StdMeshers_FaceSide *
StdMeshers_CompositeSegment_1D::GetFaceSide(SMESH_Mesh&        aMesh,
                                            const TopoDS_Edge& anEdge,
                                            const TopoDS_Face& aFace,
                                            const bool         ignoreMeshed)
{
  list< TopoDS_Edge > edges;
  edges.push_back( anEdge );

  list <const SMESHDS_Hypothesis *> hypList;
  SMESH_Algo* theAlgo = aMesh.GetGen()->GetAlgo( aMesh, anEdge );
  if ( theAlgo ) hypList = theAlgo->GetUsedHypothesis(aMesh, anEdge, false);
  for ( int forward = 0; forward < 2; ++forward )
  {
    TopoDS_Edge eNext = nextC1Edge( anEdge, aMesh, forward );
    while ( !eNext.IsNull() ) {
      if ( ignoreMeshed ) {
        // eNext must not have computed mesh
        if ( SMESHDS_SubMesh* sm = aMesh.GetMeshDS()->MeshElements(eNext) )
          if ( sm->NbNodes() || sm->NbElements() )
            break;
      }
      // eNext must have same hypotheses
      SMESH_Algo* algo = aMesh.GetGen()->GetAlgo( aMesh, eNext );
      if ( !algo ||
           string(theAlgo->GetName()) != algo->GetName() ||
           hypList != algo->GetUsedHypothesis(aMesh, eNext, false))
        break;
      if ( forward )
        edges.push_back( eNext );
      else
        edges.push_front( eNext );
      eNext = nextC1Edge( eNext, aMesh, forward );
    }
  }
  return new StdMeshers_FaceSide( aFace, edges, &aMesh, true, false );
}
Esempio n. 2
0
static bool checkMissing(SMESH_Gen*                aGen,
                         SMESH_Mesh&               aMesh,
                         SMESH_subMesh*            aSubMesh,
                         const int                 aTopAlgoDim,
                         bool*                     globalChecked,
                         const bool                checkNoAlgo,
                         set<SMESH_subMesh*>&      aCheckedMap,
                         list< SMESH_Gen::TAlgoStateError > & theErrors)
{
  switch ( aSubMesh->GetSubShape().ShapeType() )
  {
  case TopAbs_EDGE:
  case TopAbs_FACE:
  case TopAbs_SOLID: break; // check this sub-mesh, it can be meshed
  default:
    return true; // not meshable sub-mesh
  }
  if ( aCheckedMap.count( aSubMesh ))
    return true;

  //MESSAGE("=====checkMissing");

  int ret = true;
  SMESH_Algo* algo = 0;

  switch (aSubMesh->GetAlgoState())
  {
  case SMESH_subMesh::NO_ALGO: {
    if (checkNoAlgo)
    {
      // should there be any algo?
      int shapeDim = SMESH_Gen::GetShapeDim( aSubMesh->GetSubShape() );
      if (aTopAlgoDim > shapeDim)
      {
        MESSAGE( "ERROR: " << shapeDim << "D algorithm is missing" );
        ret = false;
        theErrors.push_back( SMESH_Gen::TAlgoStateError() );
        theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, shapeDim, true );
      }
    }
    return ret;
  }
  case SMESH_subMesh::MISSING_HYP: {
    // notify if an algo missing hyp is attached to aSubMesh
    algo = aSubMesh->GetAlgo();
    ASSERT( algo );
    bool IsGlobalHypothesis = aGen->IsGlobalHypothesis( algo, aMesh );
    if (!IsGlobalHypothesis || !globalChecked[ algo->GetDim() ])
    {
      TAlgoStateErrorName errName = SMESH_Hypothesis::HYP_MISSING;
      SMESH_Hypothesis::Hypothesis_Status status;
      algo->CheckHypothesis( aMesh, aSubMesh->GetSubShape(), status );
      if ( status == SMESH_Hypothesis::HYP_BAD_PARAMETER ) {
        MESSAGE( "ERROR: hypothesis of " << (IsGlobalHypothesis ? "Global " : "Local ")
                 << "<" << algo->GetName() << "> has a bad parameter value");
        errName = status;
      } else if ( status == SMESH_Hypothesis::HYP_BAD_GEOMETRY ) {
        MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ")
                 << "<" << algo->GetName() << "> assigned to mismatching geometry");
        errName = status;
      } else {
        MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ")
                 << "<" << algo->GetName() << "> misses some hypothesis");
      }
      if (IsGlobalHypothesis)
        globalChecked[ algo->GetDim() ] = true;
      theErrors.push_back( SMESH_Gen::TAlgoStateError() );
      theErrors.back().Set( errName, algo, IsGlobalHypothesis );
    }
    ret = false;
    break;
  }
  case SMESH_subMesh::HYP_OK:
    algo = aSubMesh->GetAlgo();
    ret = true;
    if (!algo->NeedDiscreteBoundary())
    {
      SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false,
                                                                       /*complexShapeFirst=*/false);
      while ( itsub->more() )
        aCheckedMap.insert( itsub->next() );
    }
    break;
  default: ASSERT(0);
  }

  // do not check under algo that hides sub-algos or
  // re-start checking NO_ALGO state
  ASSERT (algo);
  bool isTopLocalAlgo =
    ( aTopAlgoDim <= algo->GetDim() && !aGen->IsGlobalHypothesis( algo, aMesh ));
  if (!algo->NeedDiscreteBoundary() || isTopLocalAlgo)
  {
    bool checkNoAlgo2 = ( algo->NeedDiscreteBoundary() );
    SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false,
                                                                     /*complexShapeFirst=*/true);
    while ( itsub->more() )
    {
      // sub-meshes should not be checked further more
      SMESH_subMesh* sm = itsub->next();

      if (isTopLocalAlgo)
      {
        //check algo on sub-meshes
        int aTopAlgoDim2 = algo->GetDim();
        if (!checkMissing (aGen, aMesh, sm, aTopAlgoDim2,
                           globalChecked, checkNoAlgo2, aCheckedMap, theErrors))
        {
          ret = false;
          if (sm->GetAlgoState() == SMESH_subMesh::NO_ALGO )
            checkNoAlgo2 = false;
        }
      }
      aCheckedMap.insert( sm );
    }
  }
  return ret;
}
Esempio n. 3
0
bool SMESH_Gen::Evaluate(SMESH_Mesh &          aMesh,
                         const TopoDS_Shape &  aShape,
                         MapShapeNbElems&      aResMap,
                         const bool            anUpward,
                         TSetOfInt*            aShapesId)
{
  MESSAGE("SMESH_Gen::Evaluate");

  bool ret = true;

  SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);

  const bool includeSelf = true;
  const bool complexShapeFirst = true;
  SMESH_subMeshIteratorPtr smIt;

  if ( anUpward ) { // is called from below code here
    // -----------------------------------------------
    // mesh all the sub-shapes starting from vertices
    // -----------------------------------------------
    smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
    while ( smIt->more() ) {
      SMESH_subMesh* smToCompute = smIt->next();

      // do not mesh vertices of a pseudo shape
      const TopAbs_ShapeEnum shapeType = smToCompute->GetSubShape().ShapeType();
      //if ( !aMesh.HasShapeToMesh() && shapeType == TopAbs_VERTEX )
      //  continue;
      if ( !aMesh.HasShapeToMesh() ) {
        if( shapeType == TopAbs_VERTEX || shapeType == TopAbs_WIRE ||
            shapeType == TopAbs_SHELL )
          continue;
      }

      smToCompute->Evaluate(aResMap);
      if( aShapesId )
        aShapesId->insert( smToCompute->GetId() );
    }
    return ret;
  }
  else {
    // -----------------------------------------------------------------
    // apply algos that DO NOT require Discreteized boundaries and DO NOT
    // support sub-meshes, starting from the most complex shapes
    // and collect sub-meshes with algos that DO support sub-meshes
    // -----------------------------------------------------------------
    list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes;
    smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
    while ( smIt->more() ) {
      SMESH_subMesh* smToCompute = smIt->next();
      const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
      const int aShapeDim = GetShapeDim( aSubShape );
      if ( aShapeDim < 1 ) break;
      
      SMESH_Algo* algo = GetAlgo( smToCompute );
      if ( algo && !algo->NeedDiscreteBoundary() ) {
        if ( algo->SupportSubmeshes() ) {
          smWithAlgoSupportingSubmeshes.push_front( smToCompute );
        }
        else {
          smToCompute->Evaluate(aResMap);
          if ( aShapesId )
            aShapesId->insert( smToCompute->GetId() );
        }
      }
    }

    // ------------------------------------------------------------
    // sort list of meshes according to mesh order
    // ------------------------------------------------------------
    std::vector< SMESH_subMesh* > smVec( smWithAlgoSupportingSubmeshes.begin(),
                                         smWithAlgoSupportingSubmeshes.end() );
    aMesh.SortByMeshOrder( smVec );

    // ------------------------------------------------------------
    // compute sub-meshes under shapes with algos that DO NOT require
    // Discreteized boundaries and DO support sub-meshes
    // ------------------------------------------------------------
    // start from lower shapes
    for ( size_t i = 0; i < smVec.size(); ++i )
    {
      sm = smVec[i];

      // get a shape the algo is assigned to
      TopoDS_Shape algoShape;
      if ( !GetAlgo( sm, & algoShape ))
        continue; // strange...

      // look for more local algos
      smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst);
      while ( smIt->more() ) {
        SMESH_subMesh* smToCompute = smIt->next();

        const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
        const int aShapeDim = GetShapeDim( aSubShape );
        if ( aShapeDim < 1 ) continue;

        SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
        filter
          .And( SMESH_HypoFilter::IsApplicableTo( aSubShape ))
          .And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh ));

        if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true ))
        {
          if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
          SMESH_Hypothesis::Hypothesis_Status status;
          if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
            // mesh a lower smToCompute starting from vertices
            Evaluate( aMesh, aSubShape, aResMap, /*anUpward=*/true, aShapesId );
        }
      }
    }
    // ----------------------------------------------------------
    // apply the algos that do not require Discreteized boundaries
    // ----------------------------------------------------------
    for ( size_t i = 0; i < smVec.size(); ++i )
    {
      sm = smVec[i];
      sm->Evaluate(aResMap);
      if ( aShapesId )
        aShapesId->insert( sm->GetId() );
    }

    // -----------------------------------------------
    // mesh the rest sub-shapes starting from vertices
    // -----------------------------------------------
    ret = Evaluate( aMesh, aShape, aResMap, /*anUpward=*/true, aShapesId );
  }

  MESSAGE( "VSR - SMESH_Gen::Evaluate() finished, OK = " << ret);
  return ret;
}
Esempio n. 4
0
bool SMESH_Gen::Compute(SMESH_Mesh &          aMesh,
                        const TopoDS_Shape &  aShape,
                        const bool            aShapeOnly /*=false*/,
                        const bool            anUpward /*=false*/,
                        const ::MeshDimension aDim /*=::MeshDim_3D*/,
                        TSetOfInt*            aShapesId /*=0*/)
{
  MESSAGE("SMESH_Gen::Compute");
  MEMOSTAT;

  bool ret = true;

  SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);

  const bool includeSelf = true;
  const bool complexShapeFirst = true;
  const int  globalAlgoDim = 100;

  SMESH_subMeshIteratorPtr smIt;

  // Fix of Issue 22150. Due to !BLSURF->OnlyUnaryInput(), BLSURF computes edges
  // that must be computed by Projection 1D-2D when Projection asks to compute
  // one face only.
  SMESH_subMesh::compute_event computeEvent =
    aShapeOnly ? SMESH_subMesh::COMPUTE_SUBMESH : SMESH_subMesh::COMPUTE;

  if ( anUpward ) // is called from the below code in this method
  {
    // ===============================================
    // Mesh all the sub-shapes starting from vertices
    // ===============================================

    smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
    while ( smIt->more() )
    {
      SMESH_subMesh* smToCompute = smIt->next();

      // do not mesh vertices of a pseudo shape
      const TopoDS_Shape&        shape = smToCompute->GetSubShape();
      const TopAbs_ShapeEnum shapeType = shape.ShapeType();
      if ( !aMesh.HasShapeToMesh() && shapeType == TopAbs_VERTEX )
        continue;

      // check for preview dimension limitations
      if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
      {
        // clear compute state not to show previous compute errors
        //  if preview invoked less dimension less than previous
        smToCompute->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
        continue;
      }

      if (smToCompute->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
      {
        if (_compute_canceled)
          return false;
        setCurrentSubMesh( smToCompute );
        smToCompute->ComputeStateEngine( computeEvent );
        setCurrentSubMesh( NULL );
      }

      // we check all the sub-meshes here and detect if any of them failed to compute
      if (smToCompute->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE &&
          ( shapeType != TopAbs_EDGE || !SMESH_Algo::isDegenerated( TopoDS::Edge( shape ))))
        ret = false;
      else if ( aShapesId )
        aShapesId->insert( smToCompute->GetId() );
    }
    //aMesh.GetMeshDS()->Modified();
    return ret;
  }
  else
  {
    // ================================================================
    // Apply algos that do NOT require discreteized boundaries
    // ("all-dimensional") and do NOT support sub-meshes, starting from
    // the most complex shapes and collect sub-meshes with algos that 
    // DO support sub-meshes
    // ================================================================

    list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes[4]; // for each dim

    // map to sort sm with same dim algos according to dim of
    // the shape the algo assigned to (issue 0021217).
    // Other issues influenced the algo applying order:
    // 21406, 21556, 21893, 20206
    multimap< int, SMESH_subMesh* > shDim2sm;
    multimap< int, SMESH_subMesh* >::reverse_iterator shDim2smIt;
    TopoDS_Shape algoShape;
    int prevShapeDim = -1, aShapeDim;

    smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
    while ( smIt->more() )
    {
      SMESH_subMesh* smToCompute = smIt->next();
      if ( smToCompute->GetComputeState() != SMESH_subMesh::READY_TO_COMPUTE )
        continue;

      const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
      aShapeDim = GetShapeDim( aSubShape );
      if ( aShapeDim < 1 ) break;
      
      // check for preview dimension limitations
      if ( aShapesId && aShapeDim > (int)aDim )
        continue;

      SMESH_Algo* algo = GetAlgo( smToCompute, &algoShape );
      if ( algo && !algo->NeedDiscreteBoundary() )
      {
        if ( algo->SupportSubmeshes() )
        {
          // reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
          // so that more local algos to go first
          if ( prevShapeDim != aShapeDim )
          {
            prevShapeDim = aShapeDim;
            for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
              if ( shDim2smIt->first == globalAlgoDim )
                smWithAlgoSupportingSubmeshes[ aShapeDim ].push_back( shDim2smIt->second );
              else
                smWithAlgoSupportingSubmeshes[ aShapeDim ].push_front( shDim2smIt->second );
            shDim2sm.clear();
          }
          // add smToCompute to shDim2sm map
          if ( algoShape.IsSame( aMesh.GetShapeToMesh() ))
          {
            aShapeDim = globalAlgoDim; // to compute last
          }
          else
          {
            aShapeDim = GetShapeDim( algoShape );
            if ( algoShape.ShapeType() == TopAbs_COMPOUND )
            {
              TopoDS_Iterator it( algoShape );
              aShapeDim += GetShapeDim( it.Value() );
            }
          }
          shDim2sm.insert( make_pair( aShapeDim, smToCompute ));
        }
        else // Compute w/o support of sub-meshes
        {
          if (_compute_canceled)
            return false;
          setCurrentSubMesh( smToCompute );
          smToCompute->ComputeStateEngine( computeEvent );
          setCurrentSubMesh( NULL );
          if ( aShapesId )
            aShapesId->insert( smToCompute->GetId() );
        }
      }
    }
    // reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
    for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
      if ( shDim2smIt->first == globalAlgoDim )
        smWithAlgoSupportingSubmeshes[3].push_back( shDim2smIt->second );
      else
        smWithAlgoSupportingSubmeshes[0].push_front( shDim2smIt->second );

    // ======================================================
    // Apply all-dimensional algorithms supporing sub-meshes
    // ======================================================

    std::vector< SMESH_subMesh* > smVec;
    for ( aShapeDim = 0; aShapeDim < 4; ++aShapeDim )
    {
      // ------------------------------------------------
      // sort list of sub-meshes according to mesh order
      // ------------------------------------------------
      smVec.assign( smWithAlgoSupportingSubmeshes[ aShapeDim ].begin(),
                    smWithAlgoSupportingSubmeshes[ aShapeDim ].end() );
      aMesh.SortByMeshOrder( smVec );

      // ------------------------------------------------------------
      // compute sub-meshes with local uni-dimensional algos under
      // sub-meshes with all-dimensional algos
      // ------------------------------------------------------------
      // start from lower shapes
      for ( size_t i = 0; i < smVec.size(); ++i )
      {
        sm = smVec[i];

        // get a shape the algo is assigned to
        if ( !GetAlgo( sm, & algoShape ))
          continue; // strange...

        // look for more local algos
        smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst);
        while ( smIt->more() )
        {
          SMESH_subMesh* smToCompute = smIt->next();

          const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
          const int aShapeDim = GetShapeDim( aSubShape );
          //if ( aSubShape.ShapeType() == TopAbs_VERTEX ) continue;
          if ( aShapeDim < 1 ) continue;

          // check for preview dimension limitations
          if ( aShapesId && GetShapeDim( aSubShape.ShapeType() ) > (int)aDim )
            continue;

          SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
          filter
            .And( SMESH_HypoFilter::IsApplicableTo( aSubShape ))
            .And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh ));

          if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true))
          {
            if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
            SMESH_Hypothesis::Hypothesis_Status status;
            if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
              // mesh a lower smToCompute starting from vertices
              Compute( aMesh, aSubShape, aShapeOnly, /*anUpward=*/true, aDim, aShapesId );
          }
        }
      }
      // --------------------------------
      // apply the all-dimensional algos
      // --------------------------------
      for ( size_t i = 0; i < smVec.size(); ++i )
      {
        sm = smVec[i];
        if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
        {
          const TopAbs_ShapeEnum shapeType = sm->GetSubShape().ShapeType();
          // check for preview dimension limitations
          if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
            continue;

          if (_compute_canceled)
            return false;
          setCurrentSubMesh( sm );
          sm->ComputeStateEngine( computeEvent );
          setCurrentSubMesh( NULL );
          if ( aShapesId )
            aShapesId->insert( sm->GetId() );
        }
      }
    } // loop on shape dimensions

    // -----------------------------------------------
    // mesh the rest sub-shapes starting from vertices
    // -----------------------------------------------
    ret = Compute( aMesh, aShape, aShapeOnly, /*anUpward=*/true, aDim, aShapesId );
  }

  MESSAGE( "VSR - SMESH_Gen::Compute() finished, OK = " << ret);
  MEMOSTAT;

  SMESHDS_Mesh *myMesh = aMesh.GetMeshDS();
  MESSAGE("*** compactMesh after compute");
  myMesh->compactMesh();

  // fix quadratic mesh by bending iternal links near concave boundary
  if ( aShape.IsSame( aMesh.GetShapeToMesh() ) &&
       !aShapesId && // not preview
       ret ) // everything is OK
  {
    SMESH_MesherHelper aHelper( aMesh );
    if ( aHelper.IsQuadraticMesh() != SMESH_MesherHelper::LINEAR )
    {
      aHelper.FixQuadraticElements( sm->GetComputeError() );
    }
  }
  return ret;
}
bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh,
                                  const TopoDS_Shape & aShape,
                                  MapShapeNbElems& aResMap)
{
  vector < SMESH_subMesh * >meshFaces;
  TopTools_SequenceOfShape aFaces;
  for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
    aFaces.Append(exp.Current());
    SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
    ASSERT(aSubMesh);
    meshFaces.push_back(aSubMesh);
  }
  if (meshFaces.size() != 6) {
    //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
    static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
    return compositeHexa.Evaluate(aMesh, aShape, aResMap);
  }
  
  int i = 0;
  for(; i<6; i++) {
    //TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
    TopoDS_Shape aFace = aFaces.Value(i+1);
    SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
    if( !algo ) {
      std::vector<int> aResVec(SMDSEntity_Last);
      for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
      SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
      aResMap.insert(std::make_pair(sm,aResVec));
      SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
      smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
      return false;
    }
    string algoName = algo->GetName();
    bool isAllQuad = false;
    if (algoName == "Quadrangle_2D") {
      MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i]);
      if( anIt == aResMap.end() ) continue;
      std::vector<int> aVec = (*anIt).second;
      int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
      if( nbtri == 0 )
        isAllQuad = true;
    }
    if ( ! isAllQuad ) {
      return EvaluatePentahedralMesh(aMesh, aShape, aResMap);
    }
  }
  
  // find number of 1d elems for 1 face
  int nb1d = 0;
  TopTools_MapOfShape Edges1;
  bool IsQuadratic = false;
  bool IsFirst = true;
  for (TopExp_Explorer exp(aFaces.Value(1), TopAbs_EDGE); exp.More(); exp.Next()) {
    Edges1.Add(exp.Current());
    SMESH_subMesh *sm = aMesh.GetSubMesh(exp.Current());
    if( sm ) {
      MapShapeNbElemsItr anIt = aResMap.find(sm);
      if( anIt == aResMap.end() ) continue;
      std::vector<int> aVec = (*anIt).second;
      nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
      if(IsFirst) {
        IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
        IsFirst = false;
      }
    }
  }
  // find face opposite to 1 face
  int OppNum = 0;
  for(i=2; i<=6; i++) {
    bool IsOpposite = true;
    for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) {
      if( Edges1.Contains(exp.Current()) ) {
        IsOpposite = false;
        break;
      }
    }
    if(IsOpposite) {
      OppNum = i;
      break;
    }
  }
  // find number of 2d elems on side faces
  int nb2d = 0;
  for(i=2; i<=6; i++) {
    if( i == OppNum ) continue;
    MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] );
    if( anIt == aResMap.end() ) continue;
    std::vector<int> aVec = (*anIt).second;
    nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
  }
  
  MapShapeNbElemsItr anIt = aResMap.find( meshFaces[0] );
  std::vector<int> aVec = (*anIt).second;
  int nb2d_face0 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
  int nb0d_face0 = aVec[SMDSEntity_Node];

  std::vector<int> aResVec(SMDSEntity_Last);
  for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
  if(IsQuadratic) {
    aResVec[SMDSEntity_Quad_Hexa] = nb2d_face0 * ( nb2d/nb1d );
    int nb1d_face0_int = ( nb2d_face0*4 - nb1d ) / 2;
    aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
  }
  else {
    aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
    aResVec[SMDSEntity_Hexa] = nb2d_face0 * ( nb2d/nb1d );
  }
  SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
  aResMap.insert(std::make_pair(sm,aResVec));

  return true;
}
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh &         aMesh,
                                 const TopoDS_Shape & aShape)// throw(SALOME_Exception)
{
  // PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside
  //Unexpect aCatch(SalomeException);
  MESSAGE("StdMeshers_Hexa_3D::Compute");
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  // 0.  - shape and face mesh verification
  // 0.1 - shape must be a solid (or a shell) with 6 faces

  vector < SMESH_subMesh * >meshFaces;
  for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
    SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
    ASSERT(aSubMesh);
    meshFaces.push_back(aSubMesh);
  }
  if (meshFaces.size() != 6) {
    //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
    static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
    if ( !compositeHexa.Compute( aMesh, aShape ))
      return error( compositeHexa.GetComputeError() );
    return true;
  }

  // 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges)

  // tool for working with quadratic elements
  SMESH_MesherHelper aTool (aMesh);
  _quadraticMesh = aTool.IsQuadraticSubMesh(aShape);

  // cube structure
  typedef struct cubeStruct
  {
    TopoDS_Vertex V000;
    TopoDS_Vertex V001;
    TopoDS_Vertex V010;
    TopoDS_Vertex V011;
    TopoDS_Vertex V100;
    TopoDS_Vertex V101;
    TopoDS_Vertex V110;
    TopoDS_Vertex V111;
    faceQuadStruct* quad_X0;
    faceQuadStruct* quad_X1;
    faceQuadStruct* quad_Y0;
    faceQuadStruct* quad_Y1;
    faceQuadStruct* quad_Z0;
    faceQuadStruct* quad_Z1;
    Point3DStruct* np; // normalised 3D coordinates
  } CubeStruct;

  CubeStruct aCube;

  // bounding faces
  FaceQuadStruct* aQuads[6];
  for (int i = 0; i < 6; i++)
    aQuads[i] = 0;

  for (int i = 0; i < 6; i++)
  {
    TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
    SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
    string algoName = algo->GetName();
    bool isAllQuad = false;
    if (algoName == "Quadrangle_2D") {
      SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace );
      if ( sm ) {
        isAllQuad = true;
        SMDS_ElemIteratorPtr eIt = sm->GetElements();
        while ( isAllQuad && eIt->more() ) {
          const SMDS_MeshElement* elem =  eIt->next();
          isAllQuad = ( elem->NbNodes()==4 ||(_quadraticMesh && elem->NbNodes()==8) );
        }
      }
    }
    if ( ! isAllQuad ) {
      SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
      return ClearAndReturn( aQuads, error(err));
    }
    StdMeshers_Quadrangle_2D *quadAlgo =
      dynamic_cast < StdMeshers_Quadrangle_2D * >(algo);
    ASSERT(quadAlgo);
    try {
      aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh);
      if(!aQuads[i]) {
        return error( quadAlgo->GetComputeError());
      }
    }
    catch(SALOME_Exception & S_ex) {
      return ClearAndReturn( aQuads, error(COMPERR_SLM_EXCEPTION,TComm(S_ex.what()) <<
                                           " Raised by StdMeshers_Quadrangle_2D "
                                           " on face #" << meshDS->ShapeToIndex( aFace )));
    }

    // 0.2.1 - number of points on the opposite edges must be the same
    if (aQuads[i]->side[0]->NbPoints() != aQuads[i]->side[2]->NbPoints() ||
        aQuads[i]->side[1]->NbPoints() != aQuads[i]->side[3]->NbPoints()
        /*aQuads[i]->side[0]->NbEdges() != 1 ||
        aQuads[i]->side[1]->NbEdges() != 1 ||
        aQuads[i]->side[2]->NbEdges() != 1 ||
        aQuads[i]->side[3]->NbEdges() != 1*/) {
      MESSAGE("different number of points on the opposite edges of face " << i);
      // Try to go into penta algorithm 'cause it has been improved.
      SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
      return ClearAndReturn( aQuads, error(err));
    }
  }

  // 1.  - identify faces and vertices of the "cube"
  // 1.1 - ancestor maps vertex->edges in the cube

//   TopTools_IndexedDataMapOfShapeListOfShape MS;
//   TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS);

  // 1.2 - first face is choosen as face Y=0 of the unit cube

  const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape();
  //const TopoDS_Face & F = TopoDS::Face(aFace);

  // 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001

  aCube.V000 = aQuads[0]->side[0]->FirstVertex(); // will be (0,0,0) on the unit cube
  aCube.V100 = aQuads[0]->side[0]->LastVertex();  // will be (1,0,0) on the unit cube
  aCube.V001 = aQuads[0]->side[2]->FirstVertex(); // will be (0,0,1) on the unit cube
  aCube.V101 = aQuads[0]->side[2]->LastVertex();  // will be (1,0,1) on the unit cube

  TopTools_IndexedMapOfShape MV0;
  TopExp::MapShapes(aFace, TopAbs_VERTEX, MV0);

  aCube.V010 = OppositeVertex( aCube.V000, MV0, aQuads);
  aCube.V110 = OppositeVertex( aCube.V100, MV0, aQuads);
  aCube.V011 = OppositeVertex( aCube.V001, MV0, aQuads);
  aCube.V111 = OppositeVertex( aCube.V101, MV0, aQuads);

  // 1.6 - find remaining faces given 4 vertices

  int _indY0 = 0;
  int _indY1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V010, aCube.V011, aCube.V110, aCube.V111);
  int _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V000, aCube.V010, aCube.V100, aCube.V110);
  int _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V001, aCube.V011, aCube.V101, aCube.V111);
  int _indX0 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V000, aCube.V001, aCube.V010, aCube.V011);
  int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V100, aCube.V101, aCube.V110, aCube.V111);

  // IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization
  if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 )
    return error(COMPERR_BAD_SHAPE);

  aCube.quad_Y0 = aQuads[_indY0];
  aCube.quad_Y1 = aQuads[_indY1];
  aCube.quad_Z0 = aQuads[_indZ0];
  aCube.quad_Z1 = aQuads[_indZ1];
  aCube.quad_X0 = aQuads[_indX0];
  aCube.quad_X1 = aQuads[_indX1];

  // 1.7 - get convertion coefs from face 2D normalized to 3D normalized

  Conv2DStruct cx0;                     // for face X=0
  Conv2DStruct cx1;                     // for face X=1
  Conv2DStruct cy0;
  Conv2DStruct cy1;
  Conv2DStruct cz0;
  Conv2DStruct cz1;

  GetConv2DCoefs(*aCube.quad_X0, meshFaces[_indX0]->GetSubShape(),
                 aCube.V000, aCube.V010, aCube.V011, aCube.V001, cx0);
  GetConv2DCoefs(*aCube.quad_X1, meshFaces[_indX1]->GetSubShape(),
                 aCube.V100, aCube.V110, aCube.V111, aCube.V101, cx1);
  GetConv2DCoefs(*aCube.quad_Y0, meshFaces[_indY0]->GetSubShape(),
                 aCube.V000, aCube.V100, aCube.V101, aCube.V001, cy0);
  GetConv2DCoefs(*aCube.quad_Y1, meshFaces[_indY1]->GetSubShape(),
                 aCube.V010, aCube.V110, aCube.V111, aCube.V011, cy1);
  GetConv2DCoefs(*aCube.quad_Z0, meshFaces[_indZ0]->GetSubShape(),
                 aCube.V000, aCube.V100, aCube.V110, aCube.V010, cz0);
  GetConv2DCoefs(*aCube.quad_Z1, meshFaces[_indZ1]->GetSubShape(),
                 aCube.V001, aCube.V101, aCube.V111, aCube.V011, cz1);

  // 1.8 - create a 3D structure for normalized values
  
  int nbx = aCube.quad_Z0->side[0]->NbPoints();
  if (cz0.a1 == 0.) nbx = aCube.quad_Z0->side[1]->NbPoints();
 
  int nby = aCube.quad_X0->side[0]->NbPoints();
  if (cx0.a1 == 0.) nby = aCube.quad_X0->side[1]->NbPoints();
 
  int nbz = aCube.quad_Y0->side[0]->NbPoints();
  if (cy0.a1 != 0.) nbz = aCube.quad_Y0->side[1]->NbPoints();

  int i1, j1, nbxyz = nbx * nby * nbz;
  Point3DStruct *np = new Point3DStruct[nbxyz];

  // 1.9 - store node indexes of faces

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape());

    faceQuadStruct *quad = aCube.quad_X0;
    int i = 0;                          // j = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
                        
    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic;     // j = x/face
        int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_X1;
    int i = nbx - 1;            // j = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic;     // j = x/face
        int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Y0;
    int j = 0;                          // i = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic;     // i = x/face
        int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Y1;
    int j = nby - 1;            // i = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic;     // i = x/face
        int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Z0;
    int k = 0;                          // i = x/face , j = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic;     // i = x/face
        int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc;     // j = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Z1;
    int k = nbz - 1;            // i = x/face , j = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();
    
    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic;     // i = x/face
        int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc;     // j = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  // 2.0 - for each node of the cube:
  //       - get the 8 points 3D = 8 vertices of the cube
  //       - get the 12 points 3D on the 12 edges of the cube
  //       - get the 6 points 3D on the 6 faces with their ID
  //       - compute the point 3D
  //       - store the point 3D in SMESHDS, store its ID in 3D structure

  int shapeID = meshDS->ShapeToIndex( aShape );

  Pt3 p000, p001, p010, p011, p100, p101, p110, p111;
  Pt3 px00, px01, px10, px11;
  Pt3 p0y0, p0y1, p1y0, p1y1;
  Pt3 p00z, p01z, p10z, p11z;
  Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz;

  GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);

  for (int i = 1; i < nbx - 1; i++) {
    for (int j = 1; j < nby - 1; j++) {
      for (int k = 1; k < nbz - 1; k++) {
        // *** seulement maillage regulier
        // 12 points on edges
        GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);

        GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS);

        GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS);

        // 12 points on faces
        GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS);

        int ijk = k * nbx * nby + j * nbx + i;
        double x = double (i) / double (nbx - 1);       // *** seulement
        double y = double (j) / double (nby - 1);       // *** maillage
        double z = double (k) / double (nbz - 1);       // *** regulier

        Pt3 X;
        for (int i = 0; i < 3; i++) {
          X[i] = (1 - x) * p0yz[i] + x * p1yz[i]
                 + (1 - y) * px0z[i] + y * px1z[i]
                 + (1 - z) * pxy0[i] + z * pxy1[i]
                 - (1 - x) * ((1 - y) * p00z[i] + y * p01z[i])
                 - x * ((1 - y) * p10z[i] + y * p11z[i])
                 - (1 - y) * ((1 - z) * px00[i] + z * px01[i])
                 - y * ((1 - z) * px10[i] + z * px11[i])
                 - (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i])
                 - z * ((1 - x) * p0y1[i] + x * p1y1[i])
                 + (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i])
                 + y * ((1 - z) * p010[i] + z * p011[i]))
                 + x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i])
                 + y * ((1 - z) * p110[i] + z * p111[i]));
        }

        SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]);
        np[ijk].node = node;
        meshDS->SetNodeInVolume(node, shapeID);
      }
    }
  }

  // find orientation of furute volumes according to MED convention
  vector< bool > forward( nbx * nby );
  SMDS_VolumeTool vTool;
  for (int i = 0; i < nbx - 1; i++) {
    for (int j = 0; j < nby - 1; j++) {
      int n1 = j * nbx + i;
      int n2 = j * nbx + i + 1;
      int n3 = (j + 1) * nbx + i + 1;
      int n4 = (j + 1) * nbx + i;
      int n5 = nbx * nby + j * nbx + i;
      int n6 = nbx * nby + j * nbx + i + 1;
      int n7 = nbx * nby + (j + 1) * nbx + i + 1;
      int n8 = nbx * nby + (j + 1) * nbx + i;

      SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node,
                                 np[n5].node,np[n6].node,np[n7].node,np[n8].node);
      vTool.Set( &tmpVol );
      forward[ n1 ] = vTool.IsForward();
    }
  }

  //2.1 - for each node of the cube (less 3 *1 Faces):
  //      - store hexahedron in SMESHDS
  MESSAGE("Storing hexahedron into the DS");
  for (int i = 0; i < nbx - 1; i++) {
    for (int j = 0; j < nby - 1; j++) {
      bool isForw = forward.at( j * nbx + i );
      for (int k = 0; k < nbz - 1; k++) {
        int n1 = k * nbx * nby + j * nbx + i;
        int n2 = k * nbx * nby + j * nbx + i + 1;
        int n3 = k * nbx * nby + (j + 1) * nbx + i + 1;
        int n4 = k * nbx * nby + (j + 1) * nbx + i;
        int n5 = (k + 1) * nbx * nby + j * nbx + i;
        int n6 = (k + 1) * nbx * nby + j * nbx + i + 1;
        int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1;
        int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i;

        SMDS_MeshVolume * elt;
        if ( isForw ) {
          elt = aTool.AddVolume(np[n1].node, np[n2].node,
                                np[n3].node, np[n4].node,
                                np[n5].node, np[n6].node,
                                np[n7].node, np[n8].node);
        }
        else {
          elt = aTool.AddVolume(np[n1].node, np[n4].node,
                                np[n3].node, np[n2].node,
                                np[n5].node, np[n8].node,
                                np[n7].node, np[n6].node);
        }
        
        meshDS->SetMeshElementOnShape(elt, shapeID);
      }
    }
  }
  if ( np ) delete [] np;
  return ClearAndReturn( aQuads, true );
}