Esempio n. 1
0
bool same_order(const SMatrix& m1, const SMatrix& m2)
{
   if(m1.getRows() == m2.getRows() && m1.getCols() == m2.getCols())
       return true;
   else
       return false;
}
Esempio n. 2
0
/**
 * Divide the matrix by the given matrix. The matrixes must be the same size
 * this is checked via assertions. We perform the division by multiplication
 * of the inverse so this is a costly operation.
 *
 * @param im The matrix to divide by
 */
SMatrix SMatrix::operator /( const SMatrix &im ) const
{
    assert( this->getCols() == im.getCols() && "Amount of Columns Differ");
    assert( this->getRows() == im.getRows() && "Amount of Rows Differ" );

    return (*this) * inv ( im );
}
Esempio n. 3
0
bool SMatrix::equal(const SMatrix& otherMat) const
{
   if(cols == otherMat.getCols() && rows == otherMat.getRows())
       return true;
   else
       return false;
}
Esempio n. 4
0
bool multiplicable(const SMatrix& m1, const SMatrix& m2)
{
   if( m1.getRows() == m2.getCols())
      return true;
   else
      return false;
}
Esempio n. 5
0
void output(std::ostream& outs, const SMatrix& src)
{  // NOTE: r and c are row # and coloum #, NOT indices
   for(int r = 1; r <= src.getRows(); ++r)
   {
      for(int c = 1; c <= src.getCols(); ++c)
         outs << setw(SMatrix::FIELD_WIDTH) << src.valAt(r, c);
      outs << endl;
   }
}
Esempio n. 6
0
SMatrix add(const SMatrix& m1, const SMatrix& m2)
{
   SMatrix newMat;
   newMat.setRows(m1.getRows());
   newMat.setCols(m1.getCols());
   int result;
   
   for( int i = 0; i < m1.getRows(); i++ )
   {
       for( int j = 0; j < m1.getCols(); j++ )
       {
            result = m1.valAt(i+1, j+1) + m2.valAt(i+1, j+1);
            newMat.setVal(i, j, result);
       }
   }
   
   return newMat;
}
Esempio n. 7
0
SMatrix SMatrix::times(const SMatrix& otherMat) const
{
    SMatrix newMat;
   newMat.setRows(rows);
   newMat.setCols(otherMat.getCols());
   int result;
   
   for( int i = 0; i < rows; i++ )
   {
        for( int k = 0; k < otherMat.getCols(); k++ )
        {
             result = 0;
             for(int j = 0; j < otherMat.getRows(); j++ )
             {
                result+=(data[i][j] * otherMat.valAt(j+1, k+1));
             }
             newMat.setVal(i, k, result);
             
        }
       
   }
   
   return newMat;
}
Esempio n. 8
0
/**
 * Calculate the determinate of matrix. Theres a number of
 * ways to do this. Using coofactors of a matrix uses recursion so
 * we avoid this. Instead we use Gauss-Jordan Elimination and use
 * an iterative approach.
 *
 * This elimination comes into play due to the fact
 * that if the elements in lower triangle of the
 * matrix are all zeroes, the determinant is simply
 * the product of the diagonals. This also applies
 * in the upper triangle zeroes. It means the determinate
 * ends up being the product of the main diagonal after elmination
 *
 *
 * @param im The matrix to calculate the determinate of
 */
T det ( const SMatrix &im )
{
    unsigned i, j, k;
    T temp, factor, detvalue = 1.0;

    // Determinate of a 1x1 matrix
    if ( im.getRows() == 1 ){
	return im[0][0];
    }

    // Determinate of a 2x2 matrix
    else if ( im.getRows() == 2 ){
	return im[0][0]*im[1][1] - im[1][0]*im[0][1];
    }

    // Determinate of a 3x3 matrix
    else if ( im.getRows() == 3 ){
	detvalue = -im[0][2]*im[1][1]*im[2][0];//-a02 a11 a20
	detvalue += im[0][1]*im[1][2]*im[2][0];//+ a01 a12 a20
	detvalue += im[0][2]*im[1][0]*im[2][1];//+ a02 a10 a21
	detvalue -= im[0][0]*im[1][2]*im[2][1];//- a00 a12 a21
	detvalue -= im[0][1]*im[1][0]*im[2][2];//- a01 a10 a22
	detvalue += im[0][0]*im[1][1]*im[2][2];//+ a00 a11 a22
	return detvalue;
    }

    // The determinate for any other size matrix
    SMatrix m ( im );

    for ( i = 0; i  < m.getRows(); i++ ){

	// If the main diagonal is zero, resort the matrix
	if ( m[i][i] == 0.0 ){
	    for (  j = i+1; j < m.getRows(); j++ ){
		if ( m[j][i] != 0.0 ){
		    // Add one row to other
		    for ( k = 0; k < m.getCols(); k++ ){
			temp  = m[i][k];
			m[i][k] = m[j][k];
			m[j][k] = temp;
		    }
		    //  For Gauss-Jordan Elimination if we do a switch,
		    //the determinant switches sign.
		    detvalue = -detvalue;
		    break;
		}
	    }
	}
	// If after resort the diagonal is still zero then the determinate
	// is definately zero
	// Pointless contining if det is already zero
	if ( m[i][i] == 0.0 ){
	    return 0.0;
	}
	// We now elimiate the lower rows to obtain a triangle of zeros
	for ( j = i+1; j < m.getRows(); j++ ){
	    if ( j != i ){
		factor = ( m[j][i] * 1.0 )	/ m[i][i];

		// Add one row to the other
		for ( k = i; k < m.getCols(); k++ ){
		    m[j][k]-=factor * m[i][k];
		}
	    }
	}
    }

    // Calculate the main diagonal
    for ( i = 0; i < m.getRows(); i++ ){
	detvalue *= m[i][i];
    }

    return detvalue;
}