjStop;
		if(p != nullptr) {
			while(adj->twinNode() != p)
				adj = adj->cyclicSucc();
			adjStop = adj;
			adj = adj->cyclicSucc();
		} else {
			adjStop = adj;
		}

		do
		{
			node u = adj->twinNode();

			if(!currentGroup.valid() || (*currentGroup).isSameType(u) == false)
			{
				currentGroup = grouping.pushBack(Group(this,u));

			} else {
				(*currentGroup).append(u);
			}

			adj = adj->cyclicSucc();
		} while(adj != adjStop);
	}
}
Esempio n. 23
0
// separate pertinent nodes in the lists of possible different minor-types
void FindKuratowskis::splitInMinorTypes(
			const SListPure<adjEntry>& externalFacePath,
			int marker)
{
	// mark nodes, which are before stopX or behind stopY in CCW-traversal and add
	// all extern nodes strictly between stopX and stopY to list
	// externE for minor E (pertinent nodes are considered because of the
	// position of z left or right of w)
	SListConstIterator<adjEntry> itExtern;
	SListIterator<WInfo> it = k.wNodes.begin();
	node x;
	bool between = false;
	SListPure<WInfo*> infoList;
	SListIterator<WInfo*> itList;
	ExternE externEdummy;
	// compute list of externE nodes
	for (itExtern=externalFacePath.begin(); itExtern.valid(); ++itExtern) {
		x = (*itExtern)->theNode();
		if (x==k.stopX || x==k.stopY) {
			between = (between==false) ? true : false;
		} else {
			if (!between) {
				m_wasHere[x]=marker;
			} else {
				if (pBM->externallyActive(x,k.V_DFI)) {
					externEdummy.theNode = x;

					// check minor type B and save extern linkage
					if (it.valid() && (*it).w==x &&
							!m_pertinentRoots[x].empty() &&
							m_lowPoint[m_nodeFromDFI[-m_dfi[m_pertinentRoots[x].back()]]]
							< k.V_DFI) {
						WInfo& info(*it);

						// checking minor type B
						info.minorType |= WInfo::B;
						// mark extern node for later extraction
						externEdummy.startnodes.pushBack(0);
						// create externE-list
						k.externE.pushBack(externEdummy);
						// save extern linkage
						info.externEStart = k.externE.rbegin();
						info.externEEnd = k.externE.rbegin();
					} else {
						// create externE-list
						externEdummy.startnodes.clear();
						k.externE.pushBack(externEdummy);
					}

					// save for each wNode the first externally active successor
					// on the external face
					for (itList = infoList.begin(); itList.valid(); ++itList)
						(*itList)->firstExternEAfterW = x;
					infoList.clear();


				}

				// get appropriate WInfo
				if (it.valid() && (*it).w==x) {
					infoList.pushBack(&(*it));
					++it;
				}
			}
		}
	}

	// divide wNodes in different minor types
	// avoids multiple computation of the externE range
	itExtern = externalFacePath.begin();
	SListIterator<ExternE> itExternE = k.externE.begin();
	WInfo* oldInfo = NULL;
	for (it=k.wNodes.begin(); it.valid(); ++it) {
		WInfo& info(*it);

		// checking minor type A
		if (k.RReal!=k.V) info.minorType |= WInfo::A;

		// if a XYPath exists
		if (info.highestXYPath!=NULL) {
			if (m_wasHere[info.highestXYPath->front()->theNode()]==marker)
				info.pxAboveStopX = true;
			if (m_wasHere[info.highestXYPath->back()->theNode()]==marker)
				info.pyAboveStopY = true;

			// checking minor type C
			if (info.pxAboveStopX || info.pyAboveStopY)
				info.minorType |= WInfo::C;

			// checking minor type D
			if (info.zPath!=NULL) info.minorType |= WInfo::D;

			// checking minor type E
			if (!k.externE.empty()) {
				node t;

				// compute valid range of externE-nodes in linear time
				if (oldInfo!=NULL && info.highestXYPath==oldInfo->highestXYPath) {
					// found the same highestXYPath as before
					info.externEStart = oldInfo->externEStart;
					info.externEEnd = oldInfo->externEEnd;
					if (oldInfo->minorType & WInfo::E) info.minorType |= WInfo::E;
				} else {
					// compute range of a new highestXYPath
					node px;
					if (info.pxAboveStopX) px = k.stopX;
						else px = info.highestXYPath->front()->theNode();
					node py;
					if (info.pyAboveStopY) py = k.stopY;
						else py = info.highestXYPath->back()->theNode();
					while ((*itExtern)->theNode() != px) ++itExtern;
					t = (*(++itExtern))->theNode();
					node start = NULL;
					node end = NULL;
					while (t != py) {
						if (pBM->externallyActive(t,k.V_DFI)) {
							if (start==NULL) start = t;
							end = t;
						}
						t = (*(++itExtern))->theNode();
					}
					if (start != NULL) {
						while ((*itExternE).theNode != start) ++itExternE;
						info.externEStart = itExternE;
						// mark node to extract external subgraph later
						(*itExternE).startnodes.pushBack(0);
						node temp = start;
						while (temp != end) {
							temp = (*++itExternE).theNode;
							// mark node to extract external subgraph later
							(*itExternE).startnodes.pushBack(0);
						}
						info.externEEnd = itExternE;
						info.minorType |= WInfo::E;
					}
					oldInfo = &info;
				}
			}
		}

		/*
		// use this to find special kuratowski-structures
		if ((info.minorType & (WInfo::A|WInfo::B|WInfo::C|WInfo::D|WInfo::E)) ==
			(WInfo::A|WInfo::B|WInfo::C|WInfo::D|WInfo::E)) {
			char t; cin >> t;
		}
		*/
	}

	// extract the externalSubgraph of all saved externally active nodes
	// exclude the already extracted minor b-types
	#ifdef OGDF_DEBUG
	int visited = m_nodeMarker+1;
	#endif
	for (itExternE=k.externE.begin(); itExternE.valid(); ++itExternE) {
		if ((*itExternE).startnodes.empty()) continue;

		ExternE& externE(*itExternE);
		externE.startnodes.clear();
		if (m_bundles) {
			OGDF_ASSERT(m_wasHere[externE.theNode] < visited);
			extractExternalSubgraphBundles(externE.theNode,k.V_DFI,
										k.externalSubgraph,++m_nodeMarker);
		} else {
			extractExternalSubgraph(externE.theNode,k.V_DFI,externE.startnodes,
															externE.endnodes);
			SListIterator<int> itInt;
			SListPure<edge> dummy;
			for (itInt = externE.startnodes.begin(); itInt.valid(); ++itInt)
				externE.externalPaths.pushBack(dummy);
		}
	}
}
Esempio n. 24
0
// remove "arcs" from visibArcs which we already have in the constraint graph
// (as basic arcs)
void CompactionConstraintGraphBase::removeRedundantVisibArcs(
	SListPure<Tuple2<node,node> > &visibArcs)
{
	// bucket sort list of all edges
	SListPure<edge> all;
	allEdges(all);
	parallelFreeSort(*this,all);

	// bucket sort visibArcs
	BucketFirstIndex bucketSrc;
	visibArcs.bucketSort(0,maxNodeIndex(),bucketSrc);

	BucketSecondIndex bucketTgt;
	visibArcs.bucketSort(0,maxNodeIndex(),bucketTgt);

	// now, in both lists, arcs are sorted by increasing target index,
	// and arcs with the same target index by increasing source index.
	SListConstIterator<edge> itAll = all.begin();
	SListIterator<Tuple2<node,node> > it, itNext, itPrev;

	// for each arc in visibArcs, we check if it is also contained in list all
	for(it = visibArcs.begin(); it.valid(); it = itNext)
	{
		// required since we delete from the list we traverse
		itNext = it.succ();
		int i = (*it).x1()->index();
		int j = (*it).x2()->index();

		// skip all arcs with smaller target index
		while(itAll.valid() && (*itAll)->target()->index() < j)
			++itAll;

		// no more arcs => no more duplicates, so return
		if (!itAll.valid()) break;

		// if target index is j, we also skip all arcs with target index i
		// and source index smaller than i
		while(itAll.valid() && (*itAll)->target()->index() == j && (*itAll)->source()->index() < i)
			++itAll;

		// no more arcs => no more duplicates, so return
		if (!itAll.valid()) break;

		// if (i,j) is already present, we delete it from visibArcs
		if ((*itAll)->source()->index() == i &&
			(*itAll)->target()->index() == j)
		{
			//visibArcs.del(it);
			if (itPrev.valid())
				visibArcs.delSucc(itPrev);
			else
				visibArcs.popFront();
		} else
			itPrev = it;
	}//for visibArcs

	//****************************CHECK for
	//special treatment for cage visibility
	//two cases: input node cage: just compare arbitrary node
	//           merger cage: check first if there are mergers
	itPrev = nullptr;
	for(it = visibArcs.begin(); it.valid(); it = itNext)
	{

		itNext = it.succ();

		OGDF_ASSERT(!m_path[(*it).x1()].empty());
		OGDF_ASSERT(!m_path[(*it).x1()].empty());

		node boundRepresentant1 = m_path[(*it).x1()].front();
		node boundRepresentant2 = m_path[(*it).x2()].front();
		node en1 = m_pPR->expandedNode(boundRepresentant1);
		node en2 = m_pPR->expandedNode(boundRepresentant2);
		//do not allow visibility constraints in fixed cages
		//due to non-planarity with middle position constraints

		if ( ( en1 && en2 ) && ( en1 == en2) )
		{
			if (itPrev.valid()) visibArcs.delSucc(itPrev);
			else visibArcs.popFront();
		}
		else
		{
			//check if its a genmergerspanning vis arc, merge cases later
			node firstn = nullptr, secondn = nullptr;
			for (node n : m_path[(*it).x1()])
			{
				node en = m_pPR->expandedNode(n);
				if (!en) continue;
				if (!(m_pPR->typeOf(n) == Graph::generalizationExpander)) continue;
				else { firstn = en; break; }
			}//for
			for (node n : m_path[(*it).x2()])
			{
				node en = m_pPR->expandedNode(n);
				if (!en) continue;
				if (!(m_pPR->typeOf(n) == Graph::generalizationExpander)) continue;
				else { secondn = en; break; }
			}//for
			if ((firstn && secondn) && (firstn == secondn))
			{
				if (itPrev.valid()) visibArcs.delSucc(itPrev);
				else visibArcs.popFront();
			}
			else itPrev = it;
		}
	}//for visibArcs

}
void DynamicSPQRForest::createSPQR (node vB) const
{
	Graph GC;
	NodeArray<node> origNode(GC,0);
	EdgeArray<edge> origEdge(GC,0);
	SListConstIterator<edge> iH;

	for (iH=m_bNode_hEdges[vB].begin(); iH.valid(); ++iH)
		m_htogc[(*iH)->source()] = m_htogc[(*iH)->target()] = 0;

	for (iH=m_bNode_hEdges[vB].begin(); iH.valid(); ++iH) {
		edge eH = *iH;
		node sH = eH->source();
		node tH = eH->target();
		node& sGC = m_htogc[sH];
		node& tGC = m_htogc[tH];
		if (!sGC) { sGC = GC.newNode(); origNode[sGC] = sH; }
		if (!tGC) { tGC = GC.newNode(); origNode[tGC] = tH; }
		origEdge[GC.newEdge(sGC,tGC)] = eH;
	}

	TricComp tricComp(GC);

	const GraphCopySimple& GCC = *tricComp.m_pGC;

	EdgeArray<node> partnerNode(GCC,0);
	EdgeArray<edge> partnerEdge(GCC,0);

	for (int i=0; i<tricComp.m_numComp; ++i) {
		const TricComp::CompStruct &C = tricComp.m_component[i];

		if (C.m_edges.empty()) continue;

		node vT = m_T.newNode();
		m_tNode_owner[vT] = vT;

		switch(C.m_type) {
			case TricComp::bond:
				m_tNode_type[vT] = PComp;
				m_bNode_numP[vB]++;
				break;
			case TricComp::polygon:
				m_tNode_type[vT] = SComp;
				m_bNode_numS[vB]++;
				break;
			case TricComp::triconnected:
				m_tNode_type[vT] = RComp;
				m_bNode_numR[vB]++;
				break;
		}

		for (ListConstIterator<edge> iGCC=C.m_edges.begin(); iGCC.valid(); ++iGCC) {
			edge eGCC = *iGCC;
			edge eH = GCC.original(eGCC);
			if (eH) eH = origEdge[eH];
			else {
				node uH = origNode[GCC.original(eGCC->source())];
				node vH = origNode[GCC.original(eGCC->target())];
				eH = m_H.newEdge(uH,vH);

				if (!partnerNode[eGCC]) {
					partnerNode[eGCC] = vT;
					partnerEdge[eGCC] = eH;
				}
				else {
					m_T.newEdge(partnerNode[eGCC],vT);
					m_hEdge_twinEdge[eH] = partnerEdge[eGCC];
					m_hEdge_twinEdge[partnerEdge[eGCC]] = eH;
				}
			}
			m_hEdge_position[eH] = m_tNode_hEdges[vT].pushBack(eH);
			m_hEdge_tNode[eH] = vT;
		}
	}

	m_bNode_SPQR[vB] = m_hEdge_tNode[origEdge[GC.firstEdge()]];
	m_tNode_hRefEdge[m_bNode_SPQR[vB]] = 0;

	SList<node> lT;
	lT.pushBack(m_bNode_SPQR[vB]);
	lT.pushBack(0);
	while (!lT.empty()) {
		node vT = lT.popFrontRet();
		node wT = lT.popFrontRet();
		for (ListConstIterator<edge> iH=m_tNode_hEdges[vT].begin(); iH.valid(); ++iH) {
			edge eH = *iH;
			edge fH = m_hEdge_twinEdge[eH];
			if (!fH) continue;
			node uT = m_hEdge_tNode[fH];
			if (uT==wT) m_tNode_hRefEdge[vT] = eH;
			else {
				lT.pushBack(uT);
				lT.pushBack(vT);
			}
		}
	}
}
Esempio n. 26
0
void RadialTreeLayout::ComputeAngles(const Graph &G)
{
	m_angle.init(G);
	m_wedge.init(G);
	m_radius.init(m_numLevels);
	m_grouping.init(G);

	Queue<node> Q;
	NodeArray<double> restWeight(G);

	Q.append(m_root);
	m_angle[m_root] = 0;
	m_wedge[m_root] = 2*Math::pi;
	m_radius[0] = 0;

	//Grouping grouping;
	//double D, W;

	NodeArray<double> D(G), W(G);

	int iProcessed = 0;

	while(!Q.empty())
	{
		node v = Q.pop();
		node p = m_parent[v];

		// nothing to do if v is a leaf
		if(p != nullptr && v->degree() == 1)
			continue;

		int i = m_level[v];
		if(i+1 > iProcessed) {
			m_radius[i+1] = m_radius[i] + 0.5*(m_width[i+1]+m_width[i]) + m_levelDistance;

			ComputeGrouping(i);

			SListConstIterator<node> it;
			for(it = m_nodes[i].begin(); it.valid(); ++it)
			{
				node w = *it;

				m_grouping[w].computeAdd(D[w],W[w]);

				double deltaL = 0.0;
				ListConstIterator<Group> itG;
				for(itG = m_grouping[w].begin(); itG.valid(); ++itG)
				{
					const Group &g = *itG;
					if(g.m_leafGroup)
						continue;

					double deltaLG;
					double weightedAdd = W[w] / g.m_sumW * g.add();

					deltaLG = 2 * W[w] / m_leaves[g.leftVertex()] * g.m_leftAdd - weightedAdd;
					if(deltaLG > deltaL)
						deltaL = deltaLG;

					deltaLG = 2 * W[w] / m_leaves[g.rightVertex()] * g.m_rightAdd - weightedAdd;
					if(deltaLG > deltaL)
						deltaL = deltaLG;
				}

				double r = (deltaL + D[w]) / m_wedge[w];
				if(r > m_radius[i+1])
					m_radius[i+1] = r;
			}

			// ********
			/*deltaL = (m_radius[i+1] * 2*Math::pi) - D;

			double offset = 0;
			for(itG = grouping.begin(); itG.valid(); ++itG)
			{
				const Group &g = *itG;

				SListConstIterator<node> itV;
				for(itV = g.m_nodes.begin(); itV.valid(); ++itV)
				{
					node v = *itV;

					double s = m_diameter[v] + m_levelDistance;
					if(g.m_leafGroup == false)
						s += m_leaves[v] / g.m_sumW * g.add() + m_leaves[v] / W * deltaL;

					double desiredWedge = s / m_radius[i+1];

					double allowedWedge = 2 * acos(m_radius[i] / m_radius[i+1]);
					m_wedge[v] = min(desiredWedge,allowedWedge);

					m_angle[v] = offset + 0.5*desiredWedge;
					offset += desiredWedge;

					Q.append(v);
				}
			}
*/

			//*************************
/*			SListConstIterator<node> it;
			for(it = m_nodes[i].begin(); it.valid(); ++it)
			{
				node w = *it;

				// compute weight of all non-leaves
				double weight = 0.0;

				for(adjEntry adjSon : w->adjEdges)
				{
					node u = adjSon->twinNode();
					if(u == m_parent[w])
						continue;
					if(u->degree() > 1)
						weight += m_leaves[u];
				}

				restWeight[w] = weight;

				double D = (w->degree() - 1) * m_levelDistance;

				for(adjEntry adjSon : w->adjEdges)
				{
					node u = adjSon->twinNode();
					if(u == m_parent[w])
						continue;

					D += m_diameter[u];
				}

				double r = D / m_wedge[w];
				if(r > m_radius[i+1])
					m_radius[i+1] = r;
			}*/

			iProcessed = i+1;
		}


		double deltaL = (m_radius[i+1] * m_wedge[v]) - D[v];
		double offset = m_angle[v] - 0.5*m_wedge[v];

		ListConstIterator<Group> itG;
		for(itG = m_grouping[v].begin(); itG.valid(); ++itG)
		{
			const Group &g = *itG;

			SListConstIterator<node> it;
			for(it = g.m_nodes.begin(); it.valid(); ++it)
			{
				node u = *it;

				double s = m_diameter[u] + m_levelDistance;
				if(g.m_leafGroup == false)
					s += m_leaves[u] / g.m_sumW * g.add() + m_leaves[u] / W[v] * deltaL;

				double desiredWedge = s / m_radius[i+1];

				double allowedWedge = 2 * acos(m_radius[i] / m_radius[i+1]);
				m_wedge[u] = min(desiredWedge,allowedWedge);

				m_angle[u] = offset + 0.5*desiredWedge;
				offset += desiredWedge;

				Q.append(u);
			}
		}


/*
		double restWedge = m_wedge[v];
		for(adjEntry adj : v->adjEdges)
		{
			node u = adj->twinNode();
			if(u == m_parent[v])
				continue;

			m_wedge[u] = (m_diameter[u] + m_levelDistance) / m_radius[i+1];
			restWedge -= m_wedge[u];
		}

		double offset = m_angle[v] - 0.5*m_wedge[v];

		adjEntry adj = v->firstAdj();
		adjEntry adjStop;
		if(p != 0) {
			while(adj->twinNode() != p)
				adj = adj->cyclicSucc();
			adjStop = adj;
			adj = adj->cyclicSucc();
		} else {
			adjStop = adj;
		}

		do
		{
			node u = adj->twinNode();

			double desiredWedge;

			if(u->degree() == 1) {
				desiredWedge = m_wedge[u];

			} else {
				desiredWedge = m_wedge[u] + m_leaves[u] / restWeight[v] * restWedge;

				double allowedWedge = 2 * acos(m_radius[i] / m_radius[i+1]);
				m_wedge[u] = min(desiredWedge,allowedWedge);
			}

			m_angle[u] = offset + 0.5*desiredWedge;
			offset += desiredWedge;

			Q.append(u);

			adj = adj->cyclicSucc();
		} while(adj != adjStop);*/
	}

	m_outerRadius = m_radius[m_numLevels-1] + 0.5*m_width[m_numLevels-1];
}
Esempio n. 27
0
void LongestPathCompaction::moveComponents(
	const CompactionConstraintGraph<int> &D,
	NodeArray<int> &pos)
{
	const Graph &Gd = D.getGraph();

	// compute for each component the list of nodes contained
	Array<SListPure<node> > nodesInComp(1,m_pseudoSources.size());

	for(node v : Gd.nodes) {
		if (m_component[v] > 0)
		nodesInComp[m_component[v]].pushBack(v);
	}


	// iterate over all pseudo-sources in reverse topological order
	for(node v : m_pseudoSources)
	{
		int c = m_component[v];

		// list of outgoing/incoming edges of pseudo-component C(v)
		SListPure<edge> outCompV, inCompV;

		//cout << "component " << c << endl;
		for(node w : nodesInComp[c])
		{
			//cout << " " << w;
			edge e;
			forall_adj_edges(e,w) {
				if(m_component[e->target()] != c) {
					outCompV.pushBack(e);
				} else if (m_component[e->source()] != c)
					inCompV.pushBack(e);
			}
		}
		//cout << endl;

		if(outCompV.empty())
			continue;

		SListConstIterator<edge> itE = outCompV.begin();
		int costOut = D.cost(*itE);
		int delta = (pos[(*itE)->target()] - pos[(*itE)->source()]) -
						D.length(*itE);

		for(++itE; itE.valid(); ++itE) {
			costOut += D.cost(*itE);
			int d = (pos[(*itE)->target()] - pos[(*itE)->source()]) -
						D.length(*itE);
			if (d < delta)
				delta = d;
		}

		//cout << "  delta = " << delta << ", costOut = " << costOut << endl;

		// if all outgoing edges have cost 0, we wouldn't save any cost!
		if (costOut == 0) continue;

		// move component up by delta; this shortens all outgoing edges and
		// enlarges all incoming edges (which have cost 0)
		for(node w : nodesInComp[c])
			pos[w] += delta;
	}

}
Esempio n. 28
0
void UpwardPlanRep::insertEdgePathEmbedded(edge eOrig, SList<adjEntry> crossedEdges, EdgeArray<int> &costOrig)
{
	removeSinkArcs(crossedEdges);

	//case the copy v of eOrig->source() is a sink switch
	//we muss remove the sink arcs incident to v, since after inserting eOrig, v is not a sink witch
	node v =  crossedEdges.front()->theNode();
	List<edge> outEdges;
	if (v->outdeg() == 1)
		v->outEdges(outEdges); // we delete these edges later

	m_eCopy[eOrig].clear();

	adjEntry adjSrc, adjTgt;
	SListConstIterator<adjEntry> it = crossedEdges.begin();

	// iterate over all adjacency entries in crossedEdges except for first
	// and last
	adjSrc = *it;
	List<adjEntry> dirtyList; // left and right face of the element of this list are modified
	for(++it; it.valid() && it.succ().valid(); ++it)
	{
		adjEntry adj = *it;

		bool isASourceArc = false, isASinkArc = false;
		if (m_isSinkArc[adj->theEdge()])
			isASinkArc = true;
		if (m_isSourceArc[adj->theEdge()])
			isASourceArc = true;

		int c = 0;
		if (original(adj->theEdge()) != nullptr)
			c = costOrig[original(adj->theEdge())];

		// split edge
		node u = m_Gamma.split(adj->theEdge())->source();
		if (!m_isSinkArc[adj->theEdge()] && !m_isSourceArc[adj->theEdge()])
			crossings = crossings + c; // crossing sink/source arcs cost nothing

		// determine target adjacency entry and source adjacency entry
		// in the next iteration step
		adjTgt = u->firstAdj();
		adjEntry adjSrcNext = adjTgt->succ();

		if (adjTgt != adj->twin())
			std::swap(adjTgt, adjSrcNext);

		edge e_split = adjTgt->theEdge(); // the new split edge
		if (e_split->source() != u)
			e_split = adjSrcNext->theEdge();

		if (isASinkArc)
			m_isSinkArc[e_split] = true;
		if (isASourceArc)
			m_isSourceArc[e_split] = true;

		// insert a new edge into the face
		edge eNew = m_Gamma.splitFace(adjSrc,adjTgt);
		m_eIterator[eNew] = GraphCopy::m_eCopy[eOrig].pushBack(eNew);
		m_eOrig[eNew] = eOrig;
		dirtyList.pushBack(eNew->adjSource());

		adjSrc = adjSrcNext;
	}

	// insert last edge
	edge eNew = m_Gamma.splitFace(adjSrc,*it);
	m_eIterator[eNew] = m_eCopy[eOrig].pushBack(eNew);
	m_eOrig[eNew] = eOrig;
	dirtyList.pushBack(eNew->adjSource());

	// remove the sink arc incident to v
	if(!outEdges.empty()) {
		edge e = outEdges.popFrontRet();
		if (m_isSinkArc[e])
			m_Gamma.joinFaces(e);
	}

	m_Gamma.setExternalFace(m_Gamma.rightFace(extFaceHandle));

	//computeSinkSwitches();
	FaceSinkGraph fsg(m_Gamma, s_hat);
	List<adjEntry> dummyList;
	FaceArray< List<adjEntry> > sinkSwitches(m_Gamma, dummyList);
	fsg.sinkSwitches(sinkSwitches);

	//construct sinkArc for the dirty faces
	for(adjEntry adj : dirtyList) {
		face fLeft = m_Gamma.leftFace(adj);
		face fRight = m_Gamma.rightFace(adj);
		List<adjEntry> switches = sinkSwitches[fLeft];

		OGDF_ASSERT(!switches.empty());

		constructSinkArcs(fLeft, switches.front()->theNode());

		OGDF_ASSERT(!switches.empty());

		switches = sinkSwitches[fRight];
		constructSinkArcs(fRight, switches.front()->theNode());
	}

	m_Gamma.setExternalFace(m_Gamma.rightFace(extFaceHandle));
	computeSinkSwitches();
}
Esempio n. 29
0
void UpwardPlanarSubgraphSimple::call(GraphCopy &GC, List<edge> &delEdges)
{
	const Graph &G = GC.original();
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G,nullptr);
	NodeArray<node> mapToG(H,nullptr);

	for(node v : G.nodes)
		mapToG[ mapToH[v] = H.newNode() ] = v;


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	SList<Tuple2<node,node> > augmented;
	GraphCopySimple graphAcyclicTest(G);

	for(edge eG : G.edges)
	{
		// already treated ?
		if(visitedEdge[eG] == true)
			continue;

		// insert edge into H
		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		node superSink;
		SList<edge> augmentedEdges;
		if (UpwardPlanarity::upwardPlanarAugment_singleSource(H,superSink,augmentedEdges) == false) {
			// if H is no longer upward planar, remove eG from subgraph
			H.delEdge(eH);
			delEdges.pushBack(eG);

		} else {
			// add augmented edges as node-pair to tmpAugmented and remove
			// all augmented edges from H again
			SList<Tuple2<node,node> > tmpAugmented;
			SListConstIterator<edge> it;
			for(it = augmentedEdges.begin(); it.valid(); ++it) {
				node v = mapToG[(*it)->source()];
				node w = mapToG[(*it)->target()];

				if (v && w)
					tmpAugmented.pushBack(Tuple2<node,node>(v,w));

				H.delEdge(*it);
			}

			if (mapToG[superSink] == nullptr)
				H.delNode(superSink);

			//****************************************************************
			// The following is a simple workaround to assure the following
			// property of the upward planar subgraph:
			//   The st-augmented upward planar subgraph plus the edges not
			//   in the subgraph must be acyclic. (This is a special property
			//   of the embedding, not the augmentation.)
			// The upward-planar embedding function gives us ANY upward-planar
			// embedding. We check if the property above holds with this
			// embedding. If it doesn't, we have actually no idea if another
			// embedding would do.
			// The better solution would be to incorporate the acyclicity
			// property into the upward-planarity test, but this is compicated.
			//****************************************************************

			// test if original graph plus augmented edges is still acyclic
			if(checkAcyclic(graphAcyclicTest,tmpAugmented) == true) {
				augmented = tmpAugmented;

			} else {
				// if not, remove eG from subgraph
				H.delEdge(eH);
				delEdges.pushBack(eG);
			}
		}

	}

	// remove edges not in the subgraph from GC
	ListConstIterator<edge> itE;
	for(itE = delEdges.begin(); itE.valid(); ++itE)
		GC.delEdge(GC.copy(*itE));

	// add augmented edges to GC
	SListConstIterator<Tuple2<node,node> > itP;
	for(itP = augmented.begin(); itP.valid(); ++itP) {
		node v = (*itP).x1();
		node w = (*itP).x2();

		GC.newEdge(GC.copy(v),GC.copy(w));
	}

	// add super sink to GC
	node sGC = nullptr;
	SList<node> sinks;
	for(node v : GC.nodes) {
		if(v->indeg() == 0)
			sGC = v;
		if(v->outdeg() == 0)
			sinks.pushBack(v);
	}

	node superSinkGC = GC.newNode();
	SListConstIterator<node> itV;
	for(itV = sinks.begin(); itV.valid(); ++itV)
		GC.newEdge(*itV,superSinkGC);

	// add st-edge to GC, so that we now have a planar st-digraph
	GC.newEdge(sGC,superSinkGC);

	OGDF_ASSERT(isAcyclic(GC));
	OGDF_ASSERT(isPlanar(GC));
}
Esempio n. 30
0
//---------------------------------------------------------
// actual call (called by all variations of call)
//   crossing of generalizations is forbidden if forbidCrossingGens = true
//   edge costs are obeyed if costOrig != 0
//
Module::ReturnType FixedEmbeddingInserter::doCall(
	PlanRep &PG,
	const List<edge> &origEdges,
	bool forbidCrossingGens,
	const EdgeArray<int>  *costOrig,
	const EdgeArray<bool> *forbiddenEdgeOrig,
	const EdgeArray<unsigned int> *edgeSubGraph)
{
  
	double T;
	usedTime(T);
	
	ReturnType retValue = retFeasible;
	m_runsPostprocessing = 0;

	PG.embed(); 
	OGDF_ASSERT(PG.representsCombEmbedding() == true);

	if (origEdges.size() == 0)
		return retOptimal;  // nothing to do

	// initialization
	CombinatorialEmbedding E(PG);  // embedding of PG

	m_dual.clear();
	m_primalAdj.init(m_dual);
	m_nodeOf.init(E);

	// construct dual graph
	m_primalIsGen.init(m_dual,false);

	OGDF_ASSERT(forbidCrossingGens == false || forbiddenEdgeOrig == 0);

	if(forbidCrossingGens)
		constructDualForbidCrossingGens((const PlanRepUML&)PG,E);
	else
		constructDual(PG,E,forbiddenEdgeOrig);

	// m_delFaces and m_newFaces are used by removeEdge()
	// if we can't allocate memory for them, we throw an exception
	if (removeReinsert() != rrNone) {
		m_delFaces = new FaceSetSimple(E);
		if (m_delFaces == 0)
			OGDF_THROW(InsufficientMemoryException);

		m_newFaces = new FaceSetPure(E);
		if (m_newFaces == 0) {
			delete m_delFaces;
			OGDF_THROW(InsufficientMemoryException);
		}

	// no postprocessing -> no removeEdge()
	} else {
		m_delFaces = 0;
		m_newFaces = 0;
	}

	SListPure<edge> currentOrigEdges;
	if(removeReinsert() == rrIncremental) {
		edge e;
		forall_edges(e,PG)
			currentOrigEdges.pushBack(PG.original(e));
	}

	// insertion of edges
	ListConstIterator<edge> it;
	for(it = origEdges.begin(); it.valid(); ++it)
	{
		edge eOrig = *it;

		int eSubGraph = 0;  // edgeSubGraph-data of eOrig
		if(edgeSubGraph!=0) eSubGraph = (*edgeSubGraph)[eOrig];

		SList<adjEntry> crossed;
		if(costOrig != 0) {
			findShortestPath(PG, E, *costOrig,
				PG.copy(eOrig->source()),PG.copy(eOrig->target()),
				forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
				crossed, edgeSubGraph, eSubGraph);
		} else {
			findShortestPath(E,
				PG.copy(eOrig->source()),PG.copy(eOrig->target()),
				forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
				crossed);
		}

		insertEdge(PG,E,eOrig,crossed,forbidCrossingGens,forbiddenEdgeOrig);
		
		if(removeReinsert() == rrIncremental) {
			currentOrigEdges.pushBack(eOrig);

			bool improved;
			do {
				++m_runsPostprocessing;
				improved = false;
				
				SListConstIterator<edge> itRR;
				for(itRR = currentOrigEdges.begin(); itRR.valid(); ++itRR)
				{
					edge eOrigRR = *itRR;
		
					int pathLength;
					if(costOrig != 0)
						pathLength = costCrossed(eOrigRR,PG,*costOrig,edgeSubGraph);
					else
						pathLength = PG.chain(eOrigRR).size() - 1;
					if (pathLength == 0) continue; // cannot improve
		
					removeEdge(PG,E,eOrigRR,forbidCrossingGens,forbiddenEdgeOrig);
		
					// try to find a better insertion path
					SList<adjEntry> crossed;
					if(costOrig != 0) {
						int eSubGraph = 0;  // edgeSubGraph-data of eOrig
						if(edgeSubGraph!=0) eSubGraph = (*edgeSubGraph)[eOrigRR];

						findShortestPath(PG, E, *costOrig,
							PG.copy(eOrigRR->source()),PG.copy(eOrigRR->target()),
							forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrigRR) : Graph::association,
							crossed, edgeSubGraph, eSubGraph);
					} else {
						findShortestPath(E,
							PG.copy(eOrigRR->source()),PG.copy(eOrigRR->target()),
							forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrigRR) : Graph::association,
							crossed);
					}
					
					// re-insert edge (insertion path cannot be longer)
					insertEdge(PG,E,eOrigRR,crossed,forbidCrossingGens,forbiddenEdgeOrig);
		
					int newPathLength = (costOrig != 0) ? costCrossed(eOrigRR,PG,*costOrig,edgeSubGraph) : (PG.chain(eOrigRR).size() - 1);
					OGDF_ASSERT(newPathLength <= pathLength);
					
					if(newPathLength < pathLength)
						improved = true;
				}
			} while (improved);
		}
	}

	const Graph &G = PG.original();
	if(removeReinsert() != rrIncremental) {
		// postprocessing (remove-reinsert heuristc)
		SListPure<edge> rrEdges;
	
		switch(removeReinsert())
		{
		case rrAll:
		case rrMostCrossed: {
				const List<node> &origInCC = PG.nodesInCC();
				ListConstIterator<node> itV;
	
				for(itV = origInCC.begin(); itV.valid(); ++itV) {
					node vG = *itV;
					adjEntry adj;
					forall_adj(adj,vG) {
						if ((adj->index() & 1) == 0) continue;
						edge eG = adj->theEdge();
						rrEdges.pushBack(eG);
					}
				}
			}
			break;
	
		case rrInserted:
			for(ListConstIterator<edge> it = origEdges.begin(); it.valid(); ++it)
				rrEdges.pushBack(*it);
			break;

		case rrNone:
		case rrIncremental:
			break;
		}
	
		// marks the end of the interval of rrEdges over which we iterate
		// initially set to invalid iterator which means all edges
		SListConstIterator<edge> itStop;
	
		bool improved;
		do {
			// abort postprocessing if time limit reached
			if (m_timeLimit >= 0 && m_timeLimit <= usedTime(T)) {
				retValue = retTimeoutFeasible;
				break;
			}
				
			++m_runsPostprocessing;
			improved = false;
	
			if(removeReinsert() == rrMostCrossed)
			{
				FEICrossingsBucket bucket(&PG);
				rrEdges.bucketSort(bucket);
	
				const int num = int(0.01 * percentMostCrossed() * G.numberOfEdges());
				itStop = rrEdges.get(num);
			}
	
			SListConstIterator<edge> it;
			for(it = rrEdges.begin(); it != itStop; ++it)
			{
				edge eOrig = *it;
							
				// remove only if crossings on edge;
				// in especially: forbidden edges are never handled by postprocessing
				//   since there are no crossings on such edges
				int pathLength;
				if(costOrig != 0)
					pathLength = costCrossed(eOrig,PG,*costOrig,edgeSubGraph);
				else
					pathLength = PG.chain(eOrig).size() - 1;
				if (pathLength == 0) continue; // cannot improve
	
				removeEdge(PG,E,eOrig,forbidCrossingGens,forbiddenEdgeOrig);
	
				// try to find a better insertion path
				SList<adjEntry> crossed;
				if(costOrig != 0) {
					int eSubGraph = 0;  // edgeSubGraph-data of eOrig
					if(edgeSubGraph!=0) eSubGraph = (*edgeSubGraph)[eOrig];

					findShortestPath(PG, E, *costOrig,
						PG.copy(eOrig->source()),PG.copy(eOrig->target()),
						forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
						crossed, edgeSubGraph, eSubGraph);
				} else {
					findShortestPath(E,
						PG.copy(eOrig->source()),PG.copy(eOrig->target()),
						forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
						crossed);
				}
	
				// re-insert edge (insertion path cannot be longer)
				insertEdge(PG,E,eOrig,crossed,forbidCrossingGens,forbiddenEdgeOrig);
	
				int newPathLength = (costOrig != 0) ? costCrossed(eOrig,PG,*costOrig,edgeSubGraph) : (PG.chain(eOrig).size() - 1);
				OGDF_ASSERT(newPathLength <= pathLength);
				
				if(newPathLength < pathLength)
					improved = true;
			}
		} while(improved); // iterate as long as we improve
	}