Esempio n. 1
0
File: f2cArray.C Progetto: 8l/rose
void Fortran_to_C::linearizeArrayDeclaration(SgArrayType* originalArrayType)
{
  // Get dim_info
  SgExprListExp* dimInfo = originalArrayType->get_dim_info();
  // Get dim list
  SgExpressionPtrList dimExpressionPtrList = dimInfo->get_expressions();

  SgExpression* newDimExpr; 
  Rose_STL_Container<SgExpression*>::iterator j =  dimExpressionPtrList.begin();
  while(j != dimExpressionPtrList.end())
  {
    SgExpression* indexExpression = getFortranDimensionSize(*j);

    /*
      Total array size is equal to the multiplication of all individual dimension size.
    */
    if(j != dimExpressionPtrList.begin()){
        newDimExpr = buildMultiplyOp(newDimExpr, indexExpression);
    }
    else
    /*
      If it's first dimension, array size is just its first dimension size.
    */
    {
      newDimExpr = indexExpression;
    }
    ++j;
  }
  // calling set_index won't replace the default index expression.  I have to delete the default manually.
  removeList.push_back(originalArrayType->get_index());
  originalArrayType->set_index(newDimExpr);
  newDimExpr->set_parent(originalArrayType);
  originalArrayType->set_rank(1); 
}
/*
 *  Fix op structure calls and inject debug names
 */
void OPSource::fixOpFunctions(SgNode *n)
{
  SgName var_name;
  SgFunctionCallExp *fn = isSgFunctionCallExp(n);
  if(fn != NULL)
  {
    string fn_name = fn->getAssociatedFunctionDeclaration()->get_name().getString();
    if(fn_name.compare("op_decl_const")==0) 
    {
      SgExprListExp* exprList = fn->get_args();
      SgExpressionPtrList &exprs = exprList->get_expressions();
      if( isSgStringVal(exprs.back()) == NULL )
      {
        SgVarRefExp* varExp = isSgVarRefExp(exprs[1]);
        if(!varExp)
        {
          varExp = isSgVarRefExp(isSgAddressOfOp(exprs[1])->get_operand_i());
        }

        if(varExp)
        {
          var_name = varExp->get_symbol()->get_name();
        }
        cout << "---Injecting Debug Name for const: " << var_name.getString() << "---" << endl;
        exprList->append_expression(buildStringVal(var_name));
      }
    }
  }
}
/*
 *  Fix OP function calls and inject debug names
 */
void OPSource::fixOpStructs(SgNode *n)
{
  SgInitializedName* initname = isSgInitializedName(n);
  if(initname)
  {
    string var_name = initname->get_name().getString();
    SgConstructorInitializer *initer = isSgConstructorInitializer(initname->get_initializer());
    if(initer)
    {
      string class_name = initer->get_class_decl()->get_name().getString();
      if(class_name.find("op_dat") != string::npos
          || class_name.find("op_dat_gbl") != string::npos
          || class_name.compare("_op_ptr") == 0 
          || class_name.compare("_op_set") == 0 
          || class_name.compare("_op_dat_const") == 0)
      {
        cout << "---Injecting Debug Name: " << var_name << "---" << endl;
        SgExprListExp* list = initer->get_args();
        SgExpressionPtrList &exprs = list->get_expressions();
        if( isSgStringVal(exprs.back()) == NULL )
        {
          list->append_expression(buildStringVal(var_name));
        }
      }
    }
  }
}
Esempio n. 4
0
SgFunctionCallExp *
OpenCL::getEnqueueKernelCallExpression (SgScopeStatement * scope,
    SgVarRefExp * commandQueue, SgVarRefExp * openCLKernel,
    SgVarRefExp * globalWorkSize, SgVarRefExp * localWorkSize,
    SgVarRefExp * event)
{
  using namespace SageBuilder;

  SgExprListExp * actualParameters = buildExprListExp ();

  actualParameters->append_expression (commandQueue);

  actualParameters->append_expression (openCLKernel);

  actualParameters->append_expression (buildIntVal (1));

  actualParameters->append_expression (buildOpaqueVarRefExp("NULL", scope));

  actualParameters->append_expression (buildAddressOfOp (globalWorkSize));

  actualParameters->append_expression (buildAddressOfOp (localWorkSize));

  actualParameters->append_expression (buildIntVal (0));

  actualParameters->append_expression (buildOpaqueVarRefExp("NULL", scope));

  actualParameters->append_expression (buildAddressOfOp (event));

  return buildFunctionCallExp ("clEnqueueNDRangeKernel", buildIntType (),
      actualParameters, scope);
}
Esempio n. 5
0
void insertChecksum(SgPntrArrRefExp *arrayReference,
		SgExprStatement *curExprStatement, bool isWrite) {

	if (arrayReference == NULL)
		return;

	// Create parameter list for function call
	SgExprListExp* parameters = new SgExprListExp(NEW_FILE_INFO);
	SgAddOp *addOp = new SgAddOp(NEW_FILE_INFO,
			arrayReference->get_lhs_operand(),
			arrayReference->get_rhs_operand(), arrayReference->get_type());
	parameters->append_expression(addOp); // Address
	//parameters->append_expression(arrayReference); // Value
	parameters->append_expression(
			buildStringVal(arrayReference->get_type()->unparseToString())); // type

	// Insert Function Call
	SgName name1;
	SgExprStatement* callStmt;

	if (!isWrite) {
		name1 = SgName(VERIFY_CALL);
		callStmt = buildFunctionCallStmt(name1, buildVoidType(), parameters,
				curExprStatement->get_scope());
		insertStatementBefore(curExprStatement, callStmt);
	} else {
		name1 = SgName(UPDATE_CALL);
		callStmt = buildFunctionCallStmt(name1, buildVoidType(), parameters,
				curExprStatement->get_scope());
		insertStatementAfter(curExprStatement, callStmt);
	}

}
void
CPPCUDAHostSubroutineDirectLoop::createKernelFunctionCallStatement (
    SgScopeStatement * scope)
{
  using namespace SageInterface;
  using namespace SageBuilder;
  using namespace OP2VariableNames;
  using namespace OP2::RunTimeVariableNames;

  Debug::getInstance ()->debugMessage (
      "Creating statement to call CUDA kernel", Debug::FUNCTION_LEVEL,
      __FILE__, __LINE__);

  SgExprListExp * actualParameters = buildExprListExp ();

  for (unsigned int i = 1; i <= parallelLoop->getNumberOfOpDatArgumentGroups (); ++i)
  {
    if (parallelLoop->isDuplicateOpDat (i) == false)
    {
      if (parallelLoop->isDirect (i) || parallelLoop->isReductionRequired (i))
      {
        SgDotExp * dotExpression = buildDotExp (
            variableDeclarations->getReference (getOpDatName (i)),
            buildOpaqueVarRefExp (data_d, subroutineScope));

        SgCastExp * castExpression = buildCastExp (dotExpression,
            buildPointerType (parallelLoop->getOpDatBaseType (i)));

        actualParameters->append_expression (castExpression);
      }
    }
  }

  actualParameters->append_expression (variableDeclarations->getReference (
      sharedMemoryOffset));

  SgArrowExp * arrowExpression = buildArrowExp (
      variableDeclarations->getReference (getOpSetName ()),
      buildOpaqueVarRefExp (size, subroutineScope));

  actualParameters->append_expression (arrowExpression);

  SgCudaKernelExecConfig * kernelConfiguration = new SgCudaKernelExecConfig (
      RoseHelper::getFileInfo (), variableDeclarations->getReference (
          CUDA::blocksPerGrid), variableDeclarations->getReference (
          CUDA::threadsPerBlock), variableDeclarations->getReference (
          CUDA::sharedMemorySize));

  kernelConfiguration->set_endOfConstruct (RoseHelper::getFileInfo ());

  SgCudaKernelCallExp * kernelCallExpression = new SgCudaKernelCallExp (
      RoseHelper::getFileInfo (), buildFunctionRefExp (
          calleeSubroutine->getSubroutineName (), subroutineScope),
      actualParameters, kernelConfiguration);

  kernelCallExpression->set_endOfConstruct (RoseHelper::getFileInfo ());

  appendStatement (buildExprStatement (kernelCallExpression), scope);
}
Esempio n. 7
0
SgFunctionCallExp* fooCallCreate()
{
        SgFunctionSymbol* funcSymb = new SgFunctionSymbol(fooDecl);
        SgFunctionRefExp* funcRefExp = new SgFunctionRefExp(SgDefaultFile, funcSymb);
        funcSymb->set_parent(funcRefExp);
        SgExprListExp* args = new SgExprListExp(SgDefaultFile);
        SgFunctionCallExp* funcCall = new SgFunctionCallExp(SgDefaultFile, funcRefExp, args);
        funcRefExp->set_parent(funcCall);
        args->set_parent(funcCall);
        
        return funcCall;
}
Esempio n. 8
0
SgFunctionCallExp *
OpenCL::OP2RuntimeSupport::getKernel (SgScopeStatement * scope,
    std::string const & kernelName)
{
  using namespace SageBuilder;

  SgExprListExp * actualParameters = buildExprListExp ();

  actualParameters->append_expression (buildStringVal (kernelName));

  return buildFunctionCallExp ("getKernel", buildVoidType (), actualParameters,
      scope);
}
Esempio n. 9
0
SgFunctionCallExp *
OpenCL::createWorkItemsSynchronisationCallStatement (SgScopeStatement * scope)
{
  using namespace SageBuilder;

  SgExprListExp * actualParameters = buildExprListExp ();

  actualParameters->append_expression (buildOpaqueVarRefExp (
      CLK_LOCAL_MEM_FENCE, scope));

  return buildFunctionCallExp ("barrier", buildVoidType (), actualParameters,
      scope);
}
Esempio n. 10
0
SgFunctionCallExp *
OpenCL::getFinishCommandQueueCallExpression (SgScopeStatement * scope,
    SgVarRefExp * commandQueue)
{
  using namespace SageBuilder;

  SgExprListExp * actualParameters = buildExprListExp ();

  actualParameters->append_expression (commandQueue);

  return buildFunctionCallExp ("clFinish", buildIntType (), actualParameters,
      scope);
}
Esempio n. 11
0
// ******************************************
//              MAIN PROGRAM
// ******************************************
int
main( int argc, char * argv[] )
   {
  // Initialize and check compatibility. See rose::initialize
     ROSE_INITIALIZE;

  // Build the AST used by ROSE
     SgProject* project = frontend(argc,argv);
     assert(project != NULL);

     vector<SgType*> memberTypes;
     vector<string>  memberNames;

     string name = "a";
     for (int i = 0; i < 10; i++)
        {
          memberTypes.push_back(SgTypeInt::createType());
          name = "_" + name;
          memberNames.push_back(name);
        }

  // Build the initializer
     SgExprListExp* initializerList = new SgExprListExp(SOURCE_POSITION);
     initializerList->set_endOfConstruct(SOURCE_POSITION);
     SgAggregateInitializer* structureInitializer = new SgAggregateInitializer(SOURCE_POSITION,initializerList);
     structureInitializer->set_endOfConstruct(SOURCE_POSITION);

  // Build the data member initializers for the structure (one SgAssignInitializer for each data member)
     for (unsigned int i = 0; i < memberNames.size(); i++)
        {
       // Set initial value to "i"
          SgIntVal* value = new SgIntVal(SOURCE_POSITION,i);
          value->set_endOfConstruct(SOURCE_POSITION);
          SgAssignInitializer* memberInitializer = new SgAssignInitializer(SOURCE_POSITION,value);
          memberInitializer->set_endOfConstruct(SOURCE_POSITION);
          structureInitializer->append_initializer(memberInitializer);
          memberInitializer->set_parent(structureInitializer);
        }

  // Access the first file and add a struct with data members specified
     SgSourceFile* file = isSgSourceFile((*project)[0]);
     ROSE_ASSERT(file != NULL);
     SgVariableDeclaration* variableDeclaration = buildStructVariable(file->get_globalScope(),memberTypes,memberNames,"X","x",structureInitializer);
     file->get_globalScope()->prepend_declaration(variableDeclaration);
     variableDeclaration->set_parent(file->get_globalScope());

    AstTests::runAllTests(project);
  // Code generation phase (write out new application "rose_<input file name>")
     return backend(project);
   }
Esempio n. 12
0
SgFunctionCallExp *
OpenCL::OP2RuntimeSupport::getAssertMessage (SgScopeStatement * scope,
    SgExpression * assertExpression, SgStringVal * message)
{
  using namespace SageBuilder;

  SgExprListExp * actualParameters = buildExprListExp ();

  actualParameters->append_expression (assertExpression);

  actualParameters->append_expression (message);

  return buildFunctionCallExp ("assert_m", buildVoidType (), actualParameters,
      scope);
}
/*
 *  Replace the op_par_loop with respective kernel function
 */
void OPSource::fixParLoops(SgNode *n)
{
  SgName kernel_name;
  SgFunctionCallExp *fn = isSgFunctionCallExp(n);
  if(fn != NULL)
  {
    string fn_name = fn->getAssociatedFunctionDeclaration()->get_name().getString();
    if(fn_name.compare("op_par_loop_2")==0 
    || fn_name.compare("op_par_loop_3")==0 
    || fn_name.compare("op_par_loop_4")==0
    || fn_name.compare("op_par_loop_5")==0
    || fn_name.compare("op_par_loop_6")==0
    || fn_name.compare("op_par_loop_7")==0
    || fn_name.compare("op_par_loop_8")==0
    || fn_name.compare("op_par_loop_9")==0) 
    {
      SgExprListExp* exprList = fn->get_args();
      SgExpressionPtrList &exprs = exprList->get_expressions();
      SgFunctionRefExp* varExp =  isSgFunctionRefExp(exprs[0]);
      if(varExp != NULL)
      {
        kernel_name = varExp->get_symbol()->get_name();
      }
      exprs.erase(exprs.begin());

      SgExpressionPtrList::iterator it = exprs.begin() + op_par_loop_args::num_params - 1;
      for(; it != exprs.end(); it += op_argument::num_params)
      {
        *it = buildCastExp( *it, buildPointerType(SgClassType::createType( buildStructDeclaration("op_dat<void>"))) );
      }

      // Inject Name
      exprs.insert(exprs.begin(), buildStringVal(kernel_name));
      
      // Fetch the declaration
      SgName name = SgName("op_par_loop_") + kernel_name;
      SgFunctionDeclaration *funcDecl = cudaFunctionDeclarations[kernel_name];
      if(funcDecl)
      {
        SgFunctionRefExp* ref = isSgFunctionRefExp(fn->get_function());
        SgFunctionSymbol *symbol = ref->get_symbol();
        symbol->set_declaration(funcDecl);
        ref->set_symbol(symbol);
        fn->set_function(ref);
      }
    }
  }
}
Esempio n. 14
0
void instrumentRead(SgVarRefExp *varRef) {
   SgExpression *parent = isSgExpression(varRef->get_parent());
   assert(parent != NULL);
   Sg_File_Info * file_info = Sg_File_Info::generateDefaultFileInfoForTransformationNode();

   SgCommaOpExp *commaOp = new SgCommaOpExp(file_info, beforeRead.getCallExp(), varRef,
                                                                           varRef->get_type());
   SgUnaryOp *uOp = isSgUnaryOp(parent);
   if (uOp != NULL) {
      uOp->set_operand(commaOp);
   }
   else {
      SgBinaryOp *bOp = isSgBinaryOp(parent);
      if (bOp != NULL) {
         if (bOp->get_lhs_operand() == varRef) {
            bOp->set_lhs_operand(commaOp);
         }
         else {
            assert(bOp->get_rhs_operand() == varRef);
            bOp->set_rhs_operand(commaOp);
         }
      }
      else {
         SgExprListExp *expList = isSgExprListExp(parent);
         if (expList != NULL) {
            SgExpressionPtrList& expressions = expList->get_expressions();
            for (SgExpressionPtrList::iterator iter = expressions.begin(); ; iter++) {
               assert (iter != expressions.end()); //element must be in the list!
               if (*iter == varRef) {
                  //insert commaOp instead of varRef
                  expressions.insert(expressions.erase(iter), commaOp);
                  break;
               }
            }
         }
         else {
            //SgClassNameRefExp
            //SgConditionalExp
            //SgDeleteExp
            //go on implementing other cases
            cerr<<"unexpected parent expression: "<<parent->class_name()<<endl;
            assert (false);
         }
      }
   }
}
Esempio n. 15
0
SgFunctionCallExp *
OpenCL::getSetKernelArgumentCallBufferExpression (SgScopeStatement * scope,
    SgVarRefExp * openCLKernel, int argumentIndex, SgExpression * bufferRef) 
{
  using namespace SageBuilder;
  
  SgExprListExp * actualParameters = buildExprListExp ();

  actualParameters->append_expression (openCLKernel);

  actualParameters->append_expression (buildIntVal (argumentIndex));

  actualParameters->append_expression (bufferRef);

  actualParameters->append_expression (buildOpaqueVarRefExp("NULL", scope));

  return buildFunctionCallExp ("clSetKernelArg", buildIntType (),
      actualParameters, scope);
}
Esempio n. 16
0
SgFunctionCallExp *
OpenCL::getWorkGroupIDCallStatement (SgScopeStatement * scope,
    SgExpression * expression)
{
  using namespace SageBuilder;

  SgExprListExp * actualParameters = buildExprListExp ();

  if (expression == NULL)
  {
    actualParameters->append_expression (buildIntVal (0));
  }
  else
  {
    actualParameters->append_expression (expression);
  }

  return buildFunctionCallExp ("get_global_id", buildIntType (),
      actualParameters, scope);
}
Esempio n. 17
0
SgFunctionCallExp *
OpenCL::getSetKernelArgumentCallExpression (SgScopeStatement * scope,
    SgVarRefExp * openCLKernel, int argumentIndex, SgType * sizeOfArgument,
    SgExpression * argument)
{
  using namespace SageBuilder;

  SgExprListExp * actualParameters = buildExprListExp ();

  actualParameters->append_expression (openCLKernel);

  actualParameters->append_expression (buildIntVal (argumentIndex));

  actualParameters->append_expression (buildSizeOfOp (sizeOfArgument));

  if (argument == NULL)
  {
    actualParameters->append_expression (buildIntVal (0));
  }
  else
  {
    actualParameters->append_expression (buildAddressOfOp (argument));
  }

  return buildFunctionCallExp ("clSetKernelArg", buildIntType (),
      actualParameters, scope);
}
Esempio n. 18
0
File: f2cArray.C Progetto: 8l/rose
void Fortran_to_C::translateArrayDeclaration(SgArrayType* originalArrayType)
{
  // Get dim_info
  SgExprListExp* dimInfo = originalArrayType->get_dim_info();
  // Get dim list
  SgExpressionPtrList dimExpressionPtrList = dimInfo->get_expressions();
  // Get array base_type
  SgType* baseType = originalArrayType->get_base_type();

  Rose_STL_Container<SgExpression*>::iterator j =  dimExpressionPtrList.begin();
  SgExpression* indexExpression = getFortranDimensionSize(*j);
  //std::cout << "array rank:" << originalArrayType->get_rank() << std::endl;
  if(originalArrayType->get_rank() == 1)
  {
    originalArrayType->set_base_type(baseType);
    originalArrayType->set_index(indexExpression);
    indexExpression->set_parent(originalArrayType);
    constantFolding(indexExpression);
  }
  else
  {
    SgArrayType* newType = buildArrayType(baseType,indexExpression);
    baseType->set_parent(newType);
    j = j + 1;
    for(; j< (dimExpressionPtrList.end()-1); ++j)
    {
      indexExpression = getFortranDimensionSize(*j);
      baseType = newType;
      newType = buildArrayType(baseType,indexExpression);
      baseType->set_parent(newType);
    }
    j = dimExpressionPtrList.end()-1;
    indexExpression = getFortranDimensionSize(*j);
    originalArrayType->set_base_type(newType);
    originalArrayType->set_index(indexExpression);
    indexExpression->set_parent(originalArrayType);
  }
}
SgStatement *
CPPOpenCLHostSubroutineIndirectLoop::createPlanFunctionCallStatement ()
{
  using namespace SageBuilder;
  using namespace OP2VariableNames;
  using namespace PlanFunctionVariableNames;

  Debug::getInstance ()->debugMessage (
      "Creating statement to call plan function", Debug::FUNCTION_LEVEL,
      __FILE__, __LINE__);

  SgExprListExp * actualParamaters = buildExprListExp ();

  actualParamaters->append_expression (variableDeclarations->getReference (
      getUserSubroutineName ()));

  actualParamaters->append_expression (variableDeclarations->getReference (
      getOpSetName ()));

  actualParamaters->append_expression (variableDeclarations->getReference (
      getPartitionSizeVariableName (parallelLoop->getUserSubroutineName ())));

  actualParamaters->append_expression (buildIntVal (
      parallelLoop->getNumberOfOpDatArgumentGroups ()));

  actualParamaters->append_expression (variableDeclarations->getReference (
      opDatArray));

  actualParamaters->append_expression (buildIntVal (
      parallelLoop->getNumberOfDistinctIndirectOpDats ()));

  actualParamaters->append_expression (variableDeclarations->getReference (
      indirectionDescriptorArray));

  SgFunctionCallExp * functionCallExpression = buildFunctionCallExp (
      OP2::OP_PLAN_GET, buildVoidType (), actualParamaters, subroutineScope);

  SgExprStatement * assignmentStatement = buildAssignStatement (
      variableDeclarations->getReference (planRet), functionCallExpression);

  return assignmentStatement;
}
Esempio n. 20
0
void
UnparseFortran_type::unparseArrayType(SgType* type, SgUnparse_Info& info, bool printDim)
{
    // Examples:
    //   real, dimension(10, 10) :: A1, A2
    //   real, dimension(:) :: B1
    //   character(len=*) :: s1
#if 0
    curprint ("\n! Inside of UnparserFort::unparseArrayType \n");
#endif

    SgArrayType* array_type = isSgArrayType(type);
    ROSE_ASSERT(array_type != NULL);

    // I think that supressStrippedTypeName() and SkipBaseType() are redundant...
    if (info.supressStrippedTypeName() == false)
    {
        // DQ (1/16/2011): We only want to output the name of the stripped type once!
        SgType* stripType = array_type->stripType();
        unparseType(stripType, info);
        info.set_supressStrippedTypeName();
    }

    // DQ (8/5/2010): It is an error to treat an array of char as a string (see test2010_16.f90).
#if 0
    // dimension information
    SgExprListExp* dim = array_type->get_dim_info();

    // if (isCharType(array_type->get_base_type()))
    // if (false && isCharType(array_type->get_base_type()))
    if (isCharType(array_type->get_base_type()))
    {
        // a character type: must be treated specially
        ROSE_ASSERT(array_type->get_rank() == 1);
        curprint("(len=");

        SgExpressionPtrList::iterator it = dim->get_expressions().begin();
        if (it != dim->get_expressions().end())
        {
            SgExpression* expr = *it;
            if (expr->variantT() == V_SgSubscriptExpression)
            {
                // this is a subscript expression but all we want to unparse is the length
                // of the string, which should be the upper bound of the subscript expression
                SgSubscriptExpression* sub_expr = isSgSubscriptExpression(expr);
                ROSE_ASSERT(sub_expr != NULL);

                ROSE_ASSERT(unp != NULL);
                ROSE_ASSERT(unp->u_fortran_locatedNode != NULL);
                unp->u_fortran_locatedNode->unparseExpression(sub_expr->get_upperBound(), info);
            }
            else
            {
                // unparse the entire expression
                ROSE_ASSERT(unp != NULL);
                ROSE_ASSERT(unp->u_fortran_locatedNode != NULL);
                unp->u_fortran_locatedNode->unparseExpression(*it, info);
            }
        }
        else
        {
            curprint("*");
        }
        curprint(")");
    }
    else
    {
        // a non-character type

        // explicit-shape (explicit rank and bounds/extents)
        // assumed-shape (explicit rank; unspecified bounds/extents)
        // deferred-shape (explicit rank; unspecified bounds/extents)
        // assumed-size (explicit ranks, explicit bounds/extents except last dim)
        ROSE_ASSERT(array_type->get_rank() >= 1);
        curprint(", DIMENSION");

        ROSE_ASSERT(unp != NULL);
        ROSE_ASSERT(unp->u_fortran_locatedNode != NULL);
        // unp->u_fortran_locatedNode->unparseExprList(dim, info); // adds parens
        // unp->u_fortran_locatedNode->UnparseLanguageIndependentConstructs::unparseExprList(dim, info); // adds parens

        // curprint("(");
        // curprint( StringUtility::numberToString(array_type->get_rank()) );
        // curprint(")");

        // unp->u_fortran_locatedNode->unparseExpression(array_type->get_dim_info(),info);
        unp->u_fortran_locatedNode->unparseExprList(array_type->get_dim_info(),info,/* output parens */ true);
    }
#else

    if (printDim)
    {
        ROSE_ASSERT(array_type->get_rank() >= 1);
        curprint(array_type->get_isCoArray()? ", CODIMENSION": ", DIMENSION");

        ROSE_ASSERT(unp != NULL);
        ROSE_ASSERT(unp->u_fortran_locatedNode != NULL);

        if (array_type->get_isCoArray())
        {   // print codimension info
            curprint("[");
            unp->u_fortran_locatedNode->unparseExprList(array_type->get_dim_info(),info,/* do not output parens */ false);
            curprint("]");
        }
        else  // print dimension info
            unp->u_fortran_locatedNode->unparseExprList(array_type->get_dim_info(),info,/* output parens */ true);
    }

    // DQ (1/16/2011): Plus unparse the base type...(unless it will just output the stripped types name).
    if (array_type->get_base_type()->containsInternalTypes() == true)
    {
        unparseType(array_type->get_base_type(), info, printDim);
    }
#endif

#if 0
    curprint ("\n! Leaving UnparserFort::unparseArrayType \n");
#endif
}
Esempio n. 21
0
// first visits the VarRef and then creates entry in operandDatabase which is
// useful in expressionStatement transformation. Thus, we replace the VarRef
// at the end of the traversal and insert loops during traversal
ArrayAssignmentStatementQuerySynthesizedAttributeType ArrayAssignmentStatementTransformation::evaluateSynthesizedAttribute(
		SgNode* astNode,
		ArrayAssignmentStatementQueryInheritedAttributeType arrayAssignmentStatementQueryInheritedData,
		SubTreeSynthesizedAttributes synthesizedAttributeList) {
	// This function assembles the elements of the input list (a list of char*) to form the output (a single char*)

#if DEBUG
	printf ("\n$$$$$ TOP of evaluateSynthesizedAttribute (astNode = %s) (synthesizedAttributeList.size() = %d) \n",
			astNode->sage_class_name(),synthesizedAttributeList.size());
	//cout << " Ast node string: " << astNode->unparseToString() << endl;
#endif

	// Build the return value for this function
	ArrayAssignmentStatementQuerySynthesizedAttributeType returnSynthesizedAttribute(astNode);

	// Iterator used within several error checking loops (not sure we should declare it here!)
	vector<ArrayAssignmentStatementQuerySynthesizedAttributeType>::iterator i;

	// Make a reference to the global operand database
	OperandDataBaseType & operandDataBase = accumulatorValue.operandDataBase;

	// Make sure the data base has been setup properly
	ROSE_ASSERT(operandDataBase.transformationOption > ArrayTransformationSupport::UnknownIndexingAccess);
	ROSE_ASSERT(operandDataBase.dimension > -1);

	// Build up a return string
	string returnString = "";

	string operatorString;

	// Need to handle all unary and binary operators and variables (but not much else)
	switch (astNode->variant()) {

	case FUNC_CALL: {

		// Error checking: Verify that we have a SgFunctionCallExp object
		SgFunctionCallExp* functionCallExpression = isSgFunctionCallExp(astNode);
		ROSE_ASSERT(functionCallExpression != NULL);

		string operatorName = TransformationSupport::getFunctionName(functionCallExpression);
		ROSE_ASSERT(operatorName.c_str() != NULL);

		string functionTypeName = TransformationSupport::getFunctionTypeName(functionCallExpression);

		if ((functionTypeName != "doubleArray") && (functionTypeName != "floatArray") && (functionTypeName
				!= "intArray")) {
			// Use this query to handle only A++ function call expressions
			// printf ("Break out of overloaded operator processing since type = %s is not to be processed \n",functionTypeName.c_str());
			break;
		} else {
			// printf ("Processing overloaded operator of type = %s \n",functionTypeName.c_str());
		}

		ROSE_ASSERT((functionTypeName == "doubleArray") || (functionTypeName == "floatArray") || (functionTypeName
				== "intArray"));

		// printf ("CASE FUNC_CALL: Overloaded operator = %s \n",operatorName.c_str());

		// Get the number of parameters to this function
		SgExprListExp* exprListExp = functionCallExpression->get_args();
		ROSE_ASSERT(exprListExp != NULL);

		SgExpressionPtrList & expressionPtrList = exprListExp->get_expressions();
		int numberOfParameters = expressionPtrList.size();

		TransformationSupport::operatorCodeType operatorCodeVariant =
				TransformationSupport::classifyOverloadedOperator(operatorName.c_str(), numberOfParameters);
		// printf ("CASE FUNC_CALL: numberOfParameters = %d operatorCodeVariant = %d \n",
		//      numberOfParameters,operatorCodeVariant);

		ROSE_ASSERT(operatorName.length() > 0);

		// Separating this case into additional cases makes up to some
		// extent for using a more specific higher level grammar.
		switch (operatorCodeVariant) {

		case TransformationSupport::ASSIGN_OPERATOR_CODE: {
			vector<ArrayOperandDataBase>::iterator lhs = operandDataBase.arrayOperandList.begin();
			vector<ArrayOperandDataBase>::iterator rhs = lhs;
			rhs++;
			while (rhs != operandDataBase.arrayOperandList.end()) {
				// look at the operands on the rhs for a match with the one on the lhs
				if ((*lhs).arrayVariableName == (*rhs).arrayVariableName) {
					// A loop dependence has been identified

					// Mark the synthesized attribute to record
					// the loop dependence within this statement
					returnSynthesizedAttribute.setLoopDependence(TRUE);
				}

				rhs++;
			}
			break;
		}

		default:
			break;
		}

		break;
	}
	case EXPR_STMT: {
		printf("Found a EXPR STMT expression %s\n", astNode->unparseToString().c_str());

		// The assembly associated with the SgExprStatement is what 
		// triggers the generation of the transformation string
		SgExprStatement* expressionStatement = isSgExprStatement(astNode);
		ROSE_ASSERT(expressionStatement != NULL);

		ArrayAssignmentStatementQuerySynthesizedAttributeType innerLoopTransformation =
				synthesizedAttributeList[SgExprStatement_expression];

		// Call another global support
		// Create appropriate macros, nested loops, etc
		expressionStatementTransformation(expressionStatement, arrayAssignmentStatementQueryInheritedData,
				innerLoopTransformation, operandDataBase);

		break;
	}

		//		case TransformationSupport::PARENTHESIS_OPERATOR_CODE: {
		//			ROSE_ASSERT (operatorName == "operator()");
		//			// printf ("Indexing of InternalIndex objects in not implemented yet! \n");
		//
		//			// Now get the operands out and search for the offsets in the index objects
		//
		//			// We only want to pass on the transformationOptions as inherited attributes
		//			// to the indexOffsetQuery
		//			// list<int> & transformationOptionList = arrayAssignmentStatementQueryInheritedData.getTransformationOptions();
		//
		//			// string offsetString;
		//			string indexOffsetString[6]; // = {NULL,NULL,NULL,NULL,NULL,NULL};
		//
		//			// retrieve the variable name from the data base (so that we can add the associated index object names)
		//			// printf ("WARNING (WHICH OPERAND TO SELECT): operandDataBase.size() = %d \n",operandDataBase.size());
		//			// ROSE_ASSERT (operandDataBase.size() == 1);
		//			// string arrayVariableName = returnSynthesizedAttribute.arrayOperandList[0].arrayVariableName;
		//			int lastOperandInDataBase = operandDataBase.size() - 1;
		//			ArrayOperandDataBase & arrayOperandDB = operandDataBase.arrayOperandList[lastOperandInDataBase];
		//			// string arrayVariableName =
		//			//      operandDataBase.arrayOperandList[operandDataBase.size()-1].arrayVariableName;
		//			string arrayVariableName = arrayOperandDB.arrayVariableName;
		//
		//			string arrayDataPointerNameSubstring = string("_") + arrayVariableName;
		//
		//			// printf ("***** WARNING: Need to get identifier from the database using the ArrayOperandDataBase::generateIdentifierString() function \n");
		//
		//			if (expressionPtrList.size() == 0) {
		//				// Case of A() (index object with no offset integer expression) Nothing to do here (I think???)
		//				printf("Special case of Indexing with no offset! exiting ... \n");
		//				ROSE_ABORT();
		//
		//				returnString = "";
		//			} else {
		//				// Get the value of the offsets (start the search from the functionCallExp)
		//				SgExprListExp* exprListExp = functionCallExpression->get_args();
		//				ROSE_ASSERT (exprListExp != NULL);
		//
		//				SgExpressionPtrList & expressionPtrList = exprListExp->get_expressions();
		//				SgExpressionPtrList::iterator i = expressionPtrList.begin();
		//
		//				// Case of indexing objects used within operator()
		//				int counter = 0;
		//				while (i != expressionPtrList.end()) {
		//					// printf ("Looking for the offset on #%d of %d (total) \n",counter,expressionPtrList.size());
		//
		//					// Build up the name of the final index variable (or at least give
		//					// it a unique number by dimension)
		//					string counterString = StringUtility::numberToString(counter + 1);
		//
		//					// Call another transformation mechanism to generate string for the index
		//					// expression (since we don't have an unparser mechanism in ROSE yet)
		//					indexOffsetString[counter] = IndexOffsetQuery::transformation(*i);
		//
		//					ROSE_ASSERT (indexOffsetString[counter].c_str() != NULL);
		//					// printf ("indexOffsetString [%d] = %s \n",counter,indexOffsetString[counter].c_str());
		//
		//					// Accumulate a list of all the InternalIndex, Index, and Range objects
		//					printf(" Warning - Need to handle indexNameList from the older code \n");
		//
		//					i++;
		//					counter++;
		//				}

		// Added VAR_REF case (moved from the local function)
	case VAR_REF: {
		// A VAR_REF has to output a string (the variable name)
#if DEBUG
		printf ("Found a variable reference expression \n");
#endif

		// Since we are at a leaf in the traversal of the AST this attribute list should a size of 0.
		ROSE_ASSERT(synthesizedAttributeList.size() == 0);

		SgVarRefExp* varRefExp = isSgVarRefExp(astNode);
		ROSE_ASSERT(varRefExp != NULL);
		SgVariableSymbol* variableSymbol = varRefExp->get_symbol();
		ROSE_ASSERT(variableSymbol != NULL);
		SgInitializedName* initializedName = variableSymbol->get_declaration();
		ROSE_ASSERT(initializedName != NULL);
		SgName variableName = initializedName->get_name();

		string buffer;
		string indexOffsetString;

		// Now compute the offset to the index objects (form a special query for this???)

		SgType* type = variableSymbol->get_type();
		ROSE_ASSERT(type != NULL);

		string typeName = TransformationSupport::getTypeName(type);
		ROSE_ASSERT(typeName.c_str() != NULL);

		// Recognize only these types at present
		if (typeName == "intArray" || typeName == "floatArray" || typeName == "doubleArray") {
			// Only define the variable name if we are using an object of array type
			// Copy the string from the SgName object to a string object
			string variableNameString = variableName.str();

#if DEBUG
			printf("Handle case of A++ array object VariableName: %s \n", variableNameString.c_str());
#endif

			if (arrayAssignmentStatementQueryInheritedData.arrayStatementDimensionDefined == TRUE) {
				cout << " Dim: " << arrayAssignmentStatementQueryInheritedData.arrayStatementDimension << endl;
				// The the globally computed array dimension from the arrayAssignmentStatementQueryInheritedData
				dimensionList.push_back(arrayAssignmentStatementQueryInheritedData.arrayStatementDimension);
			} else {
				dimensionList.push_back(6); // Default dimension for A++/P++
			}

			nodeList.push_back(isSgExpression(varRefExp));
			//processArrayRefExp(varRefExp, arrayAssignmentStatementQueryInheritedData);

			// Setup an intry in the synthesized attribute data base for this variable any
			// future results from analysis could be place there at this point as well
			// record the name in the synthesized attribute
			ROSE_ASSERT(operandDataBase.transformationOption > ArrayTransformationSupport::UnknownIndexingAccess);
			ArrayOperandDataBase arrayOperandDB = operandDataBase.setVariableName(variableNameString);
		}

		break;
	}

	default: {
		break;
	}
	} // End of main switch statement


#if DEBUG
	printf ("$$$$$ BOTTOM of arrayAssignmentStatementAssembly::evaluateSynthesizedAttribute (astNode = %s) \n",astNode->sage_class_name());
	printf ("      BOTTOM: returnString = \n%s \n",returnString.c_str());
#endif

	return returnSynthesizedAttribute;
}
Esempio n. 22
0
void generateStencilCode(StencilEvaluationTraversal & traversal, bool generateLowlevelCode)
   {
  // Read the stencil and generate the inner most loop AST for the stencil.

  // Note that generateLowlevelCode controls the generation of low level C code using a
  // base pointer to raw memory and linearized indexing off of that pointer.  The
  // alternative is to use the operator[] member function in the RectMDArray class.

  // Example of code that we want to generate:
  // for (j=0; j < source.size(0); j++)
  //    {
  //      int axis_x_size = source.size(0);
  //      for (i=0; i < source.size(0); i++)
  //         {
  //           destination[j*axis_x_size+i] = source[j*axis_x_size+i];
  //         }
  //    }

  // This function genertes the loop nest only:
  //    SgForStatement* buildLoopNest(int stencilDimension, SgBasicBlock* & innerLoopBody)

  // This function generates the statement in the inner most loop body:
  //    SgExprStatement* assembleStencilSubTreeArray(vector<SgExpression*> & stencilSubTreeArray)

  // This function generates the AST representing the stencil points:
  //    SgExpression* buildStencilPoint (StencilOffsetFSM* stencilOffsetFSM, double stencilCoeficient, int stencilDimension, SgVariableSymbol* destinationVariableSymbol, SgVariableSymbol* sourceVariableSymbol)

  // The generated code should be in terms of the operator[]() functions on the 
  // RectMDArray objects.  Likely we have to support a wider range of generated code later.
  //    const RectMDArray<TDest>& a_LOfPhi,
  //    const RectMDArray<TSrc>& a_phi,

  // std::vector<SgFunctionCallExp*> stencilOperatorFunctionCallList;
     std::vector<SgFunctionCallExp*> stencilOperatorFunctionCallList = traversal.get_stencilOperatorFunctionCallList();
     for (size_t i = 0; i < stencilOperatorFunctionCallList.size(); i++)
        {
          SgFunctionCallExp* functionCallExp = stencilOperatorFunctionCallList[i];
          ROSE_ASSERT(functionCallExp != NULL);

          printf ("processing functionCallExp = %p \n",functionCallExp);

          SgStatement* associatedStatement = TransformationSupport::getStatement(functionCallExp);
          ROSE_ASSERT(associatedStatement != NULL);

          string filename = associatedStatement->get_file_info()->get_filename();
          int lineNumber  = associatedStatement->get_file_info()->get_line();

          printf ("Generating code for stencil operator used at file = %s at line = %d \n",filename.c_str(),lineNumber);

          SgExprListExp* argumentList = functionCallExp->get_args();
          ROSE_ASSERT(argumentList != NULL);

       // There should be four elements to a stencil operator.
          ROSE_ASSERT(argumentList->get_expressions().size() == 4);

       // Stencil
          SgExpression* stencilExpression = argumentList->get_expressions()[0];
          SgVarRefExp* stencilVarRefExp = isSgVarRefExp(stencilExpression);
          ROSE_ASSERT(stencilVarRefExp != NULL);

       // RectMDArray (destination)
          SgExpression* destinationArrayReferenceExpression = argumentList->get_expressions()[1];
          SgVarRefExp* destinationArrayVarRefExp = isSgVarRefExp(destinationArrayReferenceExpression);
          ROSE_ASSERT(destinationArrayVarRefExp != NULL);

       // RectMDArray (source)
          SgExpression* sourceArrayReferenceExpression = argumentList->get_expressions()[2];
          SgVarRefExp* sourceArrayVarRefExp = isSgVarRefExp(sourceArrayReferenceExpression);
          ROSE_ASSERT(sourceArrayVarRefExp != NULL);

       // Box
          SgExpression* boxReferenceExpression = argumentList->get_expressions()[3];
          SgVarRefExp* boxVarRefExp = isSgVarRefExp(boxReferenceExpression);
          ROSE_ASSERT(boxVarRefExp != NULL);

          printf ("DONE: processing inputs to stencil operator \n");

          ROSE_ASSERT(stencilVarRefExp->get_symbol() != NULL);
          SgInitializedName* stencilInitializedName = stencilVarRefExp->get_symbol()->get_declaration();
          ROSE_ASSERT(stencilInitializedName != NULL);

          string stencilName = stencilInitializedName->get_name();

          printf ("stencilName = %s \n",stencilName.c_str());

          std::map<std::string,StencilFSM*> & stencilMap = traversal.get_stencilMap();
          
          ROSE_ASSERT(stencilMap.find(stencilName) != stencilMap.end());

          StencilFSM* stencilFSM = stencilMap[stencilName];
          ROSE_ASSERT(stencilFSM != NULL);

       // DQ (2/8/2015): Moved out of loop.
          int stencilDimension = stencilFSM->stencilDimension();
          ROSE_ASSERT(stencilDimension > 0);

       // These are computed values.
          printf ("Stencil dimension = %d \n",stencilDimension);
          printf ("Stencil width     = %d \n",stencilFSM->stencilWidth());

          std::vector<std::pair<StencilOffsetFSM,double> > & stencilPointList = stencilFSM->stencilPointList;

       // This is the scope where the stencil operator is evaluated.
          SgScopeStatement* outerScope = associatedStatement->get_scope();
          ROSE_ASSERT(outerScope != NULL);

          SgVariableSymbol* indexVariableSymbol_X     = NULL;
          SgVariableSymbol* indexVariableSymbol_Y     = NULL;
          SgVariableSymbol* indexVariableSymbol_Z     = NULL;
          SgVariableSymbol* arraySizeVariableSymbol_X = NULL;
          SgVariableSymbol* arraySizeVariableSymbol_Y = NULL;

          SgVariableSymbol* destinationVariableSymbol = destinationArrayVarRefExp->get_symbol();
          ROSE_ASSERT(destinationVariableSymbol != NULL);
          SgVariableSymbol* sourceVariableSymbol = sourceArrayVarRefExp->get_symbol();
          ROSE_ASSERT(sourceVariableSymbol != NULL);
          SgVariableSymbol* boxVariableSymbol = boxVarRefExp->get_symbol();
          ROSE_ASSERT(boxVariableSymbol != NULL);

       // This can be important in handling of comments and CPP directives.
          bool autoMovePreprocessingInfo = true;

          SgStatement* lastStatement = associatedStatement;
          if (generateLowlevelCode == true)
             {
#if 1
               SgVariableDeclaration* sourceDataPointerVariableDeclaration = buildDataPointer("sourceDataPointer",sourceVariableSymbol,outerScope);
#else
            // Optionally build a pointer variable so that we can optionally support a C style indexing for the DTEC DSL blocks.
               SgExpression* sourcePointerExp = buildMemberFunctionCall(sourceVariableSymbol,"getPointer",NULL,false);
               ROSE_ASSERT(sourcePointerExp != NULL);
               SgAssignInitializer* assignInitializer = SageBuilder::buildAssignInitializer_nfi(sourcePointerExp);
               ROSE_ASSERT(assignInitializer != NULL);

            // Build the variable declaration for the pointer to the data.
               string sourcePointerName = "sourceDataPointer";
               SgVariableDeclaration* sourceDataPointerVariableDeclaration  = SageBuilder::buildVariableDeclaration_nfi(sourcePointerName,SageBuilder::buildPointerType(SageBuilder::buildDoubleType()),assignInitializer,outerScope);
               ROSE_ASSERT(sourceDataPointerVariableDeclaration != NULL);
#endif

            // SageInterface::insertStatementAfter(associatedStatement,forStatementScope,autoMovePreprocessingInfo);
               SageInterface::insertStatementAfter(associatedStatement,sourceDataPointerVariableDeclaration,autoMovePreprocessingInfo);

               SgVariableDeclaration* destinationDataPointerVariableDeclaration = buildDataPointer("destinationDataPointer",destinationVariableSymbol,outerScope);
               SageInterface::insertStatementAfter(sourceDataPointerVariableDeclaration,destinationDataPointerVariableDeclaration,autoMovePreprocessingInfo);

            // Reset the variable symbols we will use in the buildStencilPoint() function.
               sourceVariableSymbol      = SageInterface::getFirstVarSym(sourceDataPointerVariableDeclaration);
               destinationVariableSymbol = SageInterface::getFirstVarSym(destinationDataPointerVariableDeclaration);

               lastStatement = destinationDataPointerVariableDeclaration;
             }

          SgBasicBlock* innerLoopBody = NULL;
       // SgForStatement* loopNest = buildLoopNest(stencilFSM->stencilDimension(),innerLoopBody,sourceVariableSymbol,indexVariableSymbol_X,indexVariableSymbol_Y,indexVariableSymbol_Z,arraySizeVariableSymbol_X,arraySizeVariableSymbol_Y);
          SgForStatement* loopNest = buildLoopNest(stencilFSM->stencilDimension(),innerLoopBody,boxVariableSymbol,indexVariableSymbol_X,indexVariableSymbol_Y,indexVariableSymbol_Z,arraySizeVariableSymbol_X,arraySizeVariableSymbol_Y);
          ROSE_ASSERT(innerLoopBody != NULL);

          ROSE_ASSERT(lastStatement != NULL);
          SageInterface::insertStatementAfter(lastStatement,loopNest,autoMovePreprocessingInfo);

       // Mark this as compiler generated so that it will not be unparsed.
          associatedStatement->get_file_info()->setCompilerGenerated();

       // Form an array of AST subtrees to represent the different points in the stencil.
       // vector<SgFunctionCallExp*> stencilSubTreeArray;
          vector<SgExpression*> stencilSubTreeArray;
          for (size_t j = 0; j < stencilPointList.size(); j++)
             {
#if 0
               printf ("Forming stencil point subtree for offsetValues[0] = %3d [1] = %3d [2] = %3d \n",stencilPointList[j].first.offsetValues[0],stencilPointList[j].first.offsetValues[1],stencilPointList[j].first.offsetValues[2]);
#endif
               StencilOffsetFSM* stencilOffsetFSM = &(stencilPointList[j].first);
               double stencilCoeficient           = stencilPointList[j].second;

            // SgFunctionCallExp* stencilSubTree = buildStencilPoint(stencilOffsetFSM,stencilCoeficient,stencilFSM->stencilDimension());
               SgExpression* stencilSubTree = 
                    buildStencilPoint(stencilOffsetFSM,stencilCoeficient,stencilDimension,sourceVariableSymbol,
                         indexVariableSymbol_X,indexVariableSymbol_Y,indexVariableSymbol_Z,arraySizeVariableSymbol_X,arraySizeVariableSymbol_Y,generateLowlevelCode);

               ROSE_ASSERT(stencilSubTree != NULL);

               stencilSubTreeArray.push_back(stencilSubTree);
             }

       // Construct the lhs value for the stencil inner loop statement.
          StencilOffsetFSM* stencilOffsetFSM_lhs = new StencilOffsetFSM(0,0,0);
          double stencilCoeficient_lhs = 1.00;
          SgExpression* stencil_lhs = buildStencilPoint(stencilOffsetFSM_lhs,stencilCoeficient_lhs,stencilDimension,destinationVariableSymbol,
                                           indexVariableSymbol_X,indexVariableSymbol_Y,indexVariableSymbol_Z,arraySizeVariableSymbol_X,arraySizeVariableSymbol_Y,generateLowlevelCode);
          ROSE_ASSERT(stencil_lhs != NULL);

       // Assemble the stencilSubTreeArray into a single expression.
          SgExprStatement* stencilStatement = assembleStencilSubTreeArray(stencil_lhs,stencilSubTreeArray,stencilDimension,destinationVariableSymbol);
          SageInterface::appendStatement(stencilStatement,innerLoopBody);
        }
   }
Esempio n. 23
0
void
CompassAnalyses::VariableNameEqualsDatabaseName::Traversal::
visit(SgNode* node)
   { 
     if( isSgAssignInitializer(node) != NULL )
          assignExp = node;
  
     if( isSgAssignOp(node) != NULL )
          assignExp = node; 

     SgFunctionCallExp* funcCall = isSgFunctionCallExp(node);

  // See if we have a dot expression or arrow expression which
  // accesses the desired member function in the class we are looking for.
     if ( funcCall != NULL  )
        {
          SgExpression* funcExp = funcCall->get_function();

          if ( ( isSgDotExp(funcExp) != NULL ) | ( isSgArrowExp(funcExp) != NULL ) )
             {
               SgBinaryOp*     binOp = isSgBinaryOp(funcExp);
               SgExpression*   rhsOp = binOp->get_rhs_operand();
            // SgExpression*   lhsOp = binOp->get_lhs_operand();
               if ( SgMemberFunctionRefExp* funcRef = isSgMemberFunctionRefExp(rhsOp)  )
                  {
                 // std::cout << "c1\n" ;

                    SgMemberFunctionSymbol*      funcSymbol = funcRef->get_symbol();
                    ROSE_ASSERT(funcSymbol->get_declaration() != NULL);

                 // DQ (1/16/2008): Note that the defining declaration need not exist (see test2001_11.C)
                 // ROSE_ASSERT(funcSymbol->get_declaration()->get_definingDeclaration() != NULL);
                    if (funcSymbol->get_declaration()->get_definingDeclaration() != NULL)
                       {
                         SgMemberFunctionDeclaration* funcDecl   = isSgMemberFunctionDeclaration(funcSymbol->get_declaration()->get_definingDeclaration());
                         ROSE_ASSERT( funcDecl != NULL );

                         SgClassDefinition* clDef = isSgClassDefinition(funcDecl->get_scope());
                         SgClassDeclaration*          clDecl     = isSgClassDeclaration(clDef->get_declaration());  

                      // SgClassDeclaration*          clDecl     = funcDecl->get_associatedClassDeclaration();

                         ROSE_ASSERT( clDecl != NULL );
                         std::string className    = clDecl->get_name().getString();

                         ROSE_ASSERT(funcDecl != NULL);
                         std::string functionName = funcDecl->get_name().getString();
 
                      // If the class is the class we are looking for see if the member function
                      // access is to the member function we are interested in.
                      // std::cout << "className = " << className << std::endl;
                      // std::cout << "functionName = " << functionName << std::endl;

                         if ( (className == classToLookFor) && ( functionName == memberFunctionToLookFor ) )
                            {
                              SgExprListExp*         actualArgs    = funcCall->get_args();
                              SgExpressionPtrList&   actualExpArgs = actualArgs->get_expressions ();

                              ROSE_ASSERT(actualExpArgs.size() == 1);
                              Rose_STL_Container<SgNode*> nodeLst = NodeQuery::querySubTree(*actualExpArgs.begin(), V_SgStringVal);

                              ROSE_ASSERT( nodeLst.size() > 0);
                              SgStringVal* actualArg = isSgStringVal(*nodeLst.begin());
                              ROSE_ASSERT(actualArg != NULL);

                              std::string  stringArg = actualArg->get_value();

                              std::cout << "arg:" << stringArg << std::endl;

                              std::string varName;

                           // SgInitializedName* initName = NULL; 
                              if ( SgAssignInitializer* assignInit =  isSgAssignInitializer(assignExp) )
                                 {
                                   SgInitializedName* initName = isSgInitializedName(assignInit->get_parent());
                                   ROSE_ASSERT(initName != NULL);
                                 
                                   varName = initName->get_name().getString();
                                 }
                                else
                                 {
                                   if ( SgAssignOp* assignOp = isSgAssignOp(assignExp) )
                                      {
                                        SgExpression*     lhsOp  = assignOp->get_lhs_operand();
                                        SgVarRefExp*      varRef = isSgVarRefExp(lhsOp);
                                        ROSE_ASSERT(varRef!=NULL);
                                        SgVariableSymbol* varSymbol = varRef->get_symbol();
                                        ROSE_ASSERT(varSymbol != NULL);
                                        SgInitializedName* initName = varSymbol->get_declaration();
                                        varName = initName->get_name().getString();
                                      }
                                 }
 
                              if (varName != "")
                                 {
                                // we are only interested in the part of the argument after the last ":"
                                // Database scopes in ALE3D are separated by ":"

                                   size_t posCol = stringArg.find_last_of(':');
                                 
                                   if (posCol != std::string::npos)
                                        stringArg = stringArg.substr(posCol+1);

                                 //Find violations to the rule
                                   if ( stringArg != varName)
                                      {
                                        output->addOutput(new CheckerOutput(assignExp));
                                        std::cout << "violation" << varName << std::endl;
                                      }
                                     else 
                                      {
                                        std::cout << "non=violation" << varName << std::endl;
                                      }
                                 }
                            }
                       }
                  }
             } 
        }
   } // End of the visit function.
Esempio n. 24
0
StencilEvaluation_InheritedAttribute
StencilEvaluationTraversal::evaluateInheritedAttribute (SgNode* astNode, StencilEvaluation_InheritedAttribute inheritedAttribute )
   {
#if 0
     printf ("In evaluateInheritedAttribute(): astNode = %p = %s \n",astNode,astNode->class_name().c_str());
#endif

     bool foundPairShiftDoubleConstructor = false;

  // This is for stencil specifications using vectors of points to represent offsets (not finished).
  // bool foundVariableDeclarationForStencilInput = false;

     double stencilCoeficientValue = 0.0;

  // StencilOffsetFSM offset;
     StencilOffsetFSM* stencilOffsetFSM = NULL;

  // We want to interogate the SgAssignInitializer, but we need to generality in the refactored function to use any SgInitializer (e.g. SgConstructorInitializer, etc.).
     SgInitializedName* initializedName = detectVariableDeclarationOfSpecificType (astNode,"Point");

     if (initializedName != NULL)
        {
       // This is the code that is specific to the DSL (e.g. the semantics of getZeros() and getUnitv() functions).
       // So this may be the limit of what can be refactored to common DSL support code.
       // Or I can maybe do a second pass at atempting to refactor more code later.

          string name = initializedName->get_name();

          SgInitializer* initializer = initializedName->get_initptr();

          SgAssignInitializer* assignInitializer = isSgAssignInitializer(initializer);
          if (assignInitializer != NULL)
             {
               SgExpression* exp = assignInitializer->get_operand();
               ROSE_ASSERT(exp != NULL);
               SgFunctionCallExp* functionCallExp = isSgFunctionCallExp(exp);
               if (functionCallExp != NULL)
                  {
                    SgFunctionRefExp* functionRefExp = isSgFunctionRefExp(functionCallExp->get_function());
                    if (functionRefExp != NULL)
                       {
                         SgFunctionSymbol* functionSymbol = functionRefExp->get_symbol();
                         ROSE_ASSERT(functionSymbol != NULL);
                         string functionName = functionSymbol->get_name();
#if 0
                         printf ("functionName = %s \n",functionName.c_str());
#endif
                         if (functionName == "getZeros")
                            {
                           // We leverage the semantics of known functions used to initialize "Point" objects ("getZeros" initialized the Point object to be all zeros).
                           // In a stencil this will be the center point from which all other points will have non-zero offsets.
                           // For a common centered difference discretization this will be the center point of the stencil.
#if 0
                              printf ("Identified and interpreting the semantics of getZeros() function \n");
#endif
                              stencilOffsetFSM = new StencilOffsetFSM(0,0,0);
                              ROSE_ASSERT(stencilOffsetFSM != NULL);
                            }

                         if (functionName == "getUnitv")
                            {
                           // We leverage the semantics of known functions used to initialize "Point" objects 
                           // ("getUnitv" initializes the Point object to be a unit vector for a specific input dimention).
                           // In a stencil this will be an ofset from the center point.
#if 0
                              printf ("Identified and interpreting the semantics of getUnitv() function \n");
#endif
                           // Need to get the dimention argument.
                              SgExprListExp* argumentList = functionCallExp->get_args();
                              ROSE_ASSERT(argumentList != NULL);
                           // This function has a single argument.
                              ROSE_ASSERT(argumentList->get_expressions().size() == 1);
                              SgExpression* functionArg = argumentList->get_expressions()[0];
                              ROSE_ASSERT(functionArg != NULL);
                              SgIntVal* intVal = isSgIntVal(functionArg);
                           // ROSE_ASSERT(intVal != NULL);
                              if (intVal != NULL)
                                 {
                                   int value = intVal->get_value();
#if 0
                                   printf ("value = %d \n",value);
#endif
                                   switch(value)
                                      {
                                        case 0: stencilOffsetFSM = new StencilOffsetFSM(1,0,0); break;
                                        case 1: stencilOffsetFSM = new StencilOffsetFSM(0,1,0); break;
                                        case 2: stencilOffsetFSM = new StencilOffsetFSM(0,0,1); break;

                                        default:
                                           {
                                             printf ("Error: default reached in switch: value = %d (for be value of 0, 1, or 2) \n",value);
                                             ROSE_ASSERT(false);
                                           }
                                      }

                                   ROSE_ASSERT(stencilOffsetFSM != NULL);

                                // End of test for intVal != NULL
                                 }
                                else
                                 {
#if 0
                                   printf ("functionArg = %p = %s \n",functionArg,functionArg->class_name().c_str());
#endif
                                 }
                            }

                          // ROSE_ASSERT(stencilOffsetFSM != NULL);
                       }
                  }
             }

           if (stencilOffsetFSM != NULL)
             {
            // Put the FSM into the map.
#if 0
               printf ("Put the stencilOffsetFSM = %p into the StencilOffsetMap using key = %s \n",stencilOffsetFSM,name.c_str());
#endif
               ROSE_ASSERT(StencilOffsetMap.find(name) == StencilOffsetMap.end());

            // We have a choice of syntax to add the element to the map.
            // StencilOffsetMap.insert(pair<string,StencilOffsetFSM*>(name,stencilOffsetFSM));
               StencilOffsetMap[name] = stencilOffsetFSM;
             }

       // new StencilOffsetFSM();
#if 0
          printf ("Exiting as a test! \n");
          ROSE_ASSERT(false);
#endif
        }

  // Recognize member function calls on "Point" objects so that we can trigger events on those associated finite state machines.
     bool isTemplateClass = false;
     bool isTemplateFunctionInstantiation = false;
     SgInitializedName* initializedNameUsedToCallMemberFunction = NULL;
     SgFunctionCallExp* functionCallExp = detectMemberFunctionOfSpecificClassType(astNode,initializedNameUsedToCallMemberFunction,"Point",isTemplateClass,"operator*=",isTemplateFunctionInstantiation);
     if (functionCallExp != NULL)
        {
       // This is the DSL specific part (capturing the semantics of operator*= with specific integer values).

       // The name of the variable off of which the member function is called (variable has type "Point").
          ROSE_ASSERT(initializedNameUsedToCallMemberFunction != NULL);
          string name = initializedNameUsedToCallMemberFunction->get_name();

       // Need to get the dimention argument.
          SgExprListExp* argumentList = functionCallExp->get_args();
          ROSE_ASSERT(argumentList != NULL);
       // This function has a single argument.
          ROSE_ASSERT(argumentList->get_expressions().size() == 1);
          SgExpression* functionArg = argumentList->get_expressions()[0];
          ROSE_ASSERT(functionArg != NULL);
          SgIntVal* intVal = isSgIntVal(functionArg);

          bool usingUnaryMinus = false;
          if (intVal == NULL)
             {
               SgMinusOp* minusOp = isSgMinusOp(functionArg);
               if (minusOp != NULL)
                  {
#if 0
                    printf ("Using SgMinusOp on stencil constant \n");
#endif
                    usingUnaryMinus = true;
                    intVal = isSgIntVal(minusOp->get_operand());
                  }
             }

          ROSE_ASSERT(intVal != NULL);
          int value = intVal->get_value();

          if (usingUnaryMinus == true)
             {
               value *= -1;
             }
#if 0
          printf ("value = %d \n",value);
#endif
       // Look up the stencil offset finite state machine
          ROSE_ASSERT(StencilOffsetMap.find(name) != StencilOffsetMap.end());
          StencilOffsetFSM* stencilOffsetFSM = StencilOffsetMap[name];
          ROSE_ASSERT(stencilOffsetFSM != NULL);
#if 0
          printf ("We have found the StencilOffsetFSM associated with the StencilOffset named %s \n",name.c_str());
#endif
#if 0
          stencilOffsetFSM->display("before multiply event");
#endif
          if (value == -1)
             {
            // Execute the event on the finte state machine to accumulate the state.
               stencilOffsetFSM->operator*=(-1);
             }
            else
             {
               printf ("Error: constant value other than -1 are not supported \n");
               ROSE_ASSERT(false);
             }
#if 0
          stencilOffsetFSM->display("after multiply event");
#endif
        }

  // Detection of "pair<Shift,double>(xdir,ident)" defined as an event in the stencil finite machine model.
  // Actually, it is the Stencil that is create using the "pair<Shift,double>(xdir,ident)" that should be the 
  // event so we first detect the SgConstructorInitializer.  There is not other code similar to this which 
  // has to test for the template arguments, so this has not yet refactored into the dslSupport.C file.
  // I will do this later since this is general support that could be resused in other DSL compilers.
     SgConstructorInitializer* constructorInitializer = isSgConstructorInitializer(astNode);
     if (constructorInitializer != NULL)
        {
       // DQ (10/20/2014): This can sometimes be NULL.
       // ROSE_ASSERT(constructorInitializer->get_class_decl() != NULL);
          SgClassDeclaration* classDeclaration = constructorInitializer->get_class_decl();
       // ROSE_ASSERT(classDeclaration != NULL);
          if (classDeclaration != NULL)
             {
#if 0
          printf ("constructorInitializer = %p class name    = %s \n",constructorInitializer,classDeclaration->get_name().str());
#endif
          SgTemplateInstantiationDecl* templateInstantiationDecl = isSgTemplateInstantiationDecl(classDeclaration);
       // ROSE_ASSERT(templateInstantiationDecl != NULL);
#if 0
          if (templateInstantiationDecl != NULL)
             {
               printf ("constructorInitializer = %p name = %s template name = %s \n",constructorInitializer,templateInstantiationDecl->get_name().str(),templateInstantiationDecl->get_templateName().str());
             }
#endif

       // if (classDeclaration->get_name() == "pair")
          if (templateInstantiationDecl != NULL && templateInstantiationDecl->get_templateName() == "pair")
             {
            // Look at the template parameters.
#if 0
               printf ("Found template instantiation for pair \n");
#endif
               SgTemplateArgumentPtrList & templateArgs = templateInstantiationDecl->get_templateArguments();
               if (templateArgs.size() == 2)
                  {
                 // Now look at the template arguments and check that they represent the pattern that we are looking for in the AST.
                 // It is not clear now flexible we should be, at present shift/coeficent pairs must be specified exactly one way.

                    SgType* type_0 = templateArgs[0]->get_type();
                    SgType* type_1 = templateArgs[1]->get_type();

                    if ( type_0 != NULL && type_1 != NULL)
                       {
                         SgClassType* classType_0 = isSgClassType(type_0);
                      // ROSE_ASSERT(classType_0 != NULL);
                         if (classType_0 != NULL)
                            {
                         SgClassDeclaration* classDeclarationType_0 = isSgClassDeclaration(classType_0->get_declaration());
                         ROSE_ASSERT(classDeclarationType_0 != NULL);
#if 0
                         printf ("templateArgs[0]->get_name() = %s \n",classDeclarationType_0->get_name().str());
                         printf ("templateArgs[1]->get_type()->class_name() = %s \n",type_1->class_name().c_str());
#endif
                         bool foundShiftExpression   = false;
                         bool foundStencilCoeficient = false;

                      // We might want to be more flexiable about the type of the 2nd parameter (allow SgTypeFloat, SgTypeComplex, etc.).
                         if (classDeclarationType_0->get_name() == "Shift" && type_1->variant() == V_SgTypeDouble)
                            {
                           // Found a pair<Shift,double> input for a stencil.
#if 0
                              printf ("##### Found a pair<Shift,double>() input for a stencil input \n");
#endif
                           // *****************************************************************************************************
                           // Look at the first parameter to the pair<Shift,double>() constructor.
                           // *****************************************************************************************************
                              SgExpression* stencilOffset = constructorInitializer->get_args()->get_expressions()[0];
                              ROSE_ASSERT(stencilOffset != NULL);
#if 0
                              printf ("stencilOffset = %p = %s \n",stencilOffset,stencilOffset->class_name().c_str());
#endif
                              SgConstructorInitializer* stencilOffsetConstructorInitializer = isSgConstructorInitializer(stencilOffset);
                              if (stencilOffsetConstructorInitializer != NULL)
                                 {
                                // This is the case of a Shift being constructed implicitly from a Point (doing so more directly would be easier to make sense of in the AST).
#if 0
                                   printf ("!!!!! Looking for the stencil offset \n");
#endif
                                   ROSE_ASSERT(stencilOffsetConstructorInitializer->get_class_decl() != NULL);
                                   SgClassDeclaration* stencilOffsetClassDeclaration = stencilOffsetConstructorInitializer->get_class_decl();
                                   ROSE_ASSERT(stencilOffsetClassDeclaration != NULL);
#if 0
                                   printf ("stencilOffsetConstructorInitializer = %p class name    = %s \n",stencilOffsetConstructorInitializer,stencilOffsetClassDeclaration->get_name().str());
                                   printf ("stencilOffsetConstructorInitializer = %p class = %p = %s \n",stencilOffsetConstructorInitializer,stencilOffsetClassDeclaration,stencilOffsetClassDeclaration->class_name().c_str());
#endif
                                // This should not be a template instantiation (the Shift is defined to be a noo-template class declaration, not a template class declaration).
                                   SgTemplateInstantiationDecl* stencilOffsetTemplateInstantiationDecl = isSgTemplateInstantiationDecl(stencilOffsetClassDeclaration);
                                   ROSE_ASSERT(stencilOffsetTemplateInstantiationDecl == NULL);

                                   if (stencilOffsetClassDeclaration != NULL && stencilOffsetClassDeclaration->get_name() == "Shift")
                                      {
                                     // Now we know that the type associated with the first template parameter is associated with the class "Shift".
                                     // But we need so also now what the first parametr is associate with the constructor initializer, since it will
                                     // be the name of the variable used to interprete the stencil offset (and the name of the variable will be the 
                                     // key into the map of finite machine models used to accumulate the state of the stencil offsets that we accumulate
                                     // to build the stencil.

                                     // Now we need the value of the input (computed using it's fine state machine).
                                        SgExpression* inputToShiftConstructor = stencilOffsetConstructorInitializer->get_args()->get_expressions()[0];
                                        ROSE_ASSERT(inputToShiftConstructor != NULL);
                                        SgConstructorInitializer* inputToShiftConstructorInitializer = isSgConstructorInitializer(inputToShiftConstructor);
                                        if (stencilOffsetConstructorInitializer != NULL)
                                           {
                                             SgExpression* inputToPointConstructor = inputToShiftConstructorInitializer->get_args()->get_expressions()[0];
                                             ROSE_ASSERT(inputToPointConstructor != NULL);

                                          // This should be a SgVarRefExp (if we strictly follow the stencil specification rules (which are not written down yet).
                                             SgVarRefExp* inputToPointVarRefExp = isSgVarRefExp(inputToPointConstructor);
                                             if (inputToPointVarRefExp != NULL)
                                                {
#if 0
                                                  printf ("Found varRefExp in bottom of chain of constructors \n");
#endif
                                                  SgVariableSymbol* variableSymbolForOffset = isSgVariableSymbol(inputToPointVarRefExp->get_symbol());
                                                  ROSE_ASSERT(variableSymbolForOffset != NULL);
                                                  SgInitializedName* initializedNameForOffset = variableSymbolForOffset->get_declaration();
                                                  ROSE_ASSERT(initializedNameForOffset != NULL);
                                                  SgInitializer* initializer = initializedNameForOffset->get_initptr();
                                                  ROSE_ASSERT(initializer != NULL);
#if 0
                                                  printf ("Found initializedName: name = %s in bottom of chain of constructors: initializer = %p = %s \n",initializedNameForOffset->get_name().str(),initializer,initializer->class_name().c_str());
#endif
                                               // Record the name to be used as a key into the map of "StencilOffset" finite state machines.

                                                  SgAssignInitializer* assignInitializer = isSgAssignInitializer(initializer);
                                                  ROSE_ASSERT(assignInitializer != NULL);

                                                  string name = initializedNameForOffset->get_name();
                                               // Look up the current state in the finite state machine for the "Point".

                                               // Check that this is a previously defined stencil offset.
                                                  ROSE_ASSERT(StencilOffsetMap.find(name) != StencilOffsetMap.end());
                                               // StencilOffsetFSM* stencilOffsetFSM = StencilOffsetMap[name];
                                                  stencilOffsetFSM = StencilOffsetMap[name];
                                                  ROSE_ASSERT(stencilOffsetFSM != NULL);
#if 0
                                                  printf ("We have found the StencilOffsetFSM associated with the StencilOffset named %s \n",name.c_str());
#endif
#if 0
                                                  printf ("Exiting as a test! \n");
                                                  ROSE_ASSERT(false);
#endif
                                                }
                                               else
                                                {
                                                  printf ("What is this expression: inputToPointConstructor = %p = %s \n",inputToPointConstructor,inputToPointConstructor->class_name().c_str());
                                                  ROSE_ASSERT(false);
                                                }
                                           }
#if 0
                                        printf ("Found Shift type \n");
#endif
                                        foundShiftExpression = true;
                                      }
#if 0
                                   printf ("Exiting as a test! \n");
                                   ROSE_ASSERT(false);
#endif
                                 }
                                else
                                 {
                                // This case for the specification of a Shift in the first argument is not yet supported (need an example of this).
                                   printf ("This case of using a shift is not a part of what is supported \n");
                                 }

                           // *****************************************************************************************************
                           // Look at the second parameter to the pair<Shift,double>(first_parameter,second_parameter) constructor.
                           // *****************************************************************************************************
                              SgExpression* stencilCoeficent = constructorInitializer->get_args()->get_expressions()[1];
                              ROSE_ASSERT(stencilCoeficent != NULL);

                              SgVarRefExp* stencilCoeficentVarRefExp = isSgVarRefExp(stencilCoeficent);
                              if (stencilCoeficentVarRefExp != NULL)
                                 {
                                // Handle the case where this is a constant SgVarRefExp and the value is available in the declaration.
                                   SgVariableSymbol* variableSymbolForConstant = isSgVariableSymbol(stencilCoeficentVarRefExp->get_symbol());
                                   ROSE_ASSERT(variableSymbolForConstant != NULL);
                                   SgInitializedName* initializedNameForConstant = variableSymbolForConstant->get_declaration();
                                   ROSE_ASSERT(initializedNameForConstant != NULL);
                                   SgInitializer* initializer = initializedNameForConstant->get_initptr();
                                   ROSE_ASSERT(initializer != NULL);
                                   SgAssignInitializer* assignInitializer = isSgAssignInitializer(initializer);
                                   ROSE_ASSERT(assignInitializer != NULL);

                                   SgValueExp* valueExp = isSgValueExp(assignInitializer->get_operand());

                                   bool usingUnaryMinus = false;
                                // ROSE_ASSERT(valueExp != NULL);
                                   if (valueExp == NULL)
                                      {
                                        SgExpression* operand = assignInitializer->get_operand();
                                        SgMinusOp* minusOp = isSgMinusOp(operand);
                                        if (minusOp != NULL)
                                           {
#if 0
                                             printf ("Using SgMinusOp on stencil constant \n");
#endif
                                             usingUnaryMinus = true;
                                             valueExp = isSgValueExp(minusOp->get_operand());
                                           }
                                      }

                                   SgDoubleVal* doubleVal = isSgDoubleVal(valueExp);
                                // ROSE_ASSERT(doubleVal != NULL);
                                   double value = 0.0;
                                   if (doubleVal == NULL)
                                      {
                                     // Call JP's function to evaluate the constant expression.
                                        ROSE_ASSERT(valueExp == NULL);
                                        ROSE_ASSERT(stencilCoeficent != NULL);
                                        DSL_Support::const_numeric_expr_t const_expression = DSL_Support::evaluateConstNumericExpression(stencilCoeficent);
                                        if (const_expression.hasValue_ == true)
                                           {
                                             ROSE_ASSERT(const_expression.isIntOnly_ == false);
                                             value = const_expression.value_;

                                             printf ("const expression evaluated to value = %4.2f \n",value);
                                           }
                                          else
                                           {
                                             printf ("constnat value expression could not be evaluated to a constant \n");
                                             ROSE_ASSERT(false);
                                           }
                                      }
                                     else
                                      {
#if 1
                                        printf ("SgDoubleVal value = %f \n",doubleVal->get_value());
#endif
                                        value = (usingUnaryMinus == false) ? doubleVal->get_value() : -(doubleVal->get_value());
                                      }
#if 1
                                   printf ("Stencil coeficient = %f \n",value);
#endif
                                   foundStencilCoeficient = true;

                                   stencilCoeficientValue = value;
                                 }
                                else
                                 {
                                // When we turn on constant folding in the frontend we eveluate directly to a SgDoubleVal.
                                   SgDoubleVal* doubleVal = isSgDoubleVal(stencilCoeficent);
                                   if (doubleVal != NULL)
                                      {
                                        ROSE_ASSERT(doubleVal != NULL);
#if 0
                                        printf ("SgDoubleVal value = %f \n",doubleVal->get_value());
#endif
                                        double value = doubleVal->get_value();
#if 0
                                        printf ("Stencil coeficient = %f \n",value);
#endif
                                        foundStencilCoeficient = true;

                                        stencilCoeficientValue = value;
                                      }
                                     else
                                      {
                                        printf ("Error: second parameter in pair for stencil is not a SgVarRefExp (might be explicit value not yet supported) \n");
                                        printf ("   --- stencilCoeficent = %p = %s \n",stencilCoeficent,stencilCoeficent->class_name().c_str());
                                        ROSE_ASSERT(false);
                                      }
                                 }
                            }
#if 0
                         printf ("foundShiftExpression   = %s \n",foundShiftExpression   ? "true" : "false");
                         printf ("foundStencilCoeficient = %s \n",foundStencilCoeficient ? "true" : "false");
#endif
                         if (foundShiftExpression == true && foundStencilCoeficient == true)
                            {
#if 0
                              printf ("Found pair<Shift,double>() constructor expression! \n");
#endif
                              foundPairShiftDoubleConstructor = true;
                            }

                         // End of test for classType_0 != NULL
                            }
                       }
                  }
             }
            else
             {
#if 0
               printf ("This is not a SgConstructorInitializer for the pair templated class \n");
#endif
             }

          // End of test for classDeclaration != NULL
             }
        }

#if 0
     printf ("foundPairShiftDoubleConstructor = %s \n",foundPairShiftDoubleConstructor ? "true" : "false");
#endif

     if (foundPairShiftDoubleConstructor == true)
        {
       // This is the recognition of an event for one of the finite state machines we implement to evaluate the stencil at compile time.
#if 0
          printf ("In evaluateInheritedAttribute(): found pair<Shift,double>() constructor expression! \n");
          printf ("   --- stencilOffsetFSM       = %p \n",stencilOffsetFSM);
          printf ("   --- stencilCoeficientValue = %f \n",stencilCoeficientValue);
#endif
          ROSE_ASSERT(stencilOffsetFSM != NULL);

          inheritedAttribute.stencilOffsetFSM       = stencilOffsetFSM;
          inheritedAttribute.stencilCoeficientValue = stencilCoeficientValue;

#if 0
          printf ("Exiting as a test! \n");
          ROSE_ASSERT(false);
#endif
        }

  // Construct the return attribute from the modified input attribute.
     return StencilEvaluation_InheritedAttribute(inheritedAttribute);
   }
Esempio n. 25
0
void SystemDependenceGraph::build()
{
    boost::unordered_map<CFGVertex, Vertex> cfgVerticesToSdgVertices;
    boost::unordered_map<SgNode*, Vertex>   astNodesToSdgVertices;

    //map<SgFunctionCallExp*, vector<SDGNode*> > funcCallToArgs;

    vector<CallSiteInfo> functionCalls;


    map<SgNode*, vector<Vertex> > actualInParameters;
    map<SgNode*, vector<Vertex> > actualOutParameters;

    map<SgNode*, Vertex> formalInParameters;
    map<SgNode*, Vertex> formalOutParameters;

    vector<SgFunctionDefinition*> funcDefs = 
        SageInterface::querySubTree<SgFunctionDefinition>(project_, V_SgFunctionDefinition);
    foreach (SgFunctionDefinition* funcDef, funcDefs)
    {
        SgFunctionDeclaration* funcDecl = funcDef->get_declaration();

        CFG* cfg = new CFG(funcDef, cfgNodefilter_);
        functionsToCFGs_[funcDecl] = cfg;

        // For each function, build an entry node for it.
        SDGNode* entry = new SDGNode(SDGNode::Entry);
        entry->astNode = funcDef;
        //entry->funcDef = funcDef;
        Vertex entryVertex = addVertex(entry);
        functionsToEntries_[funcDecl] = entryVertex;

        // Add all out formal parameters to SDG.
        const SgInitializedNamePtrList& formalArgs = funcDecl->get_args();
        foreach (SgInitializedName* initName, formalArgs)
        {
            // If the parameter is passed by reference, create a formal-out node.
            if (isParaPassedByRef(initName->get_type()))
            {
                SDGNode* formalOutNode = new SDGNode(SDGNode::FormalOut);
                formalOutNode->astNode = initName;
                Vertex formalOutVertex = addVertex(formalOutNode);
                formalOutParameters[initName] = formalOutVertex;

                // Add a CD edge from call node to this formal-out node.
                addTrueCDEdge(entryVertex, formalOutVertex);
            }
        }

        // A vertex representing the returned value.
        Vertex returnVertex;

        // If the function returns something, build a formal-out node.
        if (!isSgTypeVoid(funcDecl->get_type()->get_return_type()))
        {
            SDGNode* formalOutNode = new SDGNode(SDGNode::FormalOut);
            // Assign the function declaration to the AST node of this vertex to make
            // it possible to classify this node into the subgraph of this function.
            formalOutNode->astNode = funcDecl;
            returnVertex = addVertex(formalOutNode);
            formalOutParameters[funcDecl] = returnVertex;

            // Add a CD edge from call node to this formal-out node.
            addTrueCDEdge(entryVertex, returnVertex);
        }

        // Add all CFG vertices to SDG.
        foreach (CFGVertex cfgVertex, boost::vertices(*cfg))
        {
            if (cfgVertex == cfg->getEntry() || cfgVertex == cfg->getExit())
                continue;

            SgNode* astNode = (*cfg)[cfgVertex]->getNode();

            // If this node is an initialized name and it is a parameter, make it 
            // as a formal in node.
            SgInitializedName* initName = isSgInitializedName(astNode);
            if (initName && isSgFunctionParameterList(initName->get_parent()))
            {
                SDGNode* formalInNode = new SDGNode(SDGNode::FormalIn);
                formalInNode->astNode = initName;
                Vertex formalInVertex = addVertex(formalInNode);
                formalInParameters[initName] = formalInVertex;

                cfgVerticesToSdgVertices[cfgVertex] = formalInVertex;
                astNodesToSdgVertices[astNode] = formalInVertex;

                // Add a CD edge from call node to this formal-in node.
                addTrueCDEdge(entryVertex, formalInVertex);
                continue;
            }

            // Add a new node to SDG.
            SDGNode* newSdgNode = new SDGNode(SDGNode::ASTNode);
            //newSdgNode->cfgNode = (*cfg)[cfgVertex];
            newSdgNode->astNode = astNode;
            Vertex sdgVertex = addVertex(newSdgNode);

            cfgVerticesToSdgVertices[cfgVertex] = sdgVertex;
            astNodesToSdgVertices[astNode] = sdgVertex;


            // Connect a vertex containing the return statement to the formal-out return vertex.
            if (isSgReturnStmt(astNode)
                    || isSgReturnStmt(astNode->get_parent()))
            {
                SDGEdge* newEdge = new SDGEdge(SDGEdge::DataDependence);
                addEdge(sdgVertex, returnVertex, newEdge);                
            }

            // If this CFG node contains a function call expression, extract its all parameters
            // and make them as actual-in nodes.

            if (SgFunctionCallExp* funcCallExpr = isSgFunctionCallExp(astNode))
            {
                CallSiteInfo callInfo;
                callInfo.funcCall = funcCallExpr;
                callInfo.vertex = sdgVertex;

                // Change the node type.
                newSdgNode->type = SDGNode::FunctionCall;
                vector<SDGNode*> argsNodes;

                // Get the associated function declaration.
                SgFunctionDeclaration* funcDecl = funcCallExpr->getAssociatedFunctionDeclaration();
                
                if (funcDecl == NULL) 
                    continue;
                    
                ROSE_ASSERT(funcDecl);
                const SgInitializedNamePtrList& formalArgs = funcDecl->get_args();

                SgExprListExp* args = funcCallExpr->get_args();
                const SgExpressionPtrList& actualArgs = args->get_expressions();
                
                if (formalArgs.size() != actualArgs.size())
                {
                    cout << "The following function has variadic arguments:\n";
                    cout << funcDecl->get_file_info()->get_filename() << endl;
                    cout << funcDecl->get_name() << formalArgs.size() << " " << actualArgs.size() << endl;
                    continue;
                }

                for (int i = 0, s = actualArgs.size(); i < s; ++i)
                {
                    // Make sure that this parameter node is added to SDG then we
                    // change its node type from normal AST node to a ActualIn arg.
                    ROSE_ASSERT(astNodesToSdgVertices.count(actualArgs[i]));

                    Vertex paraInVertex = astNodesToSdgVertices.at(actualArgs[i]);
                    SDGNode* paraInNode = (*this)[paraInVertex]; 
                    paraInNode->type = SDGNode::ActualIn;

                    actualInParameters[formalArgs[i]].push_back(paraInVertex);
                    callInfo.inPara.push_back(paraInVertex);

                    // Add a CD edge from call node to this actual-in node.
                    addTrueCDEdge(sdgVertex, paraInVertex);

                    // If the parameter is passed by reference, create a parameter-out node.
                    if (isParaPassedByRef(formalArgs[i]->get_type()))
                    {
                        SDGNode* paraOutNode = new SDGNode(SDGNode::ActualOut);
                        paraOutNode->astNode = actualArgs[i];
                        //argsNodes.push_back(paraInNode);

                        // Add an actual-out parameter node.
                        Vertex paraOutVertex = addVertex(paraOutNode);
                        actualOutParameters[formalArgs[i]].push_back(paraOutVertex);
                        callInfo.outPara.push_back(paraOutVertex);

                        // Add a CD edge from call node to this actual-out node.
                        addTrueCDEdge(sdgVertex, paraOutVertex);
                    }
                }

                if (!isSgTypeVoid(funcDecl->get_type()->get_return_type())) 
                {
                    // If this function returns a value, create a actual-out vertex.
                    SDGNode* paraOutNode = new SDGNode(SDGNode::ActualOut);
                    paraOutNode->astNode = funcCallExpr;

                    // Add an actual-out parameter node.
                    Vertex paraOutVertex = addVertex(paraOutNode);
                    actualOutParameters[funcDecl].push_back(paraOutVertex);
                    callInfo.outPara.push_back(paraOutVertex);
                    callInfo.isVoid = false;
                    callInfo.returned = paraOutVertex;

                    // Add a CD edge from call node to this actual-out node.
                    addTrueCDEdge(sdgVertex, paraOutVertex);
                }

                functionCalls.push_back(callInfo);
                //funcCallToArgs[funcCallExpr] = argsNodes;
            }
        }

        // Add control dependence edges.
        addControlDependenceEdges(cfgVerticesToSdgVertices, *cfg, entryVertex);
    }
void
FortranProgramDeclarationsAndDefinitions::visit (SgNode * node)
{
  using boost::filesystem::path;
  using boost::filesystem::system_complete;
  using boost::iequals;
  using boost::starts_with;
  using boost::lexical_cast;
  using std::string;

  if (isSgSourceFile (node))
  {
    path p = system_complete (path (isSgSourceFile (node)->getFileName ()));

    currentSourceFile = p.filename ();

    Debug::getInstance ()->debugMessage ("Source file '" + currentSourceFile
        + "' detected", Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__ );
  }
  else if (Globals::getInstance ()->isInputFile (currentSourceFile))
  {
    /*
     * ======================================================
     * Only process this portion of the AST if we recognise
     * this source file as one passed on the command line. In
     * Fortran, .rmod files are sometimes generated whose
     * traversal should be avoided
     * ======================================================
     */

    switch (node->variantT ())
    {
      case V_SgModuleStatement:
      {
        SgModuleStatement * moduleStatement = isSgModuleStatement (node);

        currentModuleName = moduleStatement->get_name ().getString ();

        fileNameToModuleNames[currentSourceFile].push_back (currentModuleName);

        moduleNameToFileName[currentModuleName] = currentSourceFile;

        Debug::getInstance ()->debugMessage ("Module '" + currentModuleName
            + "' in file '" + currentSourceFile + "'", Debug::OUTER_LOOP_LEVEL,
            __FILE__, __LINE__ );

        break;
      }

      case V_SgProcedureHeaderStatement:
      {
        /*
         * ======================================================
         * We need to store all subroutine definitions since we
         * later have to copy and modify the user kernel subroutine
         * ======================================================
         */
        SgProcedureHeaderStatement * procedureHeaderStatement =
            isSgProcedureHeaderStatement (node);

        string const subroutineName =
            procedureHeaderStatement->get_name ().getString ();

        subroutinesInSourceCode[subroutineName] = procedureHeaderStatement;

        ROSE_ASSERT (currentModuleName.size() > 0);

        moduleNameToSubroutines[currentModuleName].push_back (subroutineName);

        subroutineToFileName[subroutineName] = currentSourceFile;

        Debug::getInstance ()->debugMessage (
            "Found procedure header statement '"
                + procedureHeaderStatement->get_name ().getString ()
                + "' in file '" + currentSourceFile + "', and module '"
                + currentModuleName + "'", Debug::FUNCTION_LEVEL, __FILE__,
            __LINE__);

        break;
      }

      case V_SgFunctionCallExp:
      {
        /*
         * ======================================================
         * Function call found in the AST. Get its actual arguments
         * and the callee name
         * ======================================================
         */
        SgFunctionCallExp * functionCallExp = isSgFunctionCallExp (node);

        SgExprListExp * actualArguments = functionCallExp->get_args ();

        string const
            calleeName =
                functionCallExp->getAssociatedFunctionSymbol ()->get_name ().getString ();

        Debug::getInstance ()->debugMessage ("Found function call '"
            + calleeName + "'", Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

        if ( iequals (calleeName, OP2::OP_DECL_SET) ||
             iequals (calleeName, OP2::OP_DECL_SET_HDF5) )
        {
          /*
           * ======================================================
           * An OP_SET variable declared through an OP_DECL_SET call
           * ======================================================
           */
          bool isHDF5Format = false;
          
          if ( iequals (calleeName, OP2::OP_DECL_SET_HDF5) ) isHDF5Format = true;
          
          FortranOpSetDefinition * opSetDeclaration =
              new FortranOpSetDefinition (actualArguments, isHDF5Format);

          OpSetDefinitions[opSetDeclaration->getVariableName ()]
              = opSetDeclaration;
        }        
        else if ( iequals (calleeName, OP2::OP_DECL_MAP) ||
                  iequals (calleeName, OP2::OP_DECL_MAP_HDF5) )
        {
          /*
           * ======================================================
           * An OP_MAP variable declared through an OP_DECL_MAP call
           * ======================================================
           */

          bool isHDF5Format = false;
          
          if ( iequals (calleeName, OP2::OP_DECL_MAP_HDF5) )
          {
            isHDF5Format = true;

            Debug::getInstance ()->debugMessage ("This is the HDF5 version: '"
              + calleeName + "'", Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);
          }
          
          FortranOpMapDefinition * opMapDeclaration =
              new FortranOpMapDefinition (actualArguments, isHDF5Format);

          OpMapDefinitions[opMapDeclaration->getVariableName ()]
              = opMapDeclaration;
        }
        else if ( iequals (calleeName, OP2::OP_DECL_DAT) ||
                  iequals (calleeName, OP2::OP_DECL_DAT_HDF5) )
        {
          /*
           * ======================================================
           * An OP_DAT variable declared through an OP_DECL_DAT call
           * ======================================================
           */
          bool isHDF5Format = false;
          
          if ( iequals (calleeName, OP2::OP_DECL_DAT_HDF5) ) isHDF5Format = true;

          FortranOpDatDefinition * opDatDeclaration =
              new FortranOpDatDefinition (actualArguments, isHDF5Format);

          OpDatDefinitions[opDatDeclaration->getVariableName ()]
              = opDatDeclaration;
        }
        else if (iequals (calleeName, OP2::OP_DECL_CONST))
        {
          /*
           * ======================================================
           * A constant declared through an OP_DECL_CONST call
           * ======================================================
           */

          FortranOpConstDefinition * opConstDeclaration =
              new FortranOpConstDefinition (actualArguments, functionCallExp);

          OpConstDefinitions[opConstDeclaration->getVariableName ()]
              = opConstDeclaration;
        }
        else if (starts_with (calleeName, OP2::OP_PAR_LOOP))
        {
          /*
           * ======================================================
           * The first argument to an 'OP_PAR_LOOP' call should be
           * a reference to the kernel function. Cast it and proceed,
           * otherwise throw an exception
           * ======================================================
           */

          SgExprListExp * actualArguments = functionCallExp->get_args ();

          SgFunctionRefExp * functionRefExpression = isSgFunctionRefExp (
              actualArguments->get_expressions ().front ());

          ROSE_ASSERT (functionRefExpression != NULL);

          string const
              userSubroutineName =
                  functionRefExpression->getAssociatedFunctionDeclaration ()->get_name ().getString ();

          Debug::getInstance ()->debugMessage ("Found '" + calleeName
              + "' with (host) user subroutine '" + userSubroutineName + "'",
              Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

          if (parallelLoops.find (userSubroutineName) == parallelLoops.end ())
          {
            int numberOfOpArgs = getLoopSuffixNumber ( calleeName );

            /*
             * ======================================================
             * If this kernel has not been previously encountered then
             * build a new parallel loop representation
             * ======================================================
             */

            FortranParallelLoop * parallelLoop = new FortranParallelLoop (
                functionCallExp);

            parallelLoop->addFileName (currentSourceFile);

            parallelLoops[userSubroutineName] = parallelLoop;

            Debug::getInstance ()->debugMessage ("Parallel loop with '"
                + lexical_cast <string> (numberOfOpArgs)  + "' arguments",
                Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);
                        
            analyseParallelLoopArguments (parallelLoop, actualArguments,
              numberOfOpArgs);

            parallelLoop->checkArguments ();
            
            parallelLoop->setIncrementalID (IDCounter);
            IDCounter++;
          }
          else
          {
            Debug::getInstance ()->debugMessage ("Parallel loop for '"
                + userSubroutineName + "' already created",
                Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

            ParallelLoop * parallelLoop = parallelLoops[userSubroutineName];

            parallelLoop->addFunctionCallExpression (functionCallExp);

            parallelLoop->addFileName (currentSourceFile);
          }
        }

        break;
      }

      default:
      {
        break;
      }
    }
  }
}
void
FortranProgramDeclarationsAndDefinitions::analyseParallelLoopArguments (
    FortranParallelLoop * parallelLoop, SgExprListExp * actualArguments,
    int numberOfOpArgs)
{
  using boost::iequals;
  using boost::lexical_cast;
  using std::find;
  using std::string;
  using std::vector;
  using std::map;

  Debug::getInstance ()->debugMessage (
      "Analysing OP_PAR_LOOP actual arguments", Debug::FUNCTION_LEVEL,
      __FILE__, __LINE__);

  unsigned int OP_DAT_ArgumentGroup = 1;
  
  /*
   * ======================================================
   * Loops over the arguments to populate the parallel loop object
   * Each object in the actualArguments array is a function call
   * We analyse the arguments of each call
   * \warning: the args start from position 2 (the first two args are
   * the user kernel reference and the iteration set
   * ======================================================
   */
  
  for ( int i = 2; i < numberOfOpArgs + 2; i++ )
  {
   /*
    * ======================================================
    * Distinguish between op_dat and global variable by
    * checking the function name
    * ======================================================
    */
    SgFunctionCallExp * functionExpression = isSgFunctionCallExp (
      actualArguments->get_expressions ()[i]);
    
    ROSE_ASSERT (functionExpression != NULL);
    
    string functionName = functionExpression ->getAssociatedFunctionSymbol ()->
      get_name ().getString ();
    
    SgExprListExp * opArgArguments = functionExpression ->get_args ();
    ROSE_ASSERT (opArgArguments );

    /*
     * ======================================================
     * Assume that this is not an op_mat, possibly amend later
     * ======================================================     
     */
    parallelLoop->setIsOpMatArg (OP_DAT_ArgumentGroup, false);
    
    if ( functionName == "op_arg_dat" )
    {     
     /*
      * ======================================================
      * Obtain the op_dat reference and its name
      * ======================================================
      */
     
      SgVarRefExp * opDatReference = NULL;

      opDatReference = getOpDatReferenceFromOpArg (opArgArguments);

      ROSE_ASSERT (opDatReference != NULL);

      string const opDatName = opDatReference->get_symbol ()->get_name ().getString ();

     /*
      * ======================================================
      * Obtain the map reference and name, and select access
      * type (direct or indirect)
      * ======================================================            
      */
      SgVarRefExp * opMapReference;

      opMapReference = getOpMapReferenceFromOpArg (opArgArguments);

      ROSE_ASSERT (opMapReference != NULL);

      string const mappingValue = opMapReference->get_symbol ()->get_name ().getString ();

      if (iequals (mappingValue, OP2::OP_ID))
      {
        /*
         * ======================================================
         * OP_ID signals identity mapping and therefore direct
         * access to the data
         * ======================================================
         */
        Debug::getInstance ()->debugMessage ("...DIRECT mapping descriptor",
            Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

        parallelLoop->setOpMapValue (OP_DAT_ArgumentGroup, DIRECT);
      }
      else
      {
        Debug::getInstance ()->debugMessage ("...INDIRECT mapping descriptor",
            Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

        parallelLoop->setOpMapValue (OP_DAT_ArgumentGroup, INDIRECT);
      }

      setOpDatProperties (parallelLoop, opDatName, OP_DAT_ArgumentGroup);

      setParallelLoopAccessDescriptor (parallelLoop, opArgArguments, OP_DAT_ArgumentGroup, DAT_ACC_POSITION);
    }
    else if ( functionName == "op_arg_gbl" )
    {

      Debug::getInstance ()->debugMessage ("...GLOBAL mapping descriptor",
        Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

     /*
      * ======================================================
      * Get the OP_GBL variable reference and name
      * ======================================================
      */
      SgVarRefExp * opDatReference;

      if (isSgDotExp (opArgArguments->get_expressions ()[DAT_POSITION])
          != NULL)
      {
        opDatReference
            = isSgVarRefExp (
                isSgDotExp (
                    opArgArguments->get_expressions ()[DAT_POSITION])->get_rhs_operand ());
      }
      else
      {
        opDatReference = isSgVarRefExp (
            opArgArguments->get_expressions ()[DAT_POSITION]);
      }

      string const globalName =
          opDatReference->get_symbol ()->get_name ().getString ();
      

     /*
      * ======================================================
      * Get the OP_GBL dimension: check the number of args
      * to the op_arg_gbl function (3 = array, 2 = scalar)
      * ======================================================
      */
      if ( opArgArguments->get_expressions ().size () == GBL_SCALAR_ARG_NUM )
      {

        Debug::getInstance ()->debugMessage ("'" + globalName + "' is a scalar",
            Debug::FUNCTION_LEVEL, __FILE__, __LINE__);

       /*
        * ======================================================
        * Since this is a scalar, set the dimension to 1
        * ======================================================
        */

        parallelLoop->setOpDatDimension (OP_DAT_ArgumentGroup, 1);
      }
      else
      {
        SgIntVal * intValExp = isSgIntVal (opArgArguments->get_expressions ()[GBL_DIM_POSITION]);
        ROSE_ASSERT (intValExp != NULL);
        
        int globalDimension = intValExp->get_value ();
        
        parallelLoop->setOpDatDimension (OP_DAT_ArgumentGroup, globalDimension);
        
        Debug::getInstance ()->debugMessage ("'" + globalName
          + "' is NOT a scalar, but has dimension " + lexical_cast<string> (globalDimension),
          Debug::FUNCTION_LEVEL, __FILE__, __LINE__);
      }

     /*
      * ======================================================
      * Set the other fields
      * ======================================================
      */
      parallelLoop->setOpDatType (OP_DAT_ArgumentGroup,
        (opArgArguments->get_expressions ()[DAT_POSITION])->get_type ());
     
      parallelLoop->setUniqueOpDat (globalName);

      parallelLoop->setOpDatVariableName (OP_DAT_ArgumentGroup, globalName);

      parallelLoop->setDuplicateOpDat (OP_DAT_ArgumentGroup, false);

      parallelLoop->setOpMapValue (OP_DAT_ArgumentGroup, GLOBAL);

      if ( opArgArguments->get_expressions ().size () == GBL_SCALAR_ARG_NUM )       
        setParallelLoopAccessDescriptor (parallelLoop, opArgArguments,
          OP_DAT_ArgumentGroup, GBL_SCALAR_ACC_POSITION);
      else        
        setParallelLoopAccessDescriptor (parallelLoop, opArgArguments,
          OP_DAT_ArgumentGroup, GBL_ARRAY_ACC_POSITION);
    }
    else if ( functionName == "op_arg_dat_generic" )
    {
      Debug::getInstance ()->debugMessage ("Found generic op_dat",
        Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

      /*
       * ======================================================
       * Obtain the op_dat reference and its name
       * ======================================================
       */
      SgVarRefExp * opDatReference = NULL;

      opDatReference = getOpDatReferenceFromOpArg (opArgArguments);

      ROSE_ASSERT (opDatReference != NULL);

      string const opDatName = opDatReference->get_symbol ()->get_name ().getString ();      

      /*
       * ======================================================
       * Obtain the map reference and name, and select access
       * type (direct or indirect)
       * ======================================================
       */
      SgVarRefExp * opMapReference;

      opMapReference = getOpMapReferenceFromOpArg (opArgArguments);

      ROSE_ASSERT (opMapReference != NULL);

      string const mappingValue = opMapReference->get_symbol ()->get_name ().getString ();

      if (iequals (mappingValue, OP2::OP_ID))
        {
          /*
           * ======================================================
           * OP_ID signals identity mapping and therefore direct
           * access to the data
           * ======================================================
           */
          Debug::getInstance ()->debugMessage ("...DIRECT mapping descriptor",
            Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

          parallelLoop->setOpMapValue (OP_DAT_ArgumentGroup, DIRECT);
        }
      else
        {
          Debug::getInstance ()->debugMessage ("...INDIRECT mapping descriptor",
            Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

          parallelLoop->setOpMapValue (OP_DAT_ArgumentGroup, INDIRECT);
        }

      /*
       * ======================================================
       * In case of generic loop, I have to read also the
       * dimension and type to be able to set the op_dat info
       * in the parallel loop class
       * ======================================================
       */
      SgIntVal * opDatDimension = isSgIntVal (
        opArgArguments->get_expressions ()[GENERIC_DIM_POSITION]);

        
      SgStringVal * opDataBaseTypeString = isSgStringVal (
        opArgArguments->get_expressions ()[GENERIC_TYPE_POSITION]);

      ROSE_ASSERT (opDataBaseTypeString != NULL);
        
      SgType * opDataBaseType = getTypeFromString (opDataBaseTypeString->get_value (),
        opDatName);

      ROSE_ASSERT (opDataBaseType != NULL);

      setOpDatPropertiesGeneric (parallelLoop, opDatName, opDatDimension->get_value (),
         opDataBaseType, OP_DAT_ArgumentGroup);

      Debug::getInstance ()->debugMessage ("Getting access",
        Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);

      setParallelLoopAccessDescriptor (parallelLoop, opArgArguments,
        OP_DAT_ArgumentGroup, GENERIC_ACC_POSITION);
    } 
    else if ( functionName == "op_arg_mat" )
    {
      Debug::getInstance ()->debugMessage ("Unsupported argument type",
        Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);
    }
    else
    {
      Debug::getInstance ()->debugMessage ("Argument type not recognised",
        Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);      
    }

   /*
    * ======================================================
    * This identifies the argument position in the data
    * structures, while the iteration variable 'i' identifies
    * the corresponding op_arg position in the op_par_loop
    * arguments (i == OP_DAT_ArgumentGroup + 2)
    * ======================================================
    */

    OP_DAT_ArgumentGroup++;
  }
  
  parallelLoop->setNumberOfOpDatArgumentGroups (numberOfOpArgs);
  parallelLoop->setNumberOfOpMatArgumentGroups (0);
  
  if ( parallelLoop->isDirectLoop () )
    Debug::getInstance ()->debugMessage ("This is a DIRECT parallel loop",
      Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);
  else
    Debug::getInstance ()->debugMessage ("This is an INDIRECT parallel loop",
      Debug::OUTER_LOOP_LEVEL, __FILE__, __LINE__);  
}
Esempio n. 28
0
POETCode* POETAstInterface::Ast2POET(const Ast& n)
{
  static SgTemplateInstantiationFunctionDecl* tmp=0;
  SgNode* input = (SgNode*) n;
  if (input == 0) return EMPTY;
  POETCode* res = POETAstInterface::find_Ast2POET(input);
  if (res != 0) return res;

  {
  SgProject* sageProject=isSgProject(input); 
  if (sageProject != 0) {
    int filenum = sageProject->numberOfFiles(); 
    for (int i = 0; i < filenum; ++i) { 
      SgSourceFile* sageFile = isSgSourceFile(sageProject->get_fileList()[i]); 
      SgGlobal *root = sageFile->get_globalScope(); 
      SgDeclarationStatementPtrList declList = root->get_declarations ();
      POETCode* curfile = ROSE_2_POET_list(declList, 0, tmp);
      curfile = new POETCode_ext(sageFile, curfile);
      POETAstInterface::set_Ast2POET(sageFile, curfile);
      res=LIST(curfile, res);
    }
    POETAstInterface::set_Ast2POET(sageProject,res); 
    return res;
  } }
  { 
  SgBasicBlock* block = isSgBasicBlock(input);
  if (block != 0) {
    res=ROSE_2_POET_list(block->get_statements(), res, tmp);
    POETAstInterface::set_Ast2POET(block, res); 
    return res;
  } }
  { 
  SgExprListExp* block = isSgExprListExp(input);
  if (block != 0) {
    res=ROSE_2_POET_list(block->get_expressions(), 0, tmp);
    POETAstInterface::set_Ast2POET(block, res); 
    return res;
  } }
 {
  SgForStatement *f = isSgForStatement(input);
  if (f != 0) {
      POETCode* init = ROSE_2_POET_list(f->get_for_init_stmt()->get_init_stmt(),0, tmp);
      POETCode* ctrl = new POETCode_ext(f, TUPLE3(init,Ast2POET(f->get_test_expr()), Ast2POET(f->get_increment())));
      res = CODE_ACC("Nest", PAIR(ctrl,Ast2POET(f->get_loop_body())));  
      POETAstInterface::set_Ast2POET(input, res); 
      return res;
  }
  }
  {
    SgVarRefExp * v = isSgVarRefExp(input);
    if (v != 0) {
       res = STRING(v->get_symbol()->get_name().str());
       POETAstInterface::set_Ast2POET(input, res); 
       return res;
    }
  }
  {
    SgMemberFunctionRefExp * v = isSgMemberFunctionRefExp(input);
    if (v != 0) {
       res = STRING(v->get_symbol()->get_name().str());
       POETAstInterface::set_Ast2POET(input, res); 
       return res;
    }
  }
  {
    SgIntVal * v = isSgIntVal(input);
    if (v != 0) {
       res = ICONST(v->get_value());
       POETAstInterface::set_Ast2POET(input, res); 
       return res;
    }
  }
  {
   SgInitializedName* var = isSgInitializedName(input);
   if (var != 0) {
     POETCode* name = STRING(var->get_name().str()); 
     POETCode* init = Ast2POET(var->get_initializer());
     res = new POETCode_ext(var, PAIR(name,init));
     POETAstInterface::set_Ast2POET(input, res); 
     return res;
   }
  }

/*
  {
  std::string fname;
  AstInterface::AstList params;
  AstNodeType returnType;
  AstNodePtr body;
  if (AstInterface :: IsFunctionDefinition( input, &fname, &params, (AstInterface::AstList*)0, &body, (AstInterface::AstTypeList*)0, &returnType)) {
if (body != AST_NULL)
 std::cerr << "body not empty:" << fname << "\n";
      POETCode* c = TUPLE4(STRING(fname), ROSE_2_POET_list(0,params,0), 
                 STRING(AstInterface::GetTypeName(returnType)), 
                 Ast2POET(body.get_ptr()));
      res = new POETCode_ext(input, c);
      POETAstInterface::set_Ast2POET(input,res);
      return res;
  } }   
*/

  AstInterface::AstList c = AstInterface::GetChildrenList(input);
  switch (input->variantT()) {
    case V_SgCastExp:
    case V_SgAssignInitializer:
      res = Ast2POET(c[0]); 
      POETAstInterface::set_Ast2POET(input, res); return res; 
    case V_SgDotExp:
     {
      POETCode* v1 = Ast2POET(c[1]);
      if (dynamic_cast<POETString*>(v1)->get_content() == "operator()") 
           return Ast2POET(c[0]);
      res = CODE_ACC("Bop",TUPLE3(STRING("."), Ast2POET(c[0]), v1)); return res;
     }
    case V_SgLessThanOp:
      res = CODE_ACC("Bop",TUPLE3(STRING("<"),Ast2POET(c[0]), Ast2POET(c[1])));
      POETAstInterface::set_Ast2POET(input, res); return res;
    case V_SgSubtractOp:
      res = CODE_ACC("Bop",TUPLE3(STRING("-"),Ast2POET(c[0]), Ast2POET(c[1])));
      POETAstInterface::set_Ast2POET(input, res); return res;
    case V_SgAddOp:
      res = CODE_ACC("Bop",TUPLE3(STRING("+"),Ast2POET(c[0]), Ast2POET(c[1])));
      POETAstInterface::set_Ast2POET(input, res); return res;
    case V_SgMultiplyOp:
      res = CODE_ACC("Bop",TUPLE3(STRING("*"),Ast2POET(c[0]), Ast2POET(c[1])));
      POETAstInterface::set_Ast2POET(input, res); return res;
    case V_SgDivideOp:
      res = CODE_ACC("Bop",TUPLE3(STRING("/"),Ast2POET(c[0]), Ast2POET(c[1])));
      POETAstInterface::set_Ast2POET(input, res); return res;
    case V_SgAssignOp:
      res = CODE_ACC("Assign",PAIR(Ast2POET(c[0]), Ast2POET(c[1])));
      POETAstInterface::set_Ast2POET(input, res); return res;
    case V_SgFunctionCallExp:
      res = CODE_ACC("FunctionCall",PAIR(Ast2POET(c[0]), Ast2POET(c[1])));
      POETAstInterface::set_Ast2POET(input, res); return res;
  } 
  POETCode * c2 = 0; 
  if (tmp == 0) tmp=isSgTemplateInstantiationFunctionDecl(input);
   switch (c.size()) {
   case 0: break;
   case 1: c2 = Ast2POET(c[0]); break;
   case 2: c2 = PAIR(Ast2POET(c[0]),Ast2POET(c[1])); break;
   case 3: c2 = TUPLE3(Ast2POET(c[0]),Ast2POET(c[1]),Ast2POET(c[2])); break;
   case 4: c2 = TUPLE4(Ast2POET(c[0]),Ast2POET(c[1]),Ast2POET(c[2]),Ast2POET(c[3])); break;
   default: 
     //std::cerr << "too many children: " << c.size() << ":" << input->unparseToString() << "\n";
     c2 = EMPTY;
   }
  if (tmp == input) tmp = 0;
  res = new POETCode_ext(input, c2); 
  POETAstInterface::set_Ast2POET(input,res);
  return res;
}
Esempio n. 29
0
//Generates SSA form numbers for the variables contained in *ex and attaches them as AstValueAttributes to the related SgNodes
//Assumption: *ex is located in in the inTrueBranch branch of the if node labeled *condLabel (These two arguments are required to generate the SSA form numbers)  
void SSAGenerator::processSgExpression(SgExpression* ex, Label* condLabel, bool inTrueBranch)
{
	SgIntVal* intVal = dynamic_cast<SgIntVal*>(ex);
	SgMinusOp* minusOp = dynamic_cast<SgMinusOp*>(ex);
	SgVarRefExp* varRef = dynamic_cast<SgVarRefExp*>(ex);
	SgBinaryOp* binOp = dynamic_cast<SgBinaryOp*>(ex);
	SgFunctionCallExp* funcCall = dynamic_cast<SgFunctionCallExp*>(ex);
	
	if(intVal) //Int value
	{
		//Nothing needs to be done; Case is listed here to have a collection of all expected cases
	}
	else if(minusOp)
	{
		processSgExpression(minusOp->get_operand(), condLabel, inTrueBranch);
	}
	else if(varRef) //Reference to variable that is NOT on the left hand side of an assignment
	{
		//Assign number to variable
		string varName = varRef->get_symbol()->get_name().getString();
		int varNumber = currentNumber(varName, condLabel, inTrueBranch);  
		logger[Sawyer::Message::DEBUG] << "Current number for variable " << varName << ": " << varNumber << endl;
		AstValueAttribute<int>* varNumberAtt = new AstValueAttribute<int>(varNumber);
		varRef->setAttribute("SSA_NUMBER", varNumberAtt);	
	}
	else if(binOp) //Binary operation
	{	
		SgExpression* lhs = binOp->get_lhs_operand();
		SgExpression* rhs = binOp->get_rhs_operand();

		//Process right hand side first
		processSgExpression(rhs, condLabel, inTrueBranch);
		
		//Process left hand side second
		SgAssignOp* assignOp = dynamic_cast<SgAssignOp*>(binOp);	
		if(assignOp) //Assignment to a variable
		{
			//Assign new number to that variable  
			SgVarRefExp* lhsVarRef = dynamic_cast<SgVarRefExp*>(lhs);
			assert(lhsVarRef != NULL);
			processAssignmentTo(lhsVarRef, condLabel, inTrueBranch);
		}
		else //Arithmetic operation or boolean operation (or something unexpected)
		{
			processSgExpression(lhs, condLabel, inTrueBranch);	
		}	
		
	}
	else if(funcCall) //Call to a function
			  //RERS specific; Only two function call types are supported: 
			  //(1) scanf("%d",&...); 
			  //(2) __VERIFIER_error(RERSVerifierErrorNumber); The artificial bool variable RERSErrorOccured has to be updated 
	{
		string funcName = funcCall->getAssociatedFunctionSymbol()->get_name().getString();
		logger[Sawyer::Message::DEBUG] << "Call to function: " << funcName << endl;
		if(funcName == "scanf") //(1)
		{
			SgExprListExp* funcArgs = funcCall->get_args();
			SgExpressionPtrList funcArgsPtrs = funcArgs->get_expressions();
			SgExpressionPtrList::iterator i = funcArgsPtrs.begin();
			while(i != funcArgsPtrs.end())
			{
				SgAddressOfOp* addrOp = dynamic_cast<SgAddressOfOp*>(*i);
				if(addrOp) 
				{
					SgVarRefExp* varRef = dynamic_cast<SgVarRefExp*>(addrOp->get_operand());
					if(varRef)
					{
						processAssignmentTo(varRef, condLabel, inTrueBranch);
					}
					else logger[Sawyer::Message::DEBUG] << "FOUND NO REFERENCE TO VARIABLE" << endl;
				}
				i++;	
			}	
		}
		else if(funcName == "__VERIFIER_error" && prepareReachabilityAnalysisZ3)
		{
			SgExprListExp* funcArgs = funcCall->get_args();
			SgExpressionPtrList funcArgsPtrs = funcArgs->get_expressions();
			assert(funcArgsPtrs.size() == 1);
			SgExpression* argument = *funcArgsPtrs.begin();
			SgIntVal* intArgument = dynamic_cast<SgIntVal*>(argument);
			assert(intArgument != NULL);
			if(intArgument->get_value() == RERSVerifierErrorNumber) //(2) 
			{
				int RERSErrorOccuredNumber = nextNumber("RERSErrorOccured", condLabel, inTrueBranch); 
				logger[Sawyer::Message::DEBUG] << "Next number for variable RERSErrorOccured: " << RERSErrorOccuredNumber << endl;
				AstValueAttribute<int>* numberAtt = new AstValueAttribute<int>(RERSErrorOccuredNumber);
				funcCall->setAttribute("SSA_NUMBER", numberAtt); 
			}
		}
		else logger[Sawyer::Message::DEBUG] << "Ignoring function call" << endl;
	}
	else //Unexpected
	{
		logger[Sawyer::Message::ERROR] << "ERROR: SgExpression could not be handled: " << ex->class_name() << endl;
		assert(false);
	}
}
void
CPPOpenMPHostSubroutineIndirectLoop::createKernelFunctionCallStatement (
    SgScopeStatement * scope)
{
  using namespace SageInterface;
  using namespace SageBuilder;
  using namespace OP2VariableNames;
  using namespace PlanFunctionVariableNames;
  using namespace OP2::RunTimeVariableNames;
  using namespace ReductionVariableNames;
  using namespace LoopVariableNames;

  Debug::getInstance ()->debugMessage (
      "Creating statement to call OpenMP kernel", Debug::FUNCTION_LEVEL,
      __FILE__, __LINE__);

  SgExprListExp * actualParameters = buildExprListExp ();

  for (unsigned int i = 1; i <= parallelLoop->getNumberOfOpDatArgumentGroups (); ++i)
  {
    if (parallelLoop->isDuplicateOpDat (i) == false)
    {
      if (parallelLoop->isReductionRequired (i))
      {
        SgMultiplyOp * multiplyExpression = buildMultiplyOp (
            variableDeclarations->getReference (
                getIterationCounterVariableName (1)), buildIntVal (64));

        SgAddOp * addExpression = buildAddOp (
            variableDeclarations->getReference (getReductionArrayHostName (i)),
            multiplyExpression);

        actualParameters->append_expression (addExpression);
      }
      else
      {
        actualParameters->append_expression (
            variableDeclarations->getReference (getOpDatLocalName (i)));
      }
    }
  }

  unsigned int arrayIndex = 0;

  for (unsigned int i = 1; i <= parallelLoop->getNumberOfOpDatArgumentGroups (); ++i)
  {
    if (parallelLoop->isDuplicateOpDat (i) == false)
    {
      if (parallelLoop->isIndirect (i))
      {
        SgVariableDeclaration * variableDeclaration = buildVariableDeclaration (
            ind_maps, buildArrayType (buildIntType ()), NULL, subroutineScope);

        SgPntrArrRefExp * arrayExpression = buildPntrArrRefExp (buildVarRefExp (
            variableDeclaration), buildIntVal (arrayIndex));

        SgArrowExp * arrowExpression = buildArrowExp (
            variableDeclarations->getReference (planRet), arrayExpression);

        actualParameters->append_expression (arrowExpression);

        arrayIndex++;
      }
    }
  }

  for (unsigned int i = 1; i <= parallelLoop->getNumberOfOpDatArgumentGroups (); ++i)
  {
    if (parallelLoop->isIndirect (i))
    {
      SgVariableDeclaration * variableDeclaration = buildVariableDeclaration (
          loc_maps, buildArrayType (buildIntType ()), NULL, subroutineScope);

      SgPntrArrRefExp * arrayExpression = buildPntrArrRefExp (buildVarRefExp (
          variableDeclaration), buildIntVal (i - 1));

      SgArrowExp * arrowExpression = buildArrowExp (
          variableDeclarations->getReference (planRet), arrayExpression);

      actualParameters->append_expression (arrowExpression);
    }
  }

  actualParameters->append_expression (buildArrowExp (
      variableDeclarations->getReference (planRet), buildOpaqueVarRefExp (
          ind_sizes, subroutineScope)));

  actualParameters->append_expression (buildArrowExp (
      variableDeclarations->getReference (planRet), buildOpaqueVarRefExp (
          ind_offs, subroutineScope)));

  actualParameters->append_expression (buildArrowExp (
      variableDeclarations->getReference (planRet), buildOpaqueVarRefExp (
          blkmap, subroutineScope)));

  actualParameters->append_expression (buildArrowExp (
      variableDeclarations->getReference (planRet), buildOpaqueVarRefExp (
          offset, subroutineScope)));

  actualParameters->append_expression (buildArrowExp (
      variableDeclarations->getReference (planRet), buildOpaqueVarRefExp (
          nelems, subroutineScope)));

  actualParameters->append_expression (buildArrowExp (
      variableDeclarations->getReference (planRet), buildOpaqueVarRefExp (
          thrcol, subroutineScope)));

  actualParameters->append_expression (buildArrowExp (
      variableDeclarations->getReference (planRet), buildOpaqueVarRefExp (
          nthrcol, subroutineScope)));

  actualParameters->append_expression (variableDeclarations->getReference (
      blockOffset));

  actualParameters->append_expression (variableDeclarations->getReference (
      blockID));

  SgFunctionCallExp * functionCallExpression = buildFunctionCallExp (
      calleeSubroutine->getSubroutineName (), buildVoidType (),
      actualParameters, subroutineScope);

  appendStatement (buildExprStatement (functionCallExpression), scope);
}