Esempio n. 1
0
uint_t StaticLevelwiseCurveBalanceWeighted::operator()( SetupBlockForest & forest, const uint_t numberOfProcesses, const memory_t /*perProcessMemoryLimit*/ )
{
   // TODO: take per process memory limit into account?

   std::vector< SetupBlock * > blocks;
   if( hilbert_ )
      forest.getHilbertOrder( blocks );
   else
      forest.getMortonOrder( blocks );

   uint_t usedProcesses( uint_t(0) );

   for( uint_t level = uint_t(0); level < forest.getNumberOfLevels(); ++level )
   {
      std::vector< SetupBlock * > blocksOnLevel;

      for( auto block = blocks.begin(); block != blocks.end(); ++block )
         if( (*block)->getLevel() == level )
            blocksOnLevel.push_back( *block );

      workload_t totalWeight( 0 );
      for( auto block = blocksOnLevel.begin(); block != blocksOnLevel.end(); ++block )
      {
         WALBERLA_ASSERT( !( (*block)->getWorkload() < workload_t(0) ) );
         totalWeight += (*block)->getWorkload();
      }

      uint_t c( uint_t(0) );
      for( uint_t p = uint_t(0); p != numberOfProcesses; ++p )
      {
         const workload_t minWeight = totalWeight / workload_c( numberOfProcesses - p );
         workload_t weight( 0 );
         while( weight < minWeight && c < blocksOnLevel.size() )
         {
            blocksOnLevel[c]->assignTargetProcess(p);

            WALBERLA_ASSERT_LESS_EQUAL( p, usedProcesses );
            usedProcesses = p + uint_t(1);

            const workload_t addedWeight = blocksOnLevel[c]->getWorkload();
            weight += addedWeight;
            totalWeight -= addedWeight;
            ++c;
         }
      }
      while( c < blocksOnLevel.size() )
      {
         blocksOnLevel[c]->assignTargetProcess( numberOfProcesses - uint_t(1) );

         WALBERLA_ASSERT_LESS_EQUAL( numberOfProcesses - uint_t(1), usedProcesses );
         usedProcesses = numberOfProcesses;

         ++c;
      }


   }

   return usedProcesses;
}
Esempio n. 2
0
uint_t StaticLevelwiseCurveBalance::operator()( SetupBlockForest & forest, const uint_t numberOfProcesses, const memory_t /*perProcessMemoryLimit*/ )
{
   // TODO: take per process memory limit into account?

   std::vector< SetupBlock * > blocks;
   if( hilbert_ )
      forest.getHilbertOrder( blocks );
   else
      forest.getMortonOrder( blocks );

   uint_t border = uint_t(0);

   for( uint_t level = forest.getNumberOfLevels(); level-- > uint_t(0); )
   {
      std::vector< SetupBlock * > blocksOnLevel;

      for( auto block = blocks.begin(); block != blocks.end(); ++block )
         if( (*block)->getLevel() == level )
            blocksOnLevel.push_back( *block );

      const uint_t nBlocks = blocksOnLevel.size();

      if( nBlocks <= ( numberOfProcesses - border ) )
      {
         for( auto block = blocksOnLevel.begin(); block != blocksOnLevel.end(); ++block )
            (*block)->assignTargetProcess( border++ );

         WALBERLA_ASSERT_LESS_EQUAL( border, numberOfProcesses );

         if( border == numberOfProcesses )
            border = uint_t(0);
      }
      else
      {
         const uint_t reducedNBlocks = nBlocks - ( numberOfProcesses - border);
         const uint_t div = reducedNBlocks / numberOfProcesses;
         const uint_t mod = reducedNBlocks % numberOfProcesses;

         uint_t bIndex = uint_t(0);
         for( uint_t p = 0; p != numberOfProcesses; ++p )
         {
            uint_t count = div;
            if( p < mod ) ++count;
            if( p >= border ) ++count;

            WALBERLA_ASSERT_LESS_EQUAL( bIndex + count, blocksOnLevel.size() );

            for( uint_t i = bIndex; i < ( bIndex + count ); ++i )
               blocksOnLevel[i]->assignTargetProcess( p );
            bIndex += count;
         }

         border = mod;
      }
   }

   return std::min( numberOfProcesses, blocks.size() );
}
static void test() {

   for( uint_t i = 0; i < 5; ++i ) {

      SetupBlockForest forest;

      forest.addRefinementSelectionFunction( refinementSelectionFunctionAll );

      real_t xmin = math::realRandom( real_c(-100), real_c(100) );
      real_t xmax = math::realRandom( xmin + real_c(10), real_c(120) );
      real_t ymin = math::realRandom( real_c(-100), real_c(100) );
      real_t ymax = math::realRandom( ymin + real_c(10), real_c(120) );
      real_t zmin = math::realRandom( real_c(-100), real_c(100) );
      real_t zmax = math::realRandom( zmin + real_c(10), real_c(120) );

      AABB domain( xmin, ymin, zmin, xmax, ymax, zmax );
      forest.init( domain, math::intRandom( uint_t(5), uint_t(20) ), math::intRandom( uint_t(5), uint_t(20) ), math::intRandom( uint_t(5), uint_t(20) ),
                           math::boolRandom(), math::boolRandom(), math::boolRandom() );

      checkNeighborhoodConsistency( forest );
      checkCollectorConsistency( forest );
   }

   for( uint_t i = 0; i < 5; ++i ) {

      SetupBlockForest forest;

      forest.addRefinementSelectionFunction( refinementSelectionFunctionRandom );

      real_t xmin = math::realRandom( real_c(-100), real_c(100) );
      real_t xmax = math::realRandom( xmin + real_c(10), real_c(120) );
      real_t ymin = math::realRandom( real_c(-100), real_c(100) );
      real_t ymax = math::realRandom( ymin + real_c(10), real_c(120) );
      real_t zmin = math::realRandom( real_c(-100), real_c(100) );
      real_t zmax = math::realRandom( zmin + real_c(10), real_c(120) );

      AABB domain( xmin, ymin, zmin, xmax, ymax, zmax );
      forest.init( domain, math::intRandom( uint_t(5), uint_t(20) ), math::intRandom( uint_t(5), uint_t(20) ), math::intRandom( uint_t(5), uint_t(20) ),
                           math::boolRandom(), math::boolRandom(), math::boolRandom() );

      checkNeighborhoodConsistency( forest );
      checkCollectorConsistency( forest );
   }
}
Esempio n. 4
0
void test(const shared_ptr< DistanceOctree< MeshType > > & distanceOctree, const MeshType & mesh, const AABB & domainAABB, Vector3<uint_t> numBlocks)
{
   Vector3<real_t> blockSize(domainAABB.xSize() / real_c(numBlocks[0]),
      domainAABB.ySize() / real_c(numBlocks[1]),
      domainAABB.zSize() / real_c(numBlocks[2]));

   real_t maxError = blockSize.min() / real_t(10);

   SetupBlockForest setupBlockforest;
   setupBlockforest.addRootBlockExclusionFunction(F(distanceOctree, maxError));
   setupBlockforest.addWorkloadMemorySUIDAssignmentFunction(blockforest::uniformWorkloadAndMemoryAssignment);


   setupBlockforest.init(domainAABB, numBlocks[0], numBlocks[1], numBlocks[2], false, false, false);
   WALBERLA_LOG_DEVEL(setupBlockforest.toString());


   std::vector< Vector3<real_t> > vertexPositions;
   vertexPositions.reserve(mesh.n_vertices());
   for (auto vIt = mesh.vertices_begin(); vIt != mesh.vertices_end(); ++vIt)
   {
      vertexPositions.push_back(toWalberla(mesh.point(*vIt)));
   }

   std::vector< const blockforest::SetupBlock* > setupBlocks;
   setupBlockforest.getBlocks(setupBlocks);

   // Check wether all vertices are located in allocated blocks
   std::vector< Vector3<real_t> > uncoveredVertices(vertexPositions);

   for (auto bIt = setupBlocks.begin(); bIt != setupBlocks.end(); ++bIt)
   {
      const AABB & aabb = (*bIt)->getAABB();

      uncoveredVertices.erase(std::remove_if(uncoveredVertices.begin(), uncoveredVertices.end(), PointInAABB(aabb)), uncoveredVertices.end());
   }

   WALBERLA_CHECK(uncoveredVertices.empty(), "Not all vertices of the mesh are located in allocated blocks!");

   //setupBlockforest.assignAllBlocksToRootProcess();
   //setupBlockforest.writeVTKOutput( "setupblockforest" );
}
static void checkNeighborhoodConsistency( const SetupBlockForest& forest ) {

   std::vector< const SetupBlock* > blocks;
   forest.getBlocks( blocks );

   const int blockssize = int_c( blocks.size() );
#ifdef _OPENMP
   #pragma omp parallel for schedule(static)
#endif
   for( int i = 0; i < blockssize; ++i ) {

      const SetupBlock* const block = blocks[uint_c(i)];

      std::vector< real_t > neighborhoodSectionBlockCenters;

      for( uint_t n = 0; n != 26; ++n ) {

         std::vector< bool > hit( block->getNeighborhoodSectionSize(n), false );

         constructNeighborhoodSectionBlockCenters( n, block->getAABB(), neighborhoodSectionBlockCenters );

         WALBERLA_CHECK_EQUAL( neighborhoodSectionBlockCenters.size() % 3, uint_c(0) );

         for( uint_t p = 0; p != neighborhoodSectionBlockCenters.size(); p += 3 ) {

            real_t x = neighborhoodSectionBlockCenters[p];
            real_t y = neighborhoodSectionBlockCenters[p+1];
            real_t z = neighborhoodSectionBlockCenters[p+2];

            // treat periodicity
            if( x <  forest.getDomain().xMin() && forest.isXPeriodic() ) x = forest.getDomain().xMax() - forest.getDomain().xMin() + x;
            if( x >= forest.getDomain().xMax() && forest.isXPeriodic() ) x = forest.getDomain().xMin() - forest.getDomain().xMax() + x;
            if( y <  forest.getDomain().yMin() && forest.isYPeriodic() ) y = forest.getDomain().yMax() - forest.getDomain().yMin() + y;
            if( y >= forest.getDomain().yMax() && forest.isYPeriodic() ) y = forest.getDomain().yMin() - forest.getDomain().yMax() + y;
            if( z <  forest.getDomain().zMin() && forest.isZPeriodic() ) z = forest.getDomain().zMax() - forest.getDomain().zMin() + z;
            if( z >= forest.getDomain().zMax() && forest.isZPeriodic() ) z = forest.getDomain().zMin() - forest.getDomain().zMax() + z;

            bool noHit = true;
            for( uint_t c = 0; c != block->getNeighborhoodSectionSize(n) && noHit; ++c ) {
               if( block->getNeighbor(n,c)->getAABB().contains(x,y,z) ) {
                  hit[c] = true;
                  noHit = false;
               }
            }

            // either one neighbor must be hit OR the block is located at the border of the (non-periodic) simulation domain
            if( noHit )
               WALBERLA_CHECK( forest.getBlock(x,y,z) == NULL );
         }

         // every neighbor must be hit by at least one point
         for( uint_t c = 0; c != block->getNeighborhoodSectionSize(n); ++c )
            WALBERLA_CHECK( hit[c] );

         neighborhoodSectionBlockCenters.clear();
      }
   }
}
Esempio n. 6
0
uint_t CartesianDistribution::operator()( SetupBlockForest & forest, const uint_t numberOfProcesses, const memory_t /*perProcessMemoryLimit*/ )
{
   if( numberOfProcesses != ( numberOfXProcesses_ * numberOfYProcesses_ * numberOfZProcesses_ ) )
      WALBERLA_ABORT( "Load balancing failed: The total number of processes must be identical to the product "
                      "of the \'number of processes in x-, y-, and z-direction\'." );

   if( numberOfXProcesses_ > forest.getXSize() )
      WALBERLA_ABORT( "Load balancing failed: \'Number of processes in x-direction\' must be in (0," << forest.getXSize() << "]. "
                      "You specified \'" << numberOfXProcesses_ << "\'." );

   if( numberOfYProcesses_ > forest.getYSize() )
      WALBERLA_ABORT( "Load balancing failed: \'Number of processes in y-direction\' must be in (0," << forest.getYSize() << "]. "
                      "You specified \'" << numberOfYProcesses_ << "\'." );

   if( numberOfZProcesses_ > forest.getZSize() )
      WALBERLA_ABORT( "Load balancing failed: \'Number of processes in z-direction\' must be in (0," << forest.getZSize() << "]. "
                      "You specified \'" << numberOfZProcesses_ << "\'." );

   if( processIdMap_ != NULL )
      WALBERLA_CHECK_EQUAL( processIdMap_->size(), numberOfProcesses );

   uint_t partitions[3];
   partitions[0] = numberOfXProcesses_;
   partitions[1] = numberOfYProcesses_;
   partitions[2] = numberOfZProcesses_;

   std::vector< uint_t > indices[3];

   for( uint_t i = 0; i != 3; ++i )
   {
      const uint_t div = forest.getSize(i) / partitions[i];
      const uint_t mod = forest.getSize(i) % partitions[i];

      indices[i].resize( partitions[i] + 1, div );
      indices[i][0] = 0;

      for( uint_t j = 0; j != mod; ++j )
         ++indices[i][j+1];
      for( uint_t j = 1; j != indices[i].size(); ++j )
         indices[i][j] += indices[i][j-1];
   }

   for( uint_t z = 0; z != partitions[2]; ++z ) {
      for( uint_t y = 0; y != partitions[1]; ++y ) {
         for( uint_t x = 0; x != partitions[0]; ++x )
         {
            std::vector< SetupBlock * > partitionBlocks;

            forest.getBlocks( partitionBlocks, indices[0][x], indices[1][y], indices[2][z], indices[0][x+1], indices[1][y+1], indices[2][z+1] );

            for( auto block = partitionBlocks.begin(); block != partitionBlocks.end(); ++block )
            {
               const uint_t index = z * partitions[0] * partitions[1] + y * partitions[0] + x;

               (*block)->assignTargetProcess( ( processIdMap_ != NULL ) ? (*processIdMap_)[ index ] : index );
            }
         }
      }
   }

   return numberOfProcesses;
}