Esempio n. 1
0
void SubgraphPlanarizer::CrossingStructure::restore(PlanRep &PG, int cc)
{
	//PG.initCC(cc);
	
	Array<node> id2Node(0,m_numCrossings-1,0);
	
	SListPure<edge> edges;
	PG.allEdges(edges);

	for(SListConstIterator<edge> itE = edges.begin(); itE.valid(); ++itE)
	{
		edge ePG = *itE;
		edge e = PG.original(ePG);
		
		SListConstIterator<int> it;
		for(it = m_crossings[e].begin(); it.valid(); ++it)
		{
			node x = id2Node[*it];
			edge ePGOld = ePG;
			ePG = PG.split(ePG);
			node y = ePG->source();
			
			if(x == 0) {
				id2Node[*it] = y;
			} else {
				PG.moveTarget(ePGOld, x);
				PG.moveSource(ePG, x);
				PG.delNode(y);
			}
		}
	}
}
Esempio n. 2
0
// extracts and adds external subgraph from stopnode to ancestors of the node with dfi root
// to edgelist, nodeMarker is used as a visited flag. returns the endnode with lowest dfi.
void FindKuratowskis::extractExternalSubgraph(
			const node stop,
			int root,
			SListPure<int>& externalStartnodes,
			SListPure<node>& externalEndnodes)
{
	int lowpoint;
	ListConstIterator<node> it;

	if (m_leastAncestor[stop] < root) {
		externalStartnodes.pushBack(m_dfi[stop]);
		externalEndnodes.pushBack(m_nodeFromDFI[m_leastAncestor[stop]]);
	}

	// descent to external active child bicomps of stopnode
	node temp;
	for (it = m_separatedDFSChildList[stop].begin(); it.valid(); ++it) {
		temp = *it;
		lowpoint = m_lowPoint[temp];
		if (lowpoint >= root) break;

		externalStartnodes.pushBack(m_dfi[temp]);
		externalEndnodes.pushBack(m_nodeFromDFI[lowpoint]);
	}
}
Esempio n. 3
0
// compute the separated DFS children for all nodes in ascending order of
// their lowpoint values in linear time
void BoyerMyrvoldInit::computeDFSChildLists() {
	// Bucketsort by lowpoint values
	BucketLowPoint blp(m_lowPoint);

	// copy all non-virtual nodes in a list and sort them with Bucketsort
	SListPure<node> allNodes;
	for (node v : m_g.nodes) {
		if (m_dfi[v] > 0)
			allNodes.pushBack(v);
	}
	allNodes.bucketSort(1, m_nodeFromDFI.high(), blp);

	// build DFS-child list
	for (node v : allNodes) {
		OGDF_ASSERT(m_dfi[v] > 0);

		// if node is not root: insert node after last element of parent's DFSChildList
		// to achieve constant time deletion later:
		// set a pointer for each node to predecessor of his representative in the list
		if (m_adjParent[v] != nullptr) {
			OGDF_ASSERT(m_realVertex[m_adjParent[v]->theNode()] != nullptr);

			m_pNodeInParent[v] = m_separatedDFSChildList[m_realVertex[m_adjParent[v]->theNode()]].pushBack(v);

			OGDF_ASSERT(m_pNodeInParent[v].valid());
			OGDF_ASSERT(v == *m_pNodeInParent[v]);
		}
		else m_pNodeInParent[v] = nullptr;
	}
}
Esempio n. 4
0
// Reduction reduced a set of leaves determined by their keys stored
// in leafKeys. Integer redNumber is for debugging only.
bool EmbedPQTree::Reduction(SListPure<PlanarLeafKey<IndInfo*>*> &leafKeys)
{
	SListPure<PQLeafKey<edge, IndInfo*, bool>*> castLeafKeys;
	for (PlanarLeafKey<IndInfo*> *key : leafKeys)
		castLeafKeys.pushBack(static_cast<PQLeafKey<edge, IndInfo*, bool>*>(key));

	return PQTree<edge, IndInfo*, bool>::Reduction(castLeafKeys);
}
Esempio n. 5
0
// Initializes a PQTree by a set of leaves that will korrespond to
// the set of Keys stored in leafKeys.
int PlanarPQTree::Initialize(SListPure<PlanarLeafKey<IndInfo*>*> &leafKeys)
{
	SListIterator<PlanarLeafKey<IndInfo*>* >  it;
	SListPure<PQLeafKey<edge,IndInfo*,bool>*> castLeafKeys;
	for (it = leafKeys.begin(); it.valid(); ++it)
		castLeafKeys.pushBack((PQLeafKey<edge,IndInfo*,bool>*) *it);

	return PQTree<edge,IndInfo*,bool>::Initialize(castLeafKeys);
}
Esempio n. 6
0
// Reduction reduced a set of leaves determined by their keys stored 
// in leafKeys. Integer redNumber is for debugging only.
bool PlanarPQTree::Reduction(SListPure<PlanarLeafKey<indInfo*>*> &leafKeys)
{
	SListIterator<PlanarLeafKey<indInfo*>* >  it;
	SListPure<PQLeafKey<edge,indInfo*,bool>*> castLeafKeys;
	for (it = leafKeys.begin(); it.valid(); ++it)
		castLeafKeys.pushBack((PQLeafKey<edge,indInfo*,bool>*) *it);

	return PQTree<edge,indInfo*,bool>::Reduction(castLeafKeys);
}
Esempio n. 7
0
void parallelFreeSort(const Graph &G, SListPure<edge> &edges)
{
    G.allEdges(edges);

    BucketSourceIndex bucketSrc;
    edges.bucketSort(0,G.maxNodeIndex(),bucketSrc);

    BucketTargetIndex bucketTgt;
    edges.bucketSort(0,G.maxNodeIndex(),bucketTgt);
}
void UpwardPlanarSubgraphSimple::call(const Graph &G, List<edge> &delEdges)
{
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G);

	for(node v : G.nodes)
		mapToH[v] = H.newNode();


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	for(edge eG : G.edges)
	{
		if(visitedEdge[eG] == true)
			continue;

		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		if (UpwardPlanarity::isUpwardPlanar_singleSource(H) == false) {
			H.delEdge(eH);
			delEdges.pushBack(eG);
		}
	}

}
Esempio n. 9
0
void FaceSinkGraph::doInit()
{
	const ConstCombinatorialEmbedding &E = *m_pE;

	NodeArray<node> sinkSwitch(E,nullptr); // corresponding node in F (if any)
	NodeArray<bool> isSinkSwitch(E,true);

	NodeArray<int> visited(E,-1);
	int faceNo = -1;
	for(face f : E.faces)
	{
		faceNo++;
		node faceNode = newNode();
		m_originalFace[faceNode] = f;

		SListPure<node> nodesInF;

		adjEntry adj1 = f->firstAdj(), adj = adj1;
		do {
			node v = adj->theNode();
			// if the graph is not biconnected, then node v can visited more than once
			if (visited[v] != faceNo) {
				nodesInF.pushBack(v);
				visited[v] = faceNo;
			}

			if (v == m_source)
				m_containsSource[faceNode] = true;

			isSinkSwitch[adj->theEdge()->source()] = false;

			adj = adj->twin()->cyclicPred();
		} while (adj != adj1);

		SListConstIterator<node> it;
		for(it = nodesInF.begin(); it.valid(); ++it)
		{
			node v = *it;
			if(isSinkSwitch[v])	{
				if (sinkSwitch[v] == nullptr) {
					node vF = newNode();
					m_originalNode[vF] = v;
					sinkSwitch[v] = vF;
				}

				newEdge(faceNode,sinkSwitch[v]);
			}
		}

		for(it = nodesInF.begin(); it.valid(); ++it)
			isSinkSwitch[*it] = true;
	}
}
Esempio n. 10
0
// The function front scans the frontier of nodePtr. It returns the keys
// of the leaves found in the frontier of nodePtr in a SListPure.
// These keys include keys of direction indicators detected in the frontier.
//
// No direction is assigned to the direction indicators.
//
void EmbedPQTree::getFront(
	PQNode<edge,IndInfo*,bool>* nodePtr,
	SListPure<PQBasicKey<edge,IndInfo*,bool>*> &keys)
{
	ArrayBuffer<PQNode<edge,IndInfo*,bool>*> S;
	S.push(nodePtr);

	while (!S.empty())
	{
		PQNode<edge,IndInfo*,bool> *checkNode = S.popRet();

		if (checkNode->type() == PQNodeRoot::PQNodeType::Leaf)
			keys.pushBack((PQBasicKey<edge,IndInfo*,bool>*) checkNode->getKey());
		else
		{
			PQNode<edge,IndInfo*,bool>* firstSon  = nullptr;
			if (checkNode->type() == PQNodeRoot::PQNodeType::PNode)
			{
				firstSon = checkNode->referenceChild();
			}
			else if (checkNode->type() == PQNodeRoot::PQNodeType::QNode)
			{
				firstSon = checkNode->getEndmost(PQNodeRoot::SibDirection::Right);
				// By this, we make sure that we start on the left side
				// since the left endmost child will be on top of the stack
			}

			if (firstSon->status() == PQNodeRoot::PQNodeStatus::Indicator)
			{
				keys.pushBack((PQBasicKey<edge,IndInfo*,bool>*) firstSon->getNodeInfo());
			}
			else
				S.push(firstSon);

			PQNode<edge,IndInfo*,bool> *nextSon = firstSon->getNextSib(nullptr);
			PQNode<edge,IndInfo*,bool> *oldSib = firstSon;
			while (nextSon && nextSon != firstSon)
			{
				if (nextSon->status() == PQNodeRoot::PQNodeStatus::Indicator)
					keys.pushBack((PQBasicKey<edge,IndInfo*,bool>*) nextSon->getNodeInfo());
				else
					S.push(nextSon);

				PQNode<edge,IndInfo*,bool> *holdSib = nextSon->getNextSib(oldSib);
				oldSib = nextSon;
				nextSon = holdSib;
			}
		}
	}
}
Esempio n. 11
0
// The function front scans the frontier of nodePtr. It returns the keys 
// of the leaves found in the frontier of nodePtr in a SListPure. 
// These keys include keys of direction indicators detected in the frontier.
//
// No direction is assigned to the direction indicators.
//
void EmbedPQTree::getFront(
	PQNode<edge,indInfo*,bool>* nodePtr,
	SListPure<PQBasicKey<edge,indInfo*,bool>*> &keys)
{   
	Stack<PQNode<edge,indInfo*,bool>*> S;
	S.push(nodePtr);
  
	while (!S.empty())
	{
		PQNode<edge,indInfo*,bool> *checkNode = S.pop();

		if (checkNode->type() == PQNodeRoot::leaf)
			keys.pushBack((PQBasicKey<edge,indInfo*,bool>*) checkNode->getKey());      
		else
		{
			PQNode<edge,indInfo*,bool>* firstSon  = 0;
			if (checkNode->type() == PQNodeRoot::PNode)
			{  
				firstSon = checkNode->referenceChild();
			}
 			else if (checkNode->type() == PQNodeRoot::QNode)
			{
				firstSon = checkNode->getEndmost(RIGHT);
				// By this, we make sure that we start on the left side
				// since the left endmost child will be on top of the stack
			}

			if (firstSon->status() == INDICATOR)
			{
				keys.pushBack((PQBasicKey<edge,indInfo*,bool>*) firstSon->getNodeInfo());
			}
			else
				S.push(firstSon);

			PQNode<edge,indInfo*,bool> *nextSon = firstSon->getNextSib(0);
			PQNode<edge,indInfo*,bool> *oldSib = firstSon;
			while (nextSon && nextSon != firstSon)
			{
				if (nextSon->status() == INDICATOR)
					keys.pushBack((PQBasicKey<edge,indInfo*,bool>*) nextSon->getNodeInfo());
				else
					S.push(nextSon);

				PQNode<edge,indInfo*,bool> *holdSib = nextSon->getNextSib(oldSib);
				oldSib = nextSon;
				nextSon = holdSib;
			}
		}
	}
}
Esempio n. 12
0
// extract and add external subgraph from stopnode to ancestors of the node with dfi root
// to edgelist, nodeMarker is used as a visited flag. returns the endnode with lowest dfi.
void FindKuratowskis::extractExternalSubgraphBundles(
			const node stop,
			int root,
			SListPure<edge>& externalSubgraph,
			int nodeMarker)
{
	node v,temp;
	adjEntry adj;

	#ifdef OGDF_DEBUG
	forall_nodes(v,m_g) OGDF_ASSERT(m_wasHere[v]!=nodeMarker);
	#endif

	StackPure<node> stack; // stack for dfs-traversal
	ListConstIterator<node> it;
	stack.push(stop);
	while (!stack.empty()) {
		v = stack.pop();
		if (m_wasHere[v]==nodeMarker) continue;
		// mark visited nodes
		m_wasHere[v]=nodeMarker;

		// search for unvisited nodes and add them to stack
		forall_adj(adj,v) {
			temp = adj->twinNode();
			if (m_edgeType[adj->theEdge()]==EDGE_BACK_DELETED) continue;

			// go along backedges to ancestor (ignore virtual nodes)
			if (m_dfi[temp] < root && m_dfi[temp] > 0) {
				OGDF_ASSERT(m_edgeType[adj->theEdge()]==EDGE_BACK);
				externalSubgraph.pushBack(adj->theEdge());
			} else if (v != stop && m_dfi[temp]>=m_dfi[v]) {
				// set flag and push unvisited nodes
				OGDF_ASSERT(m_edgeType[adj->theEdge()]==EDGE_BACK ||
							m_edgeType[adj->theEdge()]==EDGE_DFS ||
							m_edgeType[adj->theEdge()]==EDGE_BACK_DELETED);
				externalSubgraph.pushBack(adj->theEdge());
				if (m_wasHere[temp] != nodeMarker) stack.push(temp);
			}
		}

		// descent to external active child bicomps
		for (it = m_separatedDFSChildList[v].begin(); it.valid(); ++it) {
			temp = *it;
			if (m_lowPoint[temp] >= root) break;
			stack.push(m_nodeFromDFI[-m_dfi[temp]]);
		}
	}
void FaceSinkGraph::doInit()
{
	const ConstCombinatorialEmbedding &E = *m_pE;

	NodeArray<node> sinkSwitch(E,0); // corresponding node in F (if any)
	NodeArray<bool> isSinkSwitch(E,true);

	face f;
	forall_faces(f,E)
	{
		node faceNode = newNode();
		m_originalFace[faceNode] = f;

		SListPure<node> nodesInF;

		adjEntry adj1 = f->firstAdj(), adj = adj1;
		do {
			node v = adj->theNode();
			nodesInF.pushBack(v);

			if (v == m_source)
				m_containsSource[faceNode] = true;

			isSinkSwitch[adj->theEdge()->source()] = false;

			adj = adj->twin()->cyclicPred();
		} while (adj != adj1);

		SListConstIterator<node> it;
		for(it = nodesInF.begin(); it.valid(); ++it)
		{
			node v = *it;
			if(isSinkSwitch[v])	{
				if (sinkSwitch[v] == 0) {
					node vF = newNode();
					m_originalNode[vF] = v;
					sinkSwitch[v] = vF;
				}

				newEdge(faceNode,sinkSwitch[v]);
			}
		}

		for(it = nodesInF.begin(); it.valid(); ++it)
			isSinkSwitch[*it] = true;
	}
Esempio n. 14
0
bool isParallelFree(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return true;

    SListPure<edge> edges;
    parallelFreeSort(G,edges);

    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (ePrev->source() == e->source() && ePrev->target() == e->target())
            return false;
    }

    return true;
}
Esempio n. 15
0
KuratowskiConstraint::KuratowskiConstraint(ABA_MASTER *master, int nEdges, SListPure<nodePair> &ks) :
	ABA_CONSTRAINT(master, 0, ABA_CSENSE::Less, nEdges-1, true, false, true)
{
	SListConstIterator<nodePair> it;
	for (it = ks.begin(); it.valid(); ++it) {
		m_subdivision.pushBack(*it);
	}
}
Esempio n. 16
0
bool isParallelFreeUndirected(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return true;

    SListPure<edge> edges;
    EdgeArray<int> minIndex(G), maxIndex(G);
    parallelFreeSortUndirected(G,edges,minIndex,maxIndex);

    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (minIndex[ePrev] == minIndex[e] && maxIndex[ePrev] == maxIndex[e])
            return false;
    }

    return true;
}
Esempio n. 17
0
int numParallelEdges(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return 0;

    SListPure<edge> edges;
    parallelFreeSort(G,edges);

    int num = 0;
    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (ePrev->source() == e->source() && ePrev->target() == e->target())
            ++num;
    }

    return num;
}
Esempio n. 18
0
// builds expansion graph of i-th biconnected component of the original graph
void ExpansionGraph::init(int i)
{
	OGDF_ASSERT(0 <= i);
	OGDF_ASSERT(i <= m_component.high());

	// remove previous component
	for(node v : nodes) {
		node vOrig = m_vOrig[v];
		if (vOrig)
			m_vCopy[vOrig] = nullptr;
	}
	clear();


	// create new component
	SListConstIterator<edge> it;
	for(it = m_component[i].begin(); it.valid(); ++it)
	{
		edge e = *it;

		edge eCopy = newEdge(getCopy(e->source()),getCopy(e->target()));
		m_eOrig[eCopy] = e;
	}

	// expand vertices
	for(node v : nodes)
	{
		if (original(v) && v->indeg() >= 1 && v->outdeg() >= 1) {
			node vPrime = newNode();
			m_vRep[vPrime] = m_vOrig[v];

			SListPure<edge> edges;
			v->outEdges(edges);

			SListConstIterator<edge> it;
			for(it = edges.begin(); it.valid(); ++it)
				moveSource(*it,vPrime);

			newEdge(v,vPrime);
		}
	}
}
Esempio n. 19
0
// test if graphAcyclicTest plus edges in tmpAugmented is acyclic
// removes added edges again
bool UpwardPlanarSubgraphSimple::checkAcyclic(
	GraphCopySimple &graphAcyclicTest,
	SList<Tuple2<node,node> > &tmpAugmented)
{
	SListPure<edge> added;

	SListConstIterator<Tuple2<node,node> > it;
	for(it = tmpAugmented.begin(); it.valid(); ++it)
		added.pushBack(graphAcyclicTest.newEdge(
			graphAcyclicTest.copy((*it).x1()),
			graphAcyclicTest.copy((*it).x2())));

	bool acyclic = isAcyclic(graphAcyclicTest);

	SListConstIterator<edge> itE;
	for(itE = added.begin(); itE.valid(); ++itE)
		graphAcyclicTest.delEdge(*itE);

	return acyclic;
}
//in ClusterGraph??
//is not yet recursive!!!
node collapseCluster(ClusterGraph& CG, cluster c, Graph& G)
{
	OGDF_ASSERT(c->cCount() == 0)

	ListIterator<node> its;
	SListPure<node> collaps;

	//we should check here if not empty
	node robinson = (*(c->nBegin()));

	for (its = c->nBegin(); its.valid(); its++)
		collaps.pushBack(*its);

	CG.collaps(collaps, G);

	if (c != CG.rootCluster())
		CG.delCluster(c);

	return robinson;
}
Esempio n. 21
0
//
// embed original graph according to embedding of skeletons
//
// The procedure also handles the case when some (real or virtual)
// edges are reversed (used in upward-planarity algorithms)
void PlanarSPQRTree::embed(Graph &G)
{
	OGDF_ASSERT(&G == &originalGraph());

	const Skeleton &S = skeleton(rootNode());
	const Graph &M = S.getGraph();

	for (node v : M.nodes)
	{
		node vOrig = S.original(v);
		SListPure<adjEntry> adjEdges;

		for (adjEntry adj : v->adjEdges) {
			edge e = adj->theEdge();
			edge eOrig = S.realEdge(e);

			if (eOrig != nullptr) {
				adjEntry adjOrig = (vOrig == eOrig->source()) ?
					eOrig->adjSource() : eOrig->adjTarget();
				OGDF_ASSERT(adjOrig->theNode() == S.original(v));
				adjEdges.pushBack(adjOrig);

			} else {
				node wT    = S.twinTreeNode(e);
				edge eTwin = S.twinEdge(e);
				expandVirtualEmbed(wT,
					(vOrig == skeleton(wT).original(eTwin->source())) ?
					eTwin->adjSource() : eTwin->adjTarget(),
					adjEdges);
			}
		}

		G.sort(vOrig,adjEdges);
	}

	edge e;
	forall_adj_edges(e,rootNode()) {
		node wT = e->target();
		if (wT != rootNode())
			createInnerVerticesEmbed(G, wT);
	}
Esempio n. 22
0
void PlanarSPQRTree::setPosInEmbedding(
	NodeArray<SListPure<adjEntry> > &adjEdges,
	NodeArray<node> &currentCopy,
	NodeArray<adjEntry> &lastAdj,
	SListPure<node> &current,
	const Skeleton &S,
	adjEntry adj)
{
	node vT = S.treeNode();

	adjEdges[vT].pushBack(adj);

	node vCopy = adj->theNode();
	node vOrig = S.original(vCopy);

	if(currentCopy[vT] == nullptr) {
		currentCopy[vT] = vCopy;
		current.pushBack(vT);

		for (adjEntry adjVirt : vCopy->adjEdges) {
			edge eCopy = S.twinEdge(adjVirt->theEdge());
			if (eCopy == nullptr) continue;
			if (adjVirt == adj) {
				lastAdj[vT] = adj;
				continue;
			}

			const Skeleton &STwin = skeleton(S.twinTreeNode(adjVirt->theEdge()));

			adjEntry adjCopy = (STwin.original(eCopy->source()) == vOrig) ?
				eCopy->adjSource() : eCopy->adjTarget();

			setPosInEmbedding(adjEdges,currentCopy,lastAdj,current,
				STwin, adjCopy);
		}

	} else if (lastAdj[vT] != nullptr && lastAdj[vT] != adj) {
		adjEntry adjVirt = lastAdj[vT];
		edge eCopy = S.twinEdge(adjVirt->theEdge());

		const Skeleton &STwin = skeleton(S.twinTreeNode(adjVirt->theEdge()));

		adjEntry adjCopy = (STwin.original(eCopy->source()) == vOrig) ?
			eCopy->adjSource() : eCopy->adjTarget();

		setPosInEmbedding(adjEdges,currentCopy,lastAdj,current,
			STwin, adjCopy);

		lastAdj[vT] = nullptr;
	}

}
Esempio n. 23
0
void OptimalRanking::call (const Graph& G, NodeArray<int> &rank)
{
	List<edge> R;

	m_subgraph.get().call(G,R);

	EdgeArray<bool> reversed(G,false);
	for (edge e : R)
		reversed[e] = true;
	R.clear();

	EdgeArray<int> length(G,1);

	if(m_separateMultiEdges) {
		SListPure<edge> edges;
		EdgeArray<int> minIndex(G), maxIndex(G);
		parallelFreeSortUndirected(G, edges, minIndex, maxIndex);

		SListConstIterator<edge> it = edges.begin();
		if(it.valid())
		{
			int prevSrc = minIndex[*it];
			int prevTgt = maxIndex[*it];

			for(it = it.succ(); it.valid(); ++it) {
				edge e = *it;
				if (minIndex[e] == prevSrc && maxIndex[e] == prevTgt)
					length[e] = 2;
				else {
					prevSrc = minIndex[e];
					prevTgt = maxIndex[e];
				}
			}
		}
	}

	EdgeArray<int> cost(G,1);
	doCall(G, rank, reversed, length, cost);
}
Esempio n. 24
0
// original variant of st-augmentation
// Inserts also new nodes representing faces into G.
void FaceSinkGraph::stAugmentation(
	node h,                       // node corresponding to external face
	Graph &G,                     // original graph (not const)
	SList<node> &augmentedNodes,  // list of augmented nodes
	SList<edge> &augmentedEdges)  // list of augmented edges
{
	SListPure<node> roots;
	for(node v : nodes) {
		node vOrig = m_originalNode[v];
		if (vOrig != nullptr && vOrig->indeg() > 0 && vOrig->outdeg() > 0)
			roots.pushBack(v);
	}

	node vh = dfsStAugmentation(h,nullptr,G,augmentedNodes,augmentedEdges);

	SListConstIterator<node> it;
	for(it = roots.begin(); it.valid(); ++it)
		dfsStAugmentation(*it,nullptr,G,augmentedNodes,augmentedEdges);

	augmentedEdges.pushBack(G.newEdge(m_source,vh));

}
Esempio n. 25
0
// builds expansion graph of graph G
// for debugging purposes only
void ExpansionGraph::init(const Graph &G)
{
	// remove previous component
	for(node v : nodes) {
		node vOrig = m_vOrig[v];
		if (vOrig)
			m_vCopy[vOrig] = nullptr;
	}
	clear();


	// create new component
	for(node v : G.nodes)
		getCopy(v);

	for(edge e : G.edges)
	{
		edge eCopy = newEdge(getCopy(e->source()),getCopy(e->target()));
		m_eOrig[eCopy] = e;
	}

	// expand vertices
	for(node v : nodes)
	{
		if (original(v) && v->indeg() >= 1 && v->outdeg() >= 1) {
			node vPrime = newNode();

			SListPure<edge> edges;
			v->outEdges(edges);

			SListConstIterator<edge> it;
			for(it = edges.begin(); it.valid(); ++it)
				moveSource(*it,vPrime);

			newEdge(v,vPrime);
		}
	}
}
// Function ReplaceFullRoot either replaces the full root 
// or one full child of a partial root of a pertinent subtree
// by a single P-node  with leaves corresponding the keys stored in leafKeys.
void PlanarSubgraphPQTree::
ReplaceFullRoot(SListPure<PlanarLeafKey<whaInfo*>*> &leafKeys)
{

	PQLeaf<edge,whaInfo*,bool>          *leafPtr     = 0; // dummy
	PQInternalNode<edge,whaInfo*,bool>	*nodePtr     = 0; // dummy
	//PQNodeKey<edge,whaInfo*,bool>	    *nodeInfoPtr = 0; // dummy
	PQNode<edge,whaInfo*,bool>		    *currentNode = 0; // dummy
	SListIterator<PlanarLeafKey<whaInfo*>* >  it;

	if (!leafKeys.empty() && leafKeys.front() == leafKeys.back())
	{
		//ReplaceFullRoot: replace pertinent root by a single leaf
		leafPtr = OGDF_NEW PQLeaf<edge,whaInfo*,bool>(m_identificationNumber++,
                    EMPTY,(PQLeafKey<edge,whaInfo*,bool>*)leafKeys.front());
		exchangeNodes(m_pertinentRoot,(PQNode<edge,whaInfo*,bool>*) leafPtr);
		if (m_pertinentRoot == m_root)
			m_root = (PQNode<edge,whaInfo*,bool>*) leafPtr;      
	}
	else if (!leafKeys.empty()) // at least two leaves
	{
		//replace pertinent root by a $P$-node
		if ((m_pertinentRoot->type() == P_NODE) || 
			(m_pertinentRoot->type() == Q_NODE))
		{
			nodePtr = (PQInternalNode<edge,whaInfo*,bool>*)m_pertinentRoot;
			nodePtr->type(P_NODE);
			nodePtr->status(PERTROOT);
			nodePtr->childCount(0);
			while (!fullChildren(m_pertinentRoot)->empty())
			{	
				currentNode = fullChildren(m_pertinentRoot)->popFrontRet();
				removeChildFromSiblings(currentNode);
			}
		}      
		else if (m_pertinentRoot->type() == LEAF)
		{
			nodePtr = OGDF_NEW PQInternalNode<edge,whaInfo*,bool>(m_identificationNumber++,
														 P_NODE,EMPTY);
			exchangeNodes(m_pertinentRoot,nodePtr);
		}
		SListPure<PQLeafKey<edge,whaInfo*,bool>*> castLeafKeys;
		for (it = leafKeys.begin(); it.valid(); ++it)
			castLeafKeys.pushBack((PQLeafKey<edge,whaInfo*,bool>*) *it);
		addNewLeavesToTree(nodePtr,castLeafKeys);
	}
  
}
Esempio n. 27
0
void PlanarSPQRTree::adoptEmbedding()
{
	OGDF_ASSERT_IF(dlExtendedChecking, originalGraph().representsCombEmbedding());

	// ordered list of adjacency entries (for one original node) in all
	// skeletons (where this node occurs)
	NodeArray<SListPure<adjEntry> > adjEdges(tree());
	// copy in skeleton of current original node
	NodeArray<node> currentCopy(tree(),nullptr);
	NodeArray<adjEntry> lastAdj(tree(),nullptr);
	SListPure<node> current; // currently processed nodes

	for (node vOrig : originalGraph().nodes)
	{
		for(adjEntry adjOrig : vOrig->adjEdges)
		{
			edge            eOrig = adjOrig->theEdge();
			const Skeleton &S     = skeletonOfReal(eOrig);
			edge            eCopy = copyOfReal(eOrig);

			adjEntry adjCopy = (S.original(eCopy->source()) == vOrig) ?
				eCopy->adjSource() : eCopy->adjTarget();

			setPosInEmbedding(adjEdges,currentCopy,lastAdj,current,S,adjCopy);
		}

		for(node vT : current) {
			skeleton(vT).getGraph().sort(currentCopy[vT],adjEdges[vT]);

			adjEdges[vT].clear();
			currentCopy[vT] = nullptr;
		}

		current.clear();
	}
}
Esempio n. 28
0
node PivotMDS::getRootedPath(const Graph& G)
{
	node head = nullptr;
	NodeArray<bool> visited(G, false);
	SListPure<node> neighbors;
	// in every path there are two nodes with degree 1 and
	// each node has at most degree 2
	for(node v : G.nodes)
	{
		int degree = 0;
		visited[v] = true;
		neighbors.pushBack(v);

		for(adjEntry adj : v->adjEntries) {
			node w = adj->twinNode();
			if (!visited[w])
			{
				neighbors.pushBack(w);
				visited[w]=true;
				++degree;
			}
		}
		if (degree > 2) {
			neighbors.clear();
			return nullptr;
		}
		if (degree == 1) {
			head = v;
		}
		for(node u : neighbors) {
			visited[u] = false;
		}
		neighbors.clear();
	}
	return head;
}
Esempio n. 29
0
// Function ReplaceFullRoot either replaces the full root 
// or one full child of a partial root of a pertinent subtree
// by a single P-node  with leaves corresponding the keys stored in leafKeys.
void PlanarPQTree::ReplaceFullRoot(SListPure<PlanarLeafKey<indInfo*>*> &leafKeys)
{
	if (!leafKeys.empty() && leafKeys.front() == leafKeys.back())
	{
		//ReplaceFullRoot: replace pertinent root by a single leaf
		PQLeaf<edge,indInfo*,bool> *leafPtr =
			OGDF_NEW PQLeaf<edge,indInfo*,bool>(m_identificationNumber++,
            EMPTY,(PQLeafKey<edge,indInfo*,bool>*)leafKeys.front());

		exchangeNodes(m_pertinentRoot,(PQNode<edge,indInfo*,bool>*) leafPtr);
		if (m_pertinentRoot == m_root)
			m_root = (PQNode<edge,indInfo*,bool>*) leafPtr;      
		m_pertinentRoot = 0;  // check for this emptyAllPertinentNodes
	}

	else if (!leafKeys.empty()) // at least two leaves
	{
		PQInternalNode<edge,indInfo*,bool> *nodePtr = 0; // dummy
		//replace pertinent root by a $P$-node
		if ((m_pertinentRoot->type() == PQNodeRoot::PNode) || 
			(m_pertinentRoot->type() == PQNodeRoot::QNode))
		{
			nodePtr = (PQInternalNode<edge,indInfo*,bool>*)m_pertinentRoot;
			nodePtr->type(PQNodeRoot::PNode);
			nodePtr->childCount(0);
			while (!fullChildren(m_pertinentRoot)->empty())
				removeChildFromSiblings(fullChildren(m_pertinentRoot)->popFrontRet());
		}      
		else if (m_pertinentRoot->type() == PQNodeRoot::leaf)
		{
			nodePtr = OGDF_NEW PQInternalNode<edge,indInfo*,bool>(m_identificationNumber++,
														 PQNodeRoot::PNode,EMPTY);
			exchangeNodes(m_pertinentRoot,nodePtr);
			m_pertinentRoot = 0;  // check for this emptyAllPertinentNodes
		}
		
		SListPure<PQLeafKey<edge,indInfo*,bool>*> castLeafKeys;
		SListIterator<PlanarLeafKey<indInfo*>* >  it;
		for (it = leafKeys.begin(); it.valid(); ++it)
			castLeafKeys.pushBack((PQLeafKey<edge,indInfo*,bool>*) *it);
		addNewLeavesToTree(nodePtr,castLeafKeys);
	}
}
Esempio n. 30
0
void UpwardPlanarSubgraphSimple::dfsBuildSpanningTree(
	node v,
	SListPure<edge> &treeEdges,
	NodeArray<bool> &visited)
{
	visited[v] = true;

	for(adjEntry adj : v->adjEntries) {
		edge e = adj->theEdge();
		node w = e->target();
		if(w == v) continue;

		if(!visited[w]) {
			treeEdges.pushBack(e);
			dfsBuildSpanningTree(w,treeEdges,visited);
		}
	}
}