Esempio n. 1
0
	virtual void	GetWheelPosition(int wheelIndex,float& posX,float& posY,float& posZ) const
	{
		SimdTransform	trans = m_vehicle->GetWheelTransformWS(wheelIndex);
		posX = trans.getOrigin().x();
		posY = trans.getOrigin().y();
		posZ = trans.getOrigin().z();
	}
Esempio n. 2
0
ManifoldContactAddResult::ManifoldContactAddResult(SimdTransform transA,SimdTransform transB,PersistentManifold* manifoldPtr)
		:m_manifoldPtr(manifoldPtr)
{
	m_transAInv = transA.inverse();
	m_transBInv = transB.inverse();

}
Esempio n. 3
0
	virtual void	GetWheelOrientationQuaternion(int wheelIndex,float& quatX,float& quatY,float& quatZ,float& quatW) const
	{
		SimdTransform	trans = m_vehicle->GetWheelTransformWS(wheelIndex);
		SimdQuaternion quat = trans.getRotation();
		SimdMatrix3x3 orn2(quat);

		quatX = trans.getRotation().x();
		quatY = trans.getRotation().y();
		quatZ = trans.getRotation().z();
		quatW = trans.getRotation()[3];


		//printf("test");


	}
Esempio n. 4
0
void	CollisionWorld::RayTest(const SimdVector3& rayFromWorld, const SimdVector3& rayToWorld, RayResultCallback& resultCallback)
{

	
	SimdTransform	rayFromTrans,rayToTrans;
	rayFromTrans.setIdentity();
	rayFromTrans.setOrigin(rayFromWorld);
	rayToTrans.setIdentity();
	
	rayToTrans.setOrigin(rayToWorld);

	//do culling based on aabb (rayFrom/rayTo)
	SimdVector3 rayAabbMin = rayFromWorld;
	SimdVector3 rayAabbMax = rayFromWorld;
	rayAabbMin.setMin(rayToWorld);
	rayAabbMax.setMax(rayToWorld);


	/// brute force go over all objects. Once there is a broadphase, use that, or
	/// add a raycast against aabb first.
	
	std::vector<CollisionObject*>::iterator iter;
	
	for (iter=m_collisionObjects.begin();
	!(iter==m_collisionObjects.end()); iter++)
	{
		
		CollisionObject*	collisionObject= (*iter);

		//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
		SimdVector3 collisionObjectAabbMin,collisionObjectAabbMax;
		collisionObject->m_collisionShape->GetAabb(collisionObject->m_worldTransform,collisionObjectAabbMin,collisionObjectAabbMax);

		//check aabb overlap

		if (TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,collisionObjectAabbMin,collisionObjectAabbMax))
		{
			RayTestSingle(rayFromTrans,rayToTrans,
				collisionObject,
					 collisionObject->m_collisionShape,
					  collisionObject->m_worldTransform,
					  resultCallback);
			
		}
	}

}
Esempio n. 5
0
	void	SyncWheels()
	{
		int numWheels = GetNumWheels();
		int i;
		for (i=0;i<numWheels;i++)
		{
			WheelInfo& info = m_vehicle->GetWheelInfo(i);
			PHY_IMotionState* motionState = (PHY_IMotionState*)info.m_clientInfo ;
			m_vehicle->UpdateWheelTransform(i);
			SimdTransform trans = m_vehicle->GetWheelTransformWS(i);
			SimdQuaternion orn = trans.getRotation();
			const SimdVector3& pos = trans.getOrigin();
			motionState->setWorldOrientation(orn.x(),orn.y(),orn.z(),orn[3]);
			motionState->setWorldPosition(pos.x(),pos.y(),pos.z());

		}
	}
Esempio n. 6
0
void renderme()
{
	float m[16];
	int i;

	for (i=0;i<numObjects;i++)
	{
		SimdTransform transA;
		transA.setIdentity();
		
		float pos[3];
		float rot[4];

		ms[i].getWorldPosition(pos[0],pos[1],pos[2]);
		ms[i].getWorldOrientation(rot[0],rot[1],rot[2],rot[3]);

		SimdQuaternion q(rot[0],rot[1],rot[2],rot[3]);
		transA.setRotation(q);

		SimdPoint3 dpos;
		dpos.setValue(pos[0],pos[1],pos[2]);

		transA.setOrigin( dpos );
		transA.getOpenGLMatrix( m );
		
		SimdVector3 wireColor(0.f,0.f,1.f); //wants deactivation

		///color differently for active, sleeping, wantsdeactivation states
		if (physObjects[i]->GetRigidBody()->GetActivationState() == 1) //active
		{
			wireColor = SimdVector3 (1.f,0.f,0.f);
		}
		if (physObjects[i]->GetRigidBody()->GetActivationState() == 2) //ISLAND_SLEEPING
		{
			wireColor = SimdVector3 (0.f,1.f,0.f);
		}

		char	extraDebug[125];
		//sprintf(extraDebug,"islId, Body=%i , %i",physObjects[i]->GetRigidBody()->m_islandTag1,physObjects[i]->GetRigidBody()->m_debugBodyId);
		shapePtr[shapeIndex[i]]->SetExtraDebugInfo(extraDebug);
		GL_ShapeDrawer::DrawOpenGL(m,shapePtr[shapeIndex[i]],wireColor,getDebugMode());
	}

}
Esempio n. 7
0
///
/// Debugging method CalcClosest calculates the closest point to the origin, using m_simplexSolver
///
void	GL_Simplex1to4::CalcClosest(float* m)
{
    SimdTransform tr;
    tr.setFromOpenGLMatrix(m);



    GL_ShapeDrawer::DrawCoordSystem();

    if (m_simplexSolver)
    {
        m_simplexSolver->reset();
        bool res;

        SimdVector3 v;
        SimdPoint3 pBuf[4];
        SimdPoint3 qBuf[4];
        SimdPoint3 yBuf[4];


        for (int i=0; i<m_numVertices; i++)
        {
            v =  tr(m_vertices[i]);
            m_simplexSolver->addVertex(v,v,SimdPoint3(0.f,0.f,0.f));
            res = m_simplexSolver->closest(v);
            int res = m_simplexSolver->getSimplex(pBuf, qBuf, yBuf);

        }


        //draw v?
        glDisable(GL_LIGHTING);
        glBegin(GL_LINES);
        glColor3f(1.f, 0.f, 0.f);
        glVertex3f(0.f, 0.f, 0.f);
        glVertex3f(v.x(),v.y(),v.z());
        glEnd();

        glEnable(GL_LIGHTING);


    }

}
Esempio n. 8
0
void clientMoveAndDisplay()
{
	if ( !g_pauseAnim )
	{
		SimdMatrix3x3 rot;
		rot.setEulerZYX( g_animAngle * 0.05, g_animAngle * 0.05, g_animAngle * 0.05 );

		SimdTransform t;
		t.setIdentity();
		t.setBasis( rot );

		//g_convexShapesTransform[ 0 ].mult( g_convexShapesTransform[ 0 ], t );
		g_convexShapesTransform[ 1 ].mult( g_convexShapesTransform[ 1 ], t );

		g_shapesPenetrate = calcPenDepth();
	}

	clientDisplay();
}
Esempio n. 9
0
    virtual void	AddConvexVerticesCollider(std::vector<SimdVector3>& vertices, bool isEntity, const SimdVector3& entityTargetLocation)
    {
        ///perhaps we can do something special with entities (isEntity)
        ///like adding a collision Triggering (as example)

        if (vertices.size() > 0)
        {
            bool isDynamic = false;
            float mass = 0.f;
            SimdTransform startTransform;
            //can use a shift
            startTransform.setIdentity();
            startTransform.setOrigin(SimdVector3(0,0,-10.f));
            //this create an internal copy of the vertices
            CollisionShape* shape = new ConvexHullShape(&vertices[0],vertices.size());

            m_demoApp->LocalCreatePhysicsObject(isDynamic, mass, startTransform,shape);
        }
    }
Esempio n. 10
0
void LinearConvexCastDemo::initPhysics()
{
	setCameraDistance(30.f);
	tr[0].setOrigin(SimdVector3(0,0,0));
	tr[1].setOrigin(SimdVector3(0,10,0));

	SimdMatrix3x3 basisA;
	basisA.setValue(0.99999958f,0.00022980258f,0.00090992288f,
		-0.00029313788f,0.99753088f,0.070228584f,
		-0.00089153741f,-0.070228823f,0.99753052f);

	SimdMatrix3x3 basisB;
	basisB.setValue(1.0000000f,4.4865553e-018f,-4.4410586e-017f,
		4.4865495e-018f,0.97979438f,0.20000751f,
		4.4410586e-017f,-0.20000751f,0.97979438f);

	tr[0].setBasis(basisA);
	tr[1].setBasis(basisB);



	SimdVector3 boxHalfExtentsA(0.2,4,4);
	SimdVector3 boxHalfExtentsB(6,6,6);

	BoxShape*	boxA = new BoxShape(boxHalfExtentsA);
/*	BU_Simplex1to4	boxB;
	boxB.AddVertex(SimdPoint3(-5,0,-5));
	boxB.AddVertex(SimdPoint3(5,0,-5));
	boxB.AddVertex(SimdPoint3(0,0,5));
	boxB.AddVertex(SimdPoint3(0,5,0));
*/

	BoxShape*	boxB = new BoxShape(boxHalfExtentsB);
	shapePtr[0] = boxA;
	shapePtr[1] = boxB;

	shapePtr[0]->SetMargin(0.01f);
	shapePtr[1]->SetMargin(0.01f);

	SimdTransform tr;
	tr.setIdentity();
}
Esempio n. 11
0
int main(int argc,char** argv)
{
    setCameraDistance(20.f);

    tr[0].setOrigin(SimdVector3(0.0013328250f,8.1363249f,7.0390840f));
    tr[1].setOrigin(SimdVector3(0.00000000f,9.1262732f,2.0343180f));

    //tr[0].setOrigin(SimdVector3(0,0,0));
    //tr[1].setOrigin(SimdVector3(0,10,0));

    SimdMatrix3x3 basisA;
    basisA.setValue(0.99999958f,0.00022980258f,0.00090992288f,
                    -0.00029313788f,0.99753088f,0.070228584f,
                    -0.00089153741f,-0.070228823f,0.99753052f);

    SimdMatrix3x3 basisB;
    basisB.setValue(1.0000000f,4.4865553e-018f,-4.4410586e-017f,
                    4.4865495e-018f,0.97979438f,0.20000751f,
                    4.4410586e-017f,-0.20000751f,0.97979438f);

    tr[0].setBasis(basisA);
    tr[1].setBasis(basisB);



    SimdVector3 boxHalfExtentsA(1.0000004768371582f,1.0000004768371582f,1.0000001192092896f);
    SimdVector3 boxHalfExtentsB(3.2836332321166992f,3.2836332321166992f,3.2836320400238037f);

    BoxShape	boxA(boxHalfExtentsA);
    BoxShape	boxB(boxHalfExtentsB);
    shapePtr[0] = &boxA;
    shapePtr[1] = &boxB;


    SimdTransform tr;
    tr.setIdentity();


    return glutmain(argc, argv,screenWidth,screenHeight,"Collision Demo");
}
Esempio n. 12
0
void	PolyhedralConvexShape::CalculateLocalInertia(SimdScalar mass,SimdVector3& inertia)
{
	//not yet, return box inertia

	float margin = GetMargin();

	SimdTransform ident;
	ident.setIdentity();
	SimdVector3 aabbMin,aabbMax;
	GetAabb(ident,aabbMin,aabbMax);
	SimdVector3 halfExtents = (aabbMax-aabbMin)*0.5f;

	SimdScalar lx=2.f*(halfExtents.x()+margin);
	SimdScalar ly=2.f*(halfExtents.y()+margin);
	SimdScalar lz=2.f*(halfExtents.z()+margin);
	const SimdScalar x2 = lx*lx;
	const SimdScalar y2 = ly*ly;
	const SimdScalar z2 = lz*lz;
	const SimdScalar scaledmass = mass * 0.08333333f;

	inertia = scaledmass * (SimdVector3(y2+z2,x2+z2,x2+y2));

}
Esempio n. 13
0
Transform	GetTransformFromSimdTransform(const SimdTransform& trans)
{
			//const SimdVector3& rowA0 = trans.getBasis().getRow(0);
			////const SimdVector3& rowA1 = trans.getBasis().getRow(1);
			//const SimdVector3& rowA2 = trans.getBasis().getRow(2);

			SimdVector3 rowA0 = trans.getBasis().getColumn(0);
			SimdVector3 rowA1 = trans.getBasis().getColumn(1);
			SimdVector3 rowA2 = trans.getBasis().getColumn(2);


			Vector3	x(rowA0.getX(),rowA0.getY(),rowA0.getZ());
			Vector3	y(rowA1.getX(),rowA1.getY(),rowA1.getZ());
			Vector3	z(rowA2.getX(),rowA2.getY(),rowA2.getZ());
			
			Matrix33 ornA(x,y,z);
	
			Point3 transA(
				trans.getOrigin().getX(),
				trans.getOrigin().getY(),
				trans.getOrigin().getZ());

			return Transform(ornA,transA);
}
Esempio n. 14
0
void ConvexDecompositionDemo::initPhysics(const char* filename)
{
	ConvexDecomposition::WavefrontObj wo;

	tcount = wo.loadObj(filename);

	CollisionDispatcher* dispatcher = new	CollisionDispatcher();


	SimdVector3 worldAabbMin(-10000,-10000,-10000);
	SimdVector3 worldAabbMax(10000,10000,10000);

	OverlappingPairCache* broadphase = new AxisSweep3(worldAabbMin,worldAabbMax);
	//OverlappingPairCache* broadphase = new SimpleBroadphase();

	m_physicsEnvironmentPtr = new CcdPhysicsEnvironment(dispatcher,broadphase);
	m_physicsEnvironmentPtr->setDeactivationTime(2.f);

	m_physicsEnvironmentPtr->setGravity(0,-10,0);

	SimdTransform startTransform;
	startTransform.setIdentity();
	startTransform.setOrigin(SimdVector3(0,-4,0));

	LocalCreatePhysicsObject(false,0,startTransform,new BoxShape(SimdVector3(30,2,30)));

	class MyConvexDecomposition : public ConvexDecomposition::ConvexDecompInterface
	{

		ConvexDecompositionDemo*	m_convexDemo;
		public:

		MyConvexDecomposition (FILE* outputFile,ConvexDecompositionDemo* demo)
			:m_convexDemo(demo),
				mBaseCount(0),
			mHullCount(0),
			mOutputFile(outputFile)

		{
		}
		
			virtual void ConvexDecompResult(ConvexDecomposition::ConvexResult &result)
			{

				TriangleMesh* trimesh = new TriangleMesh();

				SimdVector3 localScaling(6.f,6.f,6.f);

				//export data to .obj
				printf("ConvexResult\n");
				if (mOutputFile)
				{
					fprintf(mOutputFile,"## Hull Piece %d with %d vertices and %d triangles.\r\n", mHullCount, result.mHullVcount, result.mHullTcount );

					fprintf(mOutputFile,"usemtl Material%i\r\n",mBaseCount);
					fprintf(mOutputFile,"o Object%i\r\n",mBaseCount);

					for (unsigned int i=0; i<result.mHullVcount; i++)
					{
						const float *p = &result.mHullVertices[i*3];
						fprintf(mOutputFile,"v %0.9f %0.9f %0.9f\r\n", p[0], p[1], p[2] );
					}

					//calc centroid, to shift vertices around center of mass
					centroid.setValue(0,0,0);
					if ( 1 )
					{
						const unsigned int *src = result.mHullIndices;
						for (unsigned int i=0; i<result.mHullTcount; i++)
						{
							unsigned int index0 = *src++;
							unsigned int index1 = *src++;
							unsigned int index2 = *src++;
							SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]);
							SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]);
							SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]);
							vertex0 *= localScaling;
							vertex1 *= localScaling;
							vertex2 *= localScaling;
							centroid += vertex0;
							centroid += vertex1;
							centroid += vertex2;
							
						}
					}

					centroid *= 1.f/(float(result.mHullTcount) * 3);

					if ( 1 )
					{
						const unsigned int *src = result.mHullIndices;
						for (unsigned int i=0; i<result.mHullTcount; i++)
						{
							unsigned int index0 = *src++;
							unsigned int index1 = *src++;
							unsigned int index2 = *src++;


							SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]);
							SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]);
							SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]);
							vertex0 *= localScaling;
							vertex1 *= localScaling;
							vertex2 *= localScaling;
							
							vertex0 -= centroid;
							vertex1 -= centroid;
							vertex2 -= centroid;

							trimesh->AddTriangle(vertex0,vertex1,vertex2);

							index0+=mBaseCount;
							index1+=mBaseCount;
							index2+=mBaseCount;
							
							fprintf(mOutputFile,"f %d %d %d\r\n", index0+1, index1+1, index2+1 );
						}
					}

					bool isDynamic = true;
					float mass = 1.f;
					CollisionShape* convexShape = new ConvexTriangleMeshShape(trimesh);
					SimdTransform trans;
					trans.setIdentity();
					trans.setOrigin(centroid);
					m_convexDemo->LocalCreatePhysicsObject(isDynamic, mass, trans,convexShape);

					mBaseCount+=result.mHullVcount; // advance the 'base index' counter.


				}
			}

			int   	mBaseCount;
  			int		mHullCount;
			FILE*	mOutputFile;

	};

	if (tcount)
	{
		TriangleMesh* trimesh = new TriangleMesh();

		SimdVector3 localScaling(6.f,6.f,6.f);
		
		for (int i=0;i<wo.mTriCount;i++)
		{
			int index0 = wo.mIndices[i*3];
			int index1 = wo.mIndices[i*3+1];
			int index2 = wo.mIndices[i*3+2];

			SimdVector3 vertex0(wo.mVertices[index0*3], wo.mVertices[index0*3+1],wo.mVertices[index0*3+2]);
			SimdVector3 vertex1(wo.mVertices[index1*3], wo.mVertices[index1*3+1],wo.mVertices[index1*3+2]);
			SimdVector3 vertex2(wo.mVertices[index2*3], wo.mVertices[index2*3+1],wo.mVertices[index2*3+2]);
			
			vertex0 *= localScaling;
			vertex1 *= localScaling;
			vertex2 *= localScaling;

			trimesh->AddTriangle(vertex0,vertex1,vertex2);
		}

		CollisionShape* convexShape = new ConvexTriangleMeshShape(trimesh);
		bool isDynamic = true;
		float mass = 1.f;
		
		SimdTransform startTransform;
		startTransform.setIdentity();
		startTransform.setOrigin(SimdVector3(20,2,0));

		LocalCreatePhysicsObject(isDynamic, mass, startTransform,convexShape);

	}
			

	if (tcount)
	{

		char outputFileName[512];
  		strcpy(outputFileName,filename);
  		char *dot = strstr(outputFileName,".");
  		if ( dot ) 
			*dot = 0;
		strcat(outputFileName,"_convex.obj");
  		FILE* outputFile = fopen(outputFileName,"wb");
				
		unsigned int depth = 7;
		float cpercent     = 5;
		float ppercent     = 15;
		unsigned int maxv  = 16;
		float skinWidth    = 0.01;

		printf("WavefrontObj num triangles read %i",tcount);
		ConvexDecomposition::DecompDesc desc;
		desc.mVcount       =	wo.mVertexCount;
		desc.mVertices     = wo.mVertices;
		desc.mTcount       = wo.mTriCount;
		desc.mIndices      = (unsigned int *)wo.mIndices;
		desc.mDepth        = depth;
		desc.mCpercent     = cpercent;
		desc.mPpercent     = ppercent;
		desc.mMaxVertices  = maxv;
		desc.mSkinWidth    = skinWidth;

		MyConvexDecomposition	convexDecomposition(outputFile,this);
		desc.mCallback = &convexDecomposition;
		
		

		//convexDecomposition.performConvexDecomposition(desc);

		ConvexBuilder cb(desc.mCallback);
		cb.process(desc);
		
		if (outputFile)
			fclose(outputFile);


	}


	m_physicsEnvironmentPtr->setDebugDrawer(&debugDrawer);

}
Esempio n. 15
0
void clientDisplay(void) {

    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glDisable(GL_LIGHTING);

    //GL_ShapeDrawer::DrawCoordSystem();

    float m[16];
    int i;

    GjkPairDetector	convexConvex(shapePtr[0],shapePtr[1],&sGjkSimplexSolver,0);

    SimdVector3 seperatingAxis(0.00000000f,0.059727669f,0.29259586f);
    convexConvex.SetCachedSeperatingAxis(seperatingAxis);

    PointCollector gjkOutput;
    GjkPairDetector::ClosestPointInput input;
    input.m_transformA = tr[0];
    input.m_transformB = tr[1];

    convexConvex.GetClosestPoints(input ,gjkOutput,0);

    if (gjkOutput.m_hasResult)
    {
        SimdVector3 endPt = gjkOutput.m_pointInWorld +
                            gjkOutput.m_normalOnBInWorld*gjkOutput.m_distance;

        glBegin(GL_LINES);
        glColor3f(1, 0, 0);
        glVertex3d(gjkOutput.m_pointInWorld.x(), gjkOutput.m_pointInWorld.y(),gjkOutput.m_pointInWorld.z());
        glVertex3d(endPt.x(),endPt.y(),endPt.z());
        //glVertex3d(gjkOutputm_pointInWorld.x(), gjkOutputm_pointInWorld.y(),gjkOutputm_pointInWorld.z());
        //glVertex3d(gjkOutputm_pointInWorld.x(), gjkOutputm_pointInWorld.y(),gjkOutputm_pointInWorld.z());
        glEnd();

    }

    for (i=0; i<numObjects; i++)
    {

        tr[i].getOpenGLMatrix( m );

        GL_ShapeDrawer::DrawOpenGL(m,shapePtr[i],SimdVector3(1,1,1),getDebugMode());


    }

    simplex.SetSimplexSolver(&sGjkSimplexSolver);
    SimdPoint3 ybuf[4],pbuf[4],qbuf[4];
    int numpoints = sGjkSimplexSolver.getSimplex(pbuf,qbuf,ybuf);
    simplex.Reset();

    for (i=0; i<numpoints; i++)
        simplex.AddVertex(ybuf[i]);

    SimdTransform ident;
    ident.setIdentity();
    ident.getOpenGLMatrix(m);
    GL_ShapeDrawer::DrawOpenGL(m,&simplex,SimdVector3(1,1,1),getDebugMode());


    SimdQuaternion orn;
    orn.setEuler(yaw,pitch,roll);
    tr[0].setRotation(orn);

//	pitch += 0.005f;
//	yaw += 0.01f;

    glFlush();
    glutSwapBuffers();
}
Esempio n. 16
0
int			CcdPhysicsEnvironment::createConstraint(class PHY_IPhysicsController* ctrl0,class PHY_IPhysicsController* ctrl1,PHY_ConstraintType type,
													float pivotX,float pivotY,float pivotZ,
													float axisX,float axisY,float axisZ)
{


	CcdPhysicsController* c0 = (CcdPhysicsController*)ctrl0;
	CcdPhysicsController* c1 = (CcdPhysicsController*)ctrl1;

	RigidBody* rb0 = c0 ? c0->GetRigidBody() : 0;
	RigidBody* rb1 = c1 ? c1->GetRigidBody() : 0;

	ASSERT(rb0);

	SimdVector3 pivotInA(pivotX,pivotY,pivotZ);
	SimdVector3 pivotInB = rb1 ? rb1->getCenterOfMassTransform().inverse()(rb0->getCenterOfMassTransform()(pivotInA)) : pivotInA;
	SimdVector3 axisInA(axisX,axisY,axisZ);
	SimdVector3 axisInB = rb1 ? 
		(rb1->getCenterOfMassTransform().getBasis().inverse()*(rb0->getCenterOfMassTransform().getBasis() * axisInA)) : 
	rb0->getCenterOfMassTransform().getBasis() * axisInA;

	bool angularOnly = false;

	switch (type)
	{
	case PHY_POINT2POINT_CONSTRAINT:
		{

			Point2PointConstraint* p2p = 0;

			if (rb1)
			{
				p2p = new Point2PointConstraint(*rb0,
					*rb1,pivotInA,pivotInB);
			} else
			{
				p2p = new Point2PointConstraint(*rb0,
					pivotInA);
			}

			m_constraints.push_back(p2p);
			p2p->SetUserConstraintId(gConstraintUid++);
			p2p->SetUserConstraintType(type);
			//64 bit systems can't cast pointer to int. could use size_t instead.
			return p2p->GetUserConstraintId();

			break;
		}

	case PHY_GENERIC_6DOF_CONSTRAINT:
		{
			Generic6DofConstraint* genericConstraint = 0;

			if (rb1)
			{
				SimdTransform frameInA;
				SimdTransform frameInB;
				
				SimdVector3 axis1, axis2;
				SimdPlaneSpace1( axisInA, axis1, axis2 );

				frameInA.getBasis().setValue( axisInA.x(), axis1.x(), axis2.x(),
					                          axisInA.y(), axis1.y(), axis2.y(),
											  axisInA.z(), axis1.z(), axis2.z() );

	
				SimdPlaneSpace1( axisInB, axis1, axis2 );
				frameInB.getBasis().setValue( axisInB.x(), axis1.x(), axis2.x(),
					                          axisInB.y(), axis1.y(), axis2.y(),
											  axisInB.z(), axis1.z(), axis2.z() );

				frameInA.setOrigin( pivotInA );
				frameInB.setOrigin( pivotInB );

				genericConstraint = new Generic6DofConstraint(
					*rb0,*rb1,
					frameInA,frameInB);


			} else
			{
				// TODO: Implement single body case...

			}
			

			m_constraints.push_back(genericConstraint);
			genericConstraint->SetUserConstraintId(gConstraintUid++);
			genericConstraint->SetUserConstraintType(type);
			//64 bit systems can't cast pointer to int. could use size_t instead.
			return genericConstraint->GetUserConstraintId();

			break;
		}
	case PHY_ANGULAR_CONSTRAINT:
		angularOnly = true;


	case PHY_LINEHINGE_CONSTRAINT:
		{
			HingeConstraint* hinge = 0;

			if (rb1)
			{
				hinge = new HingeConstraint(
					*rb0,
					*rb1,pivotInA,pivotInB,axisInA,axisInB);


			} else
			{
				hinge = new HingeConstraint(*rb0,
					pivotInA,axisInA);

			}
			hinge->setAngularOnly(angularOnly);

			m_constraints.push_back(hinge);
			hinge->SetUserConstraintId(gConstraintUid++);
			hinge->SetUserConstraintType(type);
			//64 bit systems can't cast pointer to int. could use size_t instead.
			return hinge->GetUserConstraintId();
			break;
		}
#ifdef NEW_BULLET_VEHICLE_SUPPORT

	case PHY_VEHICLE_CONSTRAINT:
		{
			RaycastVehicle::VehicleTuning* tuning = new RaycastVehicle::VehicleTuning();
			RigidBody* chassis = rb0;
			DefaultVehicleRaycaster* raycaster = new DefaultVehicleRaycaster(this,ctrl0);
			RaycastVehicle* vehicle = new RaycastVehicle(*tuning,chassis,raycaster);
			WrapperVehicle* wrapperVehicle = new WrapperVehicle(vehicle,ctrl0);
			m_wrapperVehicles.push_back(wrapperVehicle);
			vehicle->SetUserConstraintId(gConstraintUid++);
			vehicle->SetUserConstraintType(type);
			return vehicle->GetUserConstraintId();

			break;
		};
#endif //NEW_BULLET_VEHICLE_SUPPORT

	default:
		{
		}
	};

	//RigidBody& rbA,RigidBody& rbB, const SimdVector3& pivotInA,const SimdVector3& pivotInB

	return 0;

}
Esempio n. 17
0
void Raytracer::displayCallback() 
{

	updateCamera();

	for (int i=0;i<numObjects;i++)
	{
		transforms[i].setIdentity();
		SimdVector3	pos(-3.5f+i*2.5f,0.f,0.f);
		transforms[i].setOrigin( pos );
		SimdQuaternion orn;
		if (i < 2)
		{
			orn.setEuler(yaw,pitch,roll);
			transforms[i].setRotation(orn);
		}
	}
	myMink.SetTransformA(SimdTransform(transforms[0].getRotation()));

	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
	glDisable(GL_LIGHTING);
	if (once)
	{
		glGenTextures(1, &glTextureId);
		glBindTexture(GL_TEXTURE_2D,glTextureId );
		once = 0;
		glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	}



	glDisable(GL_TEXTURE_2D);
	glDisable(GL_BLEND);

#define RAYTRACER
#ifdef RAYTRACER






	SimdVector4 rgba(1.f,0.f,0.f,0.5f);

	float top = 1.f;
	float bottom = -1.f;
	float nearPlane = 1.f;

	float tanFov = (top-bottom)*0.5f / nearPlane;

	float fov = 2.0 * atanf (tanFov);


	SimdVector3	rayFrom = getCameraPosition();
	SimdVector3 rayForward = getCameraTargetPosition()-getCameraPosition();
	rayForward.normalize();
	float farPlane = 600.f;
	rayForward*= farPlane;

	SimdVector3 rightOffset;
	SimdVector3 vertical(0.f,1.f,0.f);
	SimdVector3 hor;
	hor = rayForward.cross(vertical);
	hor.normalize();
	vertical = hor.cross(rayForward);
	vertical.normalize();

	float tanfov = tanf(0.5f*fov);

	hor *= 2.f * farPlane * tanfov;
	vertical *= 2.f * farPlane * tanfov;

	SimdVector3 rayToCenter = rayFrom + rayForward;

	SimdVector3 dHor = hor * 1.f/float(screenWidth);
	SimdVector3 dVert = vertical * 1.f/float(screenHeight);

	SimdTransform rayFromTrans;
	rayFromTrans.setIdentity();
	rayFromTrans.setOrigin(rayFrom);

	SimdTransform rayFromLocal;
	SimdTransform	rayToLocal;


	SphereShape pointShape(0.0f);


	///clear texture
	for (int x=0;x<screenWidth;x++)
	{
		for (int y=0;y<screenHeight;y++)
		{
			SimdVector4 rgba(0.f,0.f,0.f,0.f);
			raytracePicture->SetPixel(x,y,rgba);
		}
	}
	

	ConvexCast::CastResult rayResult;
	SimdTransform rayToTrans;
	rayToTrans.setIdentity();
	SimdVector3 rayTo;
	for (int x=0;x<screenWidth;x++)
	{
		for (int y=0;y<screenHeight;y++)
		{
			rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
			rayTo += x * dHor;
			rayTo -= y * dVert;
			rayToTrans.setOrigin(rayTo);
			for (int s=0;s<numObjects;s++)
			{
			//	rayFromLocal = transforms[s].inverse()* rayFromTrans;
			//	rayToLocal = transforms[s].inverse()* rayToTrans;

				//choose the continuous collision detection method
				SubsimplexConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
				//GjkConvexCast convexCaster(&pointShape,shapePtr[0],&simplexSolver);
				//ContinuousConvexCollision convexCaster(&pointShape,shapePtr[0],&simplexSolver,0);
				
				//	BU_Simplex1to4	ptShape(SimdVector3(0,0,0));//algebraic needs features, doesnt use 'supporting vertex'
				//	BU_CollisionPair convexCaster(&ptShape,shapePtr[0]);


				//reset previous result
				rayResult.m_fraction = 1.f;


				if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,transforms[s],transforms[s],rayResult))
				{
					//float fog = 1.f - 0.1f * rayResult.m_fraction;
					rayResult.m_normal.normalize();

					SimdVector3 worldNormal;
					worldNormal = transforms[s].getBasis() *rayResult.m_normal;

					float light = worldNormal.dot(SimdVector3(0.4f,-1.f,-0.4f));
					if (light < 0.2f)
						light = 0.2f;
					if (light > 1.f)
						light = 1.f;

					rgba = SimdVector4(light,light,light,1.f);
					raytracePicture->SetPixel(x,y,rgba);
				} else
				{
					//clear is already done
					//rgba = SimdVector4(0.f,0.f,0.f,0.f);
					//raytracePicture->SetPixel(x,y,rgba);

				}

				
			}
		}
	}

#define TEST_PRINTF
#ifdef TEST_PRINTF

	
	extern BMF_FontData BMF_font_helv10;
	
	raytracePicture->Printf("CCD RAYTRACER",&BMF_font_helv10);
	char buffer[256];
	sprintf(buffer,"%d RAYS / Frame",screenWidth*screenHeight*numObjects);
	raytracePicture->Printf(buffer,&BMF_font_helv10,0,10);
	

#endif //TEST_PRINTF

	glMatrixMode(GL_PROJECTION);
	glPushMatrix();
	glLoadIdentity();
	glFrustum(-1.0,1.0,-1.0,1.0,3,2020.0);

	glMatrixMode(GL_MODELVIEW);
	glPushMatrix();
	glLoadIdentity();									// Reset The Modelview Matrix
	glTranslatef(0.0f,0.0f,-3.0f);						// Move Into The Screen 5 Units



	glEnable(GL_TEXTURE_2D);
	glBindTexture(GL_TEXTURE_2D,glTextureId );

	const unsigned char *ptr = raytracePicture->GetBuffer();
	glTexImage2D(GL_TEXTURE_2D, 
		0, 
		GL_RGBA, 
		raytracePicture->GetWidth(),raytracePicture->GetHeight(), 
		0, 
		GL_RGBA, 
		GL_UNSIGNED_BYTE, 
		ptr);


	glEnable (GL_BLEND);
	glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
	glColor4f (1,1,1,1); // alpha=0.5=half visible

	glBegin(GL_QUADS);
	glTexCoord2f(0.0f, 0.0f);
	glVertex2f(-1,1);
	glTexCoord2f(1.0f, 0.0f);
	glVertex2f(1,1);
	glTexCoord2f(1.0f, 1.0f);
	glVertex2f(1,-1);
	glTexCoord2f(0.0f, 1.0f);
	glVertex2f(-1,-1);
	glEnd();



	glMatrixMode(GL_MODELVIEW);
	glPopMatrix();
	glMatrixMode(GL_PROJECTION);
	glPopMatrix();
	glMatrixMode(GL_MODELVIEW);

#endif //RAYRACER

	glDisable(GL_TEXTURE_2D);
	glDisable(GL_DEPTH_TEST);

	GL_ShapeDrawer::DrawCoordSystem();

	glPushMatrix();



	
	/*
	/// normal opengl rendering
	float m[16];
	int i;

	for (i=0;i<numObjects;i++)
	{


		transA.getOpenGLMatrix( m );
		/// draw the simplex
		GL_ShapeDrawer::DrawOpenGL(m,shapePtr[i],SimdVector3(1,1,1));
		/// calculate closest point from simplex to the origin, and draw this vector
		simplex.CalcClosest(m);

	}
	*/

	glPopMatrix();

	pitch += 0.005f;
	yaw += 0.01f;

	glFlush();
	glutSwapBuffers();
}
Esempio n. 18
0
bool Solid3EpaPenetrationDepth::CalcPenDepth( SimplexSolverInterface& simplexSolver,
			ConvexShape* convexA,ConvexShape* convexB,
			const SimdTransform& transformA,const SimdTransform& transformB,
			SimdVector3& v, SimdPoint3& pa, SimdPoint3& pb)
{
	
    int num_verts = simplexSolver.getSimplex(pBuf, qBuf, yBuf);

    switch (num_verts) 
	{
	case 1:
	    // Touching contact. Yes, we have a collision,
	    // but no penetration.
	    return false;
	case 2:	
	{
	    // We have a line segment inside the Minkowski sum containing the
	    // origin. Blow it up by adding three additional support points.
	    
	    SimdVector3 dir  = (yBuf[1] - yBuf[0]).normalized();
	    int        axis = dir.furthestAxis();
	    
	    static SimdScalar sin_60 = 0.8660254037f;//84438646763723170752941.22474487f;//13915890490986420373529;//
	    
	    SimdQuaternion rot(dir[0] * sin_60, dir[1] * sin_60, dir[2] * sin_60, SimdScalar(0.5));
	    SimdMatrix3x3 rot_mat(rot);
	    
	    SimdVector3 aux1 = dir.cross(SimdVector3(axis == 0, axis == 1, axis == 2));
	    SimdVector3 aux2 = rot_mat * aux1;
	    SimdVector3 aux3 = rot_mat * aux2;
	    
	    pBuf[2] = transformA(convexA->LocalGetSupportingVertex(aux1*transformA.getBasis()));
		qBuf[2] = transformB(convexB->LocalGetSupportingVertex((-aux1)*transformB.getBasis()));
	    yBuf[2] = pBuf[2] - qBuf[2];
	    
	    pBuf[3] = transformA(convexA->LocalGetSupportingVertex(aux2*transformA.getBasis()));
		qBuf[3] = transformB(convexB->LocalGetSupportingVertex((-aux2)*transformB.getBasis()));
	    yBuf[3] = pBuf[3] - qBuf[3];
	    
		pBuf[4] = transformA(convexA->LocalGetSupportingVertex(aux3*transformA.getBasis()));
		qBuf[4] = transformB(convexB->LocalGetSupportingVertex((-aux3)*transformB.getBasis()));
	    yBuf[4] = pBuf[4] - qBuf[4];
	    
	    if (originInTetrahedron(yBuf[0], yBuf[2], yBuf[3], yBuf[4])) 
		{
			pBuf[1] = pBuf[4];
			qBuf[1] = qBuf[4];
			yBuf[1] = yBuf[4];
	    }
	    else if (originInTetrahedron(yBuf[1], yBuf[2], yBuf[3], yBuf[4])) 
		{
			pBuf[0] = pBuf[4];
			qBuf[0] = qBuf[4];
			yBuf[0] = yBuf[4];
	    } 
	    else 
		{
			// Origin not in initial polytope
			return false;
	    }
	    
	    num_verts = 4;
	    
	    break;
	}
	case 3: 
	{
	    // We have a triangle inside the Minkowski sum containing
	    // the origin. First blow it up.
	    
	    SimdVector3 v1     = yBuf[1] - yBuf[0];
	    SimdVector3 v2     = yBuf[2] - yBuf[0];
	    SimdVector3 vv     = v1.cross(v2);
	    
		pBuf[3] = transformA(convexA->LocalGetSupportingVertex(vv*transformA.getBasis()));
		qBuf[3] = transformB(convexB->LocalGetSupportingVertex((-vv)*transformB.getBasis()));
	    yBuf[3] = pBuf[3] - qBuf[3];
		pBuf[4] = transformA(convexA->LocalGetSupportingVertex((-vv)*transformA.getBasis()));
		qBuf[4] = transformB(convexB->LocalGetSupportingVertex(vv*transformB.getBasis()));
	    yBuf[4] = pBuf[4] - qBuf[4];
	    
	   
	    if (originInTetrahedron(yBuf[0], yBuf[1], yBuf[2], yBuf[4])) 
		{
			pBuf[3] = pBuf[4];
			qBuf[3] = qBuf[4];
			yBuf[3] = yBuf[4];
	    }
	    else if (!originInTetrahedron(yBuf[0], yBuf[1], yBuf[2], yBuf[3]))
		{ 
			// Origin not in initial polytope
			return false;
	    }
	    
	    num_verts = 4;
	    
	    break;
	}
    }
    
    // We have a tetrahedron inside the Minkowski sum containing
    // the origin (if GJK did it's job right ;-)
      
    
    if (!originInTetrahedron(yBuf[0], yBuf[1], yBuf[2], yBuf[3])) 
	{
		//	assert(false);
		return false;
	}
    
	num_facets = 0;
    freeFacet = 0;

    ReplaceMeFacet *f0 = addFacet(0, 1, 2, SimdScalar(0.0), SIMD_INFINITY);
    ReplaceMeFacet *f1 = addFacet(0, 3, 1, SimdScalar(0.0), SIMD_INFINITY);
    ReplaceMeFacet *f2 = addFacet(0, 2, 3, SimdScalar(0.0), SIMD_INFINITY);
    ReplaceMeFacet *f3 = addFacet(1, 3, 2, SimdScalar(0.0), SIMD_INFINITY);
    
    if (!f0 || f0->getDist2() == SimdScalar(0.0) ||
		!f1 || f1->getDist2() == SimdScalar(0.0) ||
		!f2 || f2->getDist2() == SimdScalar(0.0) ||
		!f3 || f3->getDist2() == SimdScalar(0.0)) 
	{
		return false;
    }
    
    f0->link(0, f1, 2);
    f0->link(1, f3, 2);
    f0->link(2, f2, 0);
    f1->link(0, f2, 2);
    f1->link(1, f3, 0);
    f2->link(1, f3, 1);
    
    if (num_facets == 0) 
	{
		return false;
    }
    
    // at least one facet on the heap.	
    
    ReplaceMeEdgeBuffer edgeBuffer(20);

    ReplaceMeFacet *facet = 0;
    
    SimdScalar upper_bound2 = SIMD_INFINITY; 	
    
    do {
        facet = facetHeap[0];
        std::pop_heap(&facetHeap[0], &facetHeap[num_facets], myFacetComp);
        --num_facets;
		
		if (!facet->isObsolete()) 
		{
			assert(facet->getDist2() > SimdScalar(0.0));
			
			if (num_verts == MaxSupportPoints)
			{
#ifdef DEBUG
				std::cout << "Ouch, no convergence!!!" << std::endl;
#endif 
				ASSERT_MESSAGE(false,"Error: pendepth calc failed");	
				break;
			}
			
			pBuf[num_verts] = transformA(convexA->LocalGetSupportingVertex((facet->getClosest())*transformA.getBasis()));
			qBuf[num_verts] = transformB(convexB->LocalGetSupportingVertex((-facet->getClosest())*transformB.getBasis()));
			yBuf[num_verts] = pBuf[num_verts] - qBuf[num_verts];
			

			int index = num_verts++;
			SimdScalar far_dist2 = yBuf[index].dot(facet->getClosest());
			

			// Make sure the support mapping is OK.
			//assert(far_dist2 > SimdScalar(0.0));
			
			//
			// this is to avoid problems with implicit-sphere-touching contact
			//
			if (far_dist2 < SimdScalar(0.0))
			{
				return false;
			}

			GEN_set_min(upper_bound2, (far_dist2 * far_dist2) / facet->getDist2());
			
			if (upper_bound2 <= ReplaceMeAccuracy::depth_tolerance * facet->getDist2()
#define CHECK_NEW_SUPPORT
#ifdef CHECK_NEW_SUPPORT
				|| yBuf[index] == yBuf[(*facet)[0]] 
				|| yBuf[index] == yBuf[(*facet)[1]]
				|| yBuf[index] == yBuf[(*facet)[2]]
#endif
				) 
			{
				break;
			}
			
			// Compute the silhouette cast by the new vertex
			// Note that the new vertex is on the positive side
			// of the current facet, so the current facet is will
			// not be in the convex hull. Start local search
			// from this facet.
			
			facet->silhouette(yBuf[index], edgeBuffer);
			
			if (edgeBuffer.empty()) 
			{
				return false;
			}
			
			ReplaceMeEdgeBuffer::const_iterator it = edgeBuffer.begin();
			ReplaceMeFacet *firstFacet = 
				addFacet((*it).getTarget(), (*it).getSource(),
						 index, facet->getDist2(), upper_bound2);
			
			if (!firstFacet) 
			{
				break;
			}
			
			firstFacet->link(0, (*it).getFacet(), (*it).getIndex());
			ReplaceMeFacet *lastFacet = firstFacet;
			
			++it;
			for (; it != edgeBuffer.end(); ++it) 
			{
				ReplaceMeFacet *newFacet = 
					addFacet((*it).getTarget(), (*it).getSource(),
							 index, facet->getDist2(), upper_bound2);
				
				if (!newFacet) 
				{
					break;
				}
				
				if (!newFacet->link(0, (*it).getFacet(), (*it).getIndex())) 
				{
					break;
				}
				
				if (!newFacet->link(2, lastFacet, 1)) 
				{
					break;
				}
				
				lastFacet = newFacet;				
			}
			if (it != edgeBuffer.end()) 
			{
				break;
			}
			
			firstFacet->link(2, lastFacet, 1);
		}
    }
    while (num_facets > 0 && facetHeap[0]->getDist2() <= upper_bound2);
	
#ifdef DEBUG    
    std::cout << "#facets left = " << num_facets << std::endl;
#endif
    
    v = facet->getClosest();
    pa = facet->getClosestPoint(pBuf);    
    pb = facet->getClosestPoint(qBuf);    
    return true;
}
Esempio n. 19
0
int main(int argc,char** argv)
{

	int i;
	for (i=0;i<numObjects;i++)
	{
		if (i>0)
		{
			shapePtr[i] = prebuildShapePtr[1];
			shapeIndex[i] = 1;//sphere
		}
		else
		{
			shapeIndex[i] = 0;
			shapePtr[i] = prebuildShapePtr[0];
		}
	}
	
	ConvexDecomposition::WavefrontObj wo;
	char* filename = "file.obj";
	tcount = wo.loadObj(filename);

	class MyConvexDecomposition : public ConvexDecomposition::ConvexDecompInterface
	{
		public:

		MyConvexDecomposition (FILE* outputFile)
			:mBaseCount(0),
			mHullCount(0),
			mOutputFile(outputFile)

		{
		}
		
			virtual void ConvexDecompResult(ConvexDecomposition::ConvexResult &result)
			{

				TriangleMesh* trimesh = new TriangleMesh();

				SimdVector3 localScaling(6.f,6.f,6.f);

				//export data to .obj
				printf("ConvexResult\n");
				if (mOutputFile)
				{
					fprintf(mOutputFile,"## Hull Piece %d with %d vertices and %d triangles.\r\n", mHullCount, result.mHullVcount, result.mHullTcount );

					fprintf(mOutputFile,"usemtl Material%i\r\n",mBaseCount);
					fprintf(mOutputFile,"o Object%i\r\n",mBaseCount);

					for (unsigned int i=0; i<result.mHullVcount; i++)
					{
						const float *p = &result.mHullVertices[i*3];
						fprintf(mOutputFile,"v %0.9f %0.9f %0.9f\r\n", p[0], p[1], p[2] );
					}

					//calc centroid, to shift vertices around center of mass
					centroids[numObjects] = SimdVector3(0,0,0);
					if ( 1 )
					{
						const unsigned int *src = result.mHullIndices;
						for (unsigned int i=0; i<result.mHullTcount; i++)
						{
							unsigned int index0 = *src++;
							unsigned int index1 = *src++;
							unsigned int index2 = *src++;
							SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]);
							SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]);
							SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]);
							vertex0 *= localScaling;
							vertex1 *= localScaling;
							vertex2 *= localScaling;
							centroids[numObjects] += vertex0;
							centroids[numObjects]+= vertex1;
							centroids[numObjects]+= vertex2;
							
						}
					}

					centroids[numObjects] *= 1.f/(float(result.mHullTcount) * 3);

					if ( 1 )
					{
						const unsigned int *src = result.mHullIndices;
						for (unsigned int i=0; i<result.mHullTcount; i++)
						{
							unsigned int index0 = *src++;
							unsigned int index1 = *src++;
							unsigned int index2 = *src++;


							SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]);
							SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]);
							SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]);
							vertex0 *= localScaling;
							vertex1 *= localScaling;
							vertex2 *= localScaling;
							
							vertex0 -= centroids[numObjects];
							vertex1 -= centroids[numObjects];
							vertex2 -= centroids[numObjects];

							trimesh->AddTriangle(vertex0,vertex1,vertex2);

							index0+=mBaseCount;
							index1+=mBaseCount;
							index2+=mBaseCount;
							
							fprintf(mOutputFile,"f %d %d %d\r\n", index0+1, index1+1, index2+1 );
						}
					}

					shapeIndex[numObjects] = numObjects;
					shapePtr[numObjects++] = new ConvexTriangleMeshShape(trimesh);
					
					mBaseCount+=result.mHullVcount; // advance the 'base index' counter.


				}
			}

			int   	mBaseCount;
  			int		mHullCount;
			FILE*	mOutputFile;

	};

	if (tcount)
	{
		numObjects = 1; //always have the ground object first
		
		TriangleMesh* trimesh = new TriangleMesh();

		SimdVector3 localScaling(6.f,6.f,6.f);
		
		for (int i=0;i<wo.mTriCount;i++)
		{
			int index0 = wo.mIndices[i*3];
			int index1 = wo.mIndices[i*3+1];
			int index2 = wo.mIndices[i*3+2];

			SimdVector3 vertex0(wo.mVertices[index0*3], wo.mVertices[index0*3+1],wo.mVertices[index0*3+2]);
			SimdVector3 vertex1(wo.mVertices[index1*3], wo.mVertices[index1*3+1],wo.mVertices[index1*3+2]);
			SimdVector3 vertex2(wo.mVertices[index2*3], wo.mVertices[index2*3+1],wo.mVertices[index2*3+2]);
			
			vertex0 *= localScaling;
			vertex1 *= localScaling;
			vertex2 *= localScaling;

			trimesh->AddTriangle(vertex0,vertex1,vertex2);
		}

		shapePtr[numObjects++] = new ConvexTriangleMeshShape(trimesh);
	}
			

	if (tcount)
	{

		char outputFileName[512];
  		strcpy(outputFileName,filename);
  		char *dot = strstr(outputFileName,".");
  		if ( dot ) 
			*dot = 0;
		strcat(outputFileName,"_convex.obj");
  		FILE* outputFile = fopen(outputFileName,"wb");
				
		unsigned int depth = 7;
		float cpercent     = 5;
		float ppercent     = 15;
		unsigned int maxv  = 16;
		float skinWidth    = 0.01;

		printf("WavefrontObj num triangles read %i",tcount);
		ConvexDecomposition::DecompDesc desc;
		desc.mVcount       =	wo.mVertexCount;
		desc.mVertices     = wo.mVertices;
		desc.mTcount       = wo.mTriCount;
		desc.mIndices      = (unsigned int *)wo.mIndices;
		desc.mDepth        = depth;
		desc.mCpercent     = cpercent;
		desc.mPpercent     = ppercent;
		desc.mMaxVertices  = maxv;
		desc.mSkinWidth    = skinWidth;

		MyConvexDecomposition	convexDecomposition(outputFile);
		desc.mCallback = &convexDecomposition;
		
		

		//convexDecomposition.performConvexDecomposition(desc);

		ConvexBuilder cb(desc.mCallback);
		int ret = cb.process(desc);
		
		if (outputFile)
			fclose(outputFile);


	}

	CollisionDispatcher* dispatcher = new	CollisionDispatcher();


	SimdVector3 worldAabbMin(-10000,-10000,-10000);
	SimdVector3 worldAabbMax(10000,10000,10000);

	OverlappingPairCache* broadphase = new AxisSweep3(worldAabbMin,worldAabbMax);
	//OverlappingPairCache* broadphase = new SimpleBroadphase();

	physicsEnvironmentPtr = new CcdPhysicsEnvironment(dispatcher,broadphase);
	physicsEnvironmentPtr->setDeactivationTime(2.f);

	physicsEnvironmentPtr->setGravity(0,-10,0);
	PHY_ShapeProps shapeProps;

	shapeProps.m_do_anisotropic = false;
	shapeProps.m_do_fh = false;
	shapeProps.m_do_rot_fh = false;
	shapeProps.m_friction_scaling[0] = 1.;
	shapeProps.m_friction_scaling[1] = 1.;
	shapeProps.m_friction_scaling[2] = 1.;

	shapeProps.m_inertia = 1.f;
	shapeProps.m_lin_drag = 0.2f;
	shapeProps.m_ang_drag = 0.1f;
	shapeProps.m_mass = 10.0f;

	PHY_MaterialProps materialProps;
	materialProps.m_friction = 10.5f;
	materialProps.m_restitution = 0.0f;

	CcdConstructionInfo ccdObjectCi;
	ccdObjectCi.m_friction = 0.5f;

	ccdObjectCi.m_linearDamping = shapeProps.m_lin_drag;
	ccdObjectCi.m_angularDamping = shapeProps.m_ang_drag;

	SimdTransform tr;
	tr.setIdentity();



	for (i=0;i<numObjects;i++)
	{
		shapeProps.m_shape = shapePtr[shapeIndex[i]];
		shapeProps.m_shape->SetMargin(0.05f);



		bool isDyna = i>0;
		//if (i==1)
		//	isDyna=false;

		if (0)//i==1)
		{
			SimdQuaternion orn(0,0,0.1*SIMD_HALF_PI);
			ms[i].setWorldOrientation(orn.x(),orn.y(),orn.z(),orn[3]);
		}


		if (i>0)
		{

			switch (i)
			{
			case 1:
				{
					ms[i].setWorldPosition(0,10,0);
					//for testing, rotate the ground cube so the stack has to recover a bit

					break;
				}
			case 2:
				{
					ms[i].setWorldPosition(0,8,2);
					break;
				}
			default:
				ms[i].setWorldPosition(0,i*CUBE_HALF_EXTENTS*2 - CUBE_HALF_EXTENTS,0);
			}

			float quatIma0,quatIma1,quatIma2,quatReal;
			SimdQuaternion quat;
			SimdVector3 axis(0,0,1);
			SimdScalar angle=0.5f;

			quat.setRotation(axis,angle);

			ms[i].setWorldOrientation(quat.getX(),quat.getY(),quat.getZ(),quat[3]);



		} else
		{
			ms[i].setWorldPosition(0,-10+EXTRA_HEIGHT,0);

		}

		ccdObjectCi.m_MotionState = &ms[i];
		ccdObjectCi.m_gravity = SimdVector3(0,0,0);
		ccdObjectCi.m_localInertiaTensor =SimdVector3(0,0,0);
		if (!isDyna)
		{
			shapeProps.m_mass = 0.f;
			ccdObjectCi.m_mass = shapeProps.m_mass;
			ccdObjectCi.m_collisionFlags = CollisionObject::isStatic;
		}
		else
		{
			shapeProps.m_mass = 1.f;
			ccdObjectCi.m_mass = shapeProps.m_mass;
			ccdObjectCi.m_collisionFlags = 0;
		}


		SimdVector3 localInertia;
		if (shapePtr[shapeIndex[i]]->GetShapeType() == EMPTY_SHAPE_PROXYTYPE)
		{
			//take inertia from first shape
			shapePtr[1]->CalculateLocalInertia(shapeProps.m_mass,localInertia);
		} else
		{
			shapePtr[shapeIndex[i]]->CalculateLocalInertia(shapeProps.m_mass,localInertia);
		}
		ccdObjectCi.m_localInertiaTensor = localInertia;

		ccdObjectCi.m_collisionShape = shapePtr[shapeIndex[i]];


		physObjects[i]= new CcdPhysicsController( ccdObjectCi);

		// Only do CCD if  motion in one timestep (1.f/60.f) exceeds CUBE_HALF_EXTENTS
		physObjects[i]->GetRigidBody()->m_ccdSquareMotionTreshold = CUBE_HALF_EXTENTS;
		
		//Experimental: better estimation of CCD Time of Impact:
		//physObjects[i]->GetRigidBody()->m_ccdSweptShereRadius = 0.5*CUBE_HALF_EXTENTS;

		physicsEnvironmentPtr->addCcdPhysicsController( physObjects[i]);

		if (i==1)
		{
			//physObjects[i]->SetAngularVelocity(0,0,-2,true);
		}

		physicsEnvironmentPtr->setDebugDrawer(&debugDrawer);

	}


	//create a constraint
	if (createConstraint)
	{
		//physObjects[i]->SetAngularVelocity(0,0,-2,true);
		int constraintId;

		float pivotX=CUBE_HALF_EXTENTS,
			pivotY=-CUBE_HALF_EXTENTS,
			pivotZ=CUBE_HALF_EXTENTS;

		float axisX=1,axisY=0,axisZ=0;



		HingeConstraint* hinge = 0;

		SimdVector3 pivotInA(CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS);
		SimdVector3 pivotInB(-CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS);
		SimdVector3 axisInA(0,1,0);
		SimdVector3 axisInB(0,-1,0);

		RigidBody* rb0 = physObjects[1]->GetRigidBody();
		RigidBody* rb1 = physObjects[2]->GetRigidBody();

		hinge = new HingeConstraint(
			*rb0,
			*rb1,pivotInA,pivotInB,axisInA,axisInB);

		physicsEnvironmentPtr->m_constraints.push_back(hinge);

		hinge->SetUserConstraintId(100);
		hinge->SetUserConstraintType(PHY_LINEHINGE_CONSTRAINT);

	}




	clientResetScene();

	setCameraDistance(26.f);

	return glutmain(argc, argv,640,480,"Bullet Physics Demo. http://www.continuousphysics.com/Bullet/phpBB2/");
}
Esempio n. 20
0
//to be implemented by the demo
void renderme()
{
	debugDrawer.SetDebugMode(getDebugMode());

	//render the hinge axis
	if (createConstraint)
	{
		SimdVector3 color(1,0,0);
		SimdVector3 dirLocal(0,1,0);
		SimdVector3 pivotInA(CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS);
		SimdVector3 pivotInB(-CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS);
		SimdVector3 from = physObjects[1]->GetRigidBody()->getCenterOfMassTransform()(pivotInA);
		SimdVector3 fromB = physObjects[2]->GetRigidBody()->getCenterOfMassTransform()(pivotInB);
		SimdVector3 dirWorldA = physObjects[1]->GetRigidBody()->getCenterOfMassTransform().getBasis() * dirLocal ;
		SimdVector3 dirWorldB = physObjects[2]->GetRigidBody()->getCenterOfMassTransform().getBasis() * dirLocal ;
		debugDrawer.DrawLine(from,from+dirWorldA,color);
		debugDrawer.DrawLine(fromB,fromB+dirWorldB,color);
	}

	float m[16];
	int i;


	if (getDebugMode() & IDebugDraw::DBG_DisableBulletLCP)
	{
		//don't use Bullet, use quickstep
		physicsEnvironmentPtr->setSolverType(0);
	} else
	{
		//Bullet LCP solver
		physicsEnvironmentPtr->setSolverType(1);
	}

	if (getDebugMode() & IDebugDraw::DBG_EnableCCD)
	{
		physicsEnvironmentPtr->setCcdMode(3);
	} else
	{
		physicsEnvironmentPtr->setCcdMode(0);
	}


	bool isSatEnabled = (getDebugMode() & IDebugDraw::DBG_EnableSatComparison);

	physicsEnvironmentPtr->EnableSatCollisionDetection(isSatEnabled);


#ifdef USE_HULL
	//some testing code for SAT
	if (isSatEnabled)
	{
		for (int s=0;s<numShapes;s++)
		{
			CollisionShape* shape = shapePtr[s];

			if (shape->IsPolyhedral())
			{
				PolyhedralConvexShape* polyhedron = static_cast<PolyhedralConvexShape*>(shape);
				if (!polyhedron->m_optionalHull)
				{
					//first convert vertices in 'Point3' format
					int numPoints = polyhedron->GetNumVertices();
					Point3* points = new Point3[numPoints+1];
					//first 4 points should not be co-planar, so add central point to satisfy MakeHull
					points[0] = Point3(0.f,0.f,0.f);

					SimdVector3 vertex;
					for (int p=0;p<numPoints;p++)
					{
						polyhedron->GetVertex(p,vertex);
						points[p+1] = Point3(vertex.getX(),vertex.getY(),vertex.getZ());
					}

					Hull* hull = Hull::MakeHull(numPoints+1,points);
					polyhedron->m_optionalHull = hull;
				}

			}
		}

	}
#endif //USE_HULL


	for (i=0;i<numObjects;i++)
	{
		SimdTransform transA;
		transA.setIdentity();

		float pos[3];
		float rot[4];

		ms[i].getWorldPosition(pos[0],pos[1],pos[2]);
		ms[i].getWorldOrientation(rot[0],rot[1],rot[2],rot[3]);

		SimdQuaternion q(rot[0],rot[1],rot[2],rot[3]);
		transA.setRotation(q);

		SimdPoint3 dpos;
		dpos.setValue(pos[0],pos[1],pos[2]);

		transA.setOrigin( dpos );
		transA.getOpenGLMatrix( m );


		SimdVector3 wireColor(1.f,1.0f,0.5f); //wants deactivation
		if (i & 1)
		{
			wireColor = SimdVector3(0.f,0.0f,1.f);
		}
		///color differently for active, sleeping, wantsdeactivation states
		if (physObjects[i]->GetRigidBody()->GetActivationState() == 1) //active
		{
			if (i & 1)
			{
				wireColor += SimdVector3 (1.f,0.f,0.f);
			} else
			{			
				wireColor += SimdVector3 (.5f,0.f,0.f);
			}
		}
		if (physObjects[i]->GetRigidBody()->GetActivationState() == 2) //ISLAND_SLEEPING
		{
			if (i & 1)
			{
				wireColor += SimdVector3 (0.f,1.f, 0.f);
			} else
			{
				wireColor += SimdVector3 (0.f,0.5f,0.f);
			}
		}

		char	extraDebug[125];
		sprintf(extraDebug,"islId, Body=%i , %i",physObjects[i]->GetRigidBody()->m_islandTag1,physObjects[i]->GetRigidBody()->m_debugBodyId);
		physObjects[i]->GetRigidBody()->GetCollisionShape()->SetExtraDebugInfo(extraDebug);
		GL_ShapeDrawer::DrawOpenGL(m,physObjects[i]->GetRigidBody()->GetCollisionShape(),wireColor,getDebugMode());

		///this block is just experimental code to show some internal issues with replacing shapes on the fly.
		if (getDebugMode()!=0 && (i>0))
		{
			if (physObjects[i]->GetRigidBody()->GetCollisionShape()->GetShapeType() == EMPTY_SHAPE_PROXYTYPE)
			{
				physObjects[i]->GetRigidBody()->SetCollisionShape(shapePtr[1]);

				//remove the persistent collision pairs that were created based on the previous shape

				BroadphaseProxy* bpproxy = physObjects[i]->GetRigidBody()->m_broadphaseHandle;

				physicsEnvironmentPtr->GetBroadphase()->CleanProxyFromPairs(bpproxy);

				SimdVector3 newinertia;
				SimdScalar newmass = 10.f;
				physObjects[i]->GetRigidBody()->GetCollisionShape()->CalculateLocalInertia(newmass,newinertia);
				physObjects[i]->GetRigidBody()->setMassProps(newmass,newinertia);
				physObjects[i]->GetRigidBody()->updateInertiaTensor();

			}

		}


	}

	if (!(getDebugMode() & IDebugDraw::DBG_NoHelpText))
	{

		float xOffset = 10.f;
		float yStart = 20.f;

		float yIncr = -2.f;

		char buf[124];

		glColor3f(0, 0, 0);

#ifdef USE_QUICKPROF


		if ( getDebugMode() & IDebugDraw::DBG_ProfileTimings)
		{
			static int counter = 0;
			counter++;
			std::map<std::string, hidden::ProfileBlock*>::iterator iter;
			for (iter = Profiler::mProfileBlocks.begin(); iter != Profiler::mProfileBlocks.end(); ++iter)
			{
				char blockTime[128];
				sprintf(blockTime, "%s: %lf",&((*iter).first[0]),Profiler::getBlockTime((*iter).first, Profiler::BLOCK_CYCLE_SECONDS));//BLOCK_TOTAL_PERCENT));
				glRasterPos3f(xOffset,yStart,0);
				BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),blockTime);
				yStart += yIncr;

			}
		}
#endif //USE_QUICKPROF
		//profiling << Profiler::createStatsString(Profiler::BLOCK_TOTAL_PERCENT); 
		//<< std::endl;



		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"mouse to interact");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"space to reset");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"cursor keys and z,x to navigate");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"i to toggle simulation, s single step");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"q to quit");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"d to toggle deactivation");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"a to draw temporal AABBs");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;


		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"h to toggle help text");
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		bool useBulletLCP = !(getDebugMode() & IDebugDraw::DBG_DisableBulletLCP);

		bool useCCD = (getDebugMode() & IDebugDraw::DBG_EnableCCD);

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"m Bullet GJK = %i",!isSatEnabled);
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"n Bullet LCP = %i",useBulletLCP);
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"1 CCD mode (adhoc) = %i",useCCD);
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

		glRasterPos3f(xOffset,yStart,0);
		sprintf(buf,"+- shooting speed = %10.2f",bulletSpeed);
		BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
		yStart += yIncr;

	}

}
Esempio n. 21
0
int main(int argc,char** argv)
{


	CollisionDispatcher* dispatcher = new	CollisionDispatcher();


	SimdVector3 worldAabbMin(-10000,-10000,-10000);
	SimdVector3 worldAabbMax(10000,10000,10000);

	BroadphaseInterface* broadphase = new AxisSweep3(worldAabbMin,worldAabbMax);
	//BroadphaseInterface* broadphase = new SimpleBroadphase();

	physicsEnvironmentPtr = new CcdPhysicsEnvironment(dispatcher,broadphase);
	physicsEnvironmentPtr->setDeactivationTime(2.f);

	physicsEnvironmentPtr->setGravity(0,-10,0);
	PHY_ShapeProps shapeProps;

	shapeProps.m_do_anisotropic = false;
	shapeProps.m_do_fh = false;
	shapeProps.m_do_rot_fh = false;
	shapeProps.m_friction_scaling[0] = 1.;
	shapeProps.m_friction_scaling[1] = 1.;
	shapeProps.m_friction_scaling[2] = 1.;

	shapeProps.m_inertia = 1.f;
	shapeProps.m_lin_drag = 0.2f;
	shapeProps.m_ang_drag = 0.1f;
	shapeProps.m_mass = 10.0f;

	PHY_MaterialProps materialProps;
	materialProps.m_friction = 10.5f;
	materialProps.m_restitution = 0.0f;

	CcdConstructionInfo ccdObjectCi;
	ccdObjectCi.m_friction = 0.5f;

	ccdObjectCi.m_linearDamping = shapeProps.m_lin_drag;
	ccdObjectCi.m_angularDamping = shapeProps.m_ang_drag;

	SimdTransform tr;
	tr.setIdentity();

	int i;
	for (i=0;i<numObjects;i++)
	{
		if (i>0)
		{
			shapeIndex[i] = 1;//sphere
		}
		else
			shapeIndex[i] = 0;
	}




	for (i=0;i<numObjects;i++)
	{
		shapeProps.m_shape = shapePtr[shapeIndex[i]];
		shapeProps.m_shape->SetMargin(0.05f);



		bool isDyna = i>0;
		//if (i==1)
		//	isDyna=false;

		if (0)//i==1)
		{
			SimdQuaternion orn(0,0,0.1*SIMD_HALF_PI);
			ms[i].setWorldOrientation(orn.x(),orn.y(),orn.z(),orn[3]);
		}


		if (i>0)
		{

			switch (i)
			{
			case 1:
				{
					ms[i].setWorldPosition(0,10,0);
					//for testing, rotate the ground cube so the stack has to recover a bit

					break;
				}
			case 2:
				{
					ms[i].setWorldPosition(0,8,2);
					break;
				}
			default:
				ms[i].setWorldPosition(0,i*CUBE_HALF_EXTENTS*2 - CUBE_HALF_EXTENTS,0);
			}

			float quatIma0,quatIma1,quatIma2,quatReal;
			SimdQuaternion quat;
			SimdVector3 axis(0,0,1);
			SimdScalar angle=0.5f;

			quat.setRotation(axis,angle);

			ms[i].setWorldOrientation(quat.getX(),quat.getY(),quat.getZ(),quat[3]);



		} else
		{
			ms[i].setWorldPosition(0,-10+EXTRA_HEIGHT,0);

		}

		ccdObjectCi.m_MotionState = &ms[i];
		ccdObjectCi.m_gravity = SimdVector3(0,0,0);
		ccdObjectCi.m_localInertiaTensor =SimdVector3(0,0,0);
		if (!isDyna)
		{
			shapeProps.m_mass = 0.f;
			ccdObjectCi.m_mass = shapeProps.m_mass;
			ccdObjectCi.m_collisionFlags = CollisionObject::isStatic;
		}
		else
		{
			shapeProps.m_mass = 1.f;
			ccdObjectCi.m_mass = shapeProps.m_mass;
			ccdObjectCi.m_collisionFlags = 0;
		}


		SimdVector3 localInertia;
		if (shapePtr[shapeIndex[i]]->GetShapeType() == EMPTY_SHAPE_PROXYTYPE)
		{
			//take inertia from first shape
			shapePtr[1]->CalculateLocalInertia(shapeProps.m_mass,localInertia);
		} else
		{
			shapePtr[shapeIndex[i]]->CalculateLocalInertia(shapeProps.m_mass,localInertia);
		}
		ccdObjectCi.m_localInertiaTensor = localInertia;

		ccdObjectCi.m_collisionShape = shapePtr[shapeIndex[i]];


		physObjects[i]= new CcdPhysicsController( ccdObjectCi);

		// Only do CCD if  motion in one timestep (1.f/60.f) exceeds CUBE_HALF_EXTENTS
		physObjects[i]->GetRigidBody()->m_ccdSquareMotionTreshold = CUBE_HALF_EXTENTS;
		
		//Experimental: better estimation of CCD Time of Impact:
		//physObjects[i]->GetRigidBody()->m_ccdSweptShereRadius = 0.5*CUBE_HALF_EXTENTS;

		physicsEnvironmentPtr->addCcdPhysicsController( physObjects[i]);

		if (i==1)
		{
			//physObjects[i]->SetAngularVelocity(0,0,-2,true);
		}

		physicsEnvironmentPtr->setDebugDrawer(&debugDrawer);

	}


	clientResetScene();

	{
		//physObjects[i]->SetAngularVelocity(0,0,-2,true);
		int constraintId;

			float pivotX=CUBE_HALF_EXTENTS,
				pivotY=CUBE_HALF_EXTENTS,
				pivotZ=CUBE_HALF_EXTENTS;
			float axisX=0,axisY=1,axisZ=0;


		constraintId =physicsEnvironmentPtr->createConstraint(
		physObjects[1],
		//0,
		physObjects[2],
			////PHY_POINT2POINT_CONSTRAINT,
			PHY_GENERIC_6DOF_CONSTRAINT,//can leave any of the 6 degree of freedom 'free' or 'locked'
			//PHY_LINEHINGE_CONSTRAINT,
			pivotX,pivotY,pivotZ,
			axisX,axisY,axisZ
			);

	}

	



	setCameraDistance(26.f);

	return glutmain(argc, argv,640,480,"Bullet Physics Demo. http://www.continuousphysics.com/Bullet/phpBB2/");
}
Esempio n. 22
0
void	CollisionWorld::RayTestSingle(const SimdTransform& rayFromTrans,const SimdTransform& rayToTrans,
					  CollisionObject* collisionObject,
					  const CollisionShape* collisionShape,
					  const SimdTransform& colObjWorldTransform,
					  RayResultCallback& resultCallback)
{
	
	SphereShape pointShape(0.0f);

	if (collisionShape->IsConvex())
			{
				ConvexCast::CastResult castResult;
				castResult.m_fraction = 1.f;//??

				ConvexShape* convexShape = (ConvexShape*) collisionShape;
				VoronoiSimplexSolver	simplexSolver;
				SubsimplexConvexCast convexCaster(&pointShape,convexShape,&simplexSolver);
				//GjkConvexCast	convexCaster(&pointShape,convexShape,&simplexSolver);
				//ContinuousConvexCollision convexCaster(&pointShape,convexShape,&simplexSolver,0);
				
				if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
				{
					//add hit
					if (castResult.m_normal.length2() > 0.0001f)
					{
						castResult.m_normal.normalize();
						if (castResult.m_fraction < resultCallback.m_closestHitFraction)
						{
							

							CollisionWorld::LocalRayResult localRayResult
								(
									collisionObject, 
									0,
									castResult.m_normal,
									castResult.m_fraction
								);

							resultCallback.AddSingleResult(localRayResult);

						}
					}
				}
			}
			else
			{
				
				if (collisionShape->IsConcave())
					{

						TriangleMeshShape* triangleMesh = (TriangleMeshShape*)collisionShape;
						
						SimdTransform worldTocollisionObject = colObjWorldTransform.inverse();

						SimdVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
						SimdVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();

						//ConvexCast::CastResult

						struct BridgeTriangleRaycastCallback : public TriangleRaycastCallback 
						{
							CollisionWorld::RayResultCallback* m_resultCallback;
							CollisionObject*	m_collisionObject;
							TriangleMeshShape*	m_triangleMesh;

							BridgeTriangleRaycastCallback( const SimdVector3& from,const SimdVector3& to,
								CollisionWorld::RayResultCallback* resultCallback, CollisionObject* collisionObject,TriangleMeshShape*	triangleMesh):
								TriangleRaycastCallback(from,to),
									m_resultCallback(resultCallback),
									m_collisionObject(collisionObject),
									m_triangleMesh(triangleMesh)
								{
								}


							virtual float ReportHit(const SimdVector3& hitNormalLocal, float hitFraction, int partId, int triangleIndex )
							{
								CollisionWorld::LocalShapeInfo	shapeInfo;
								shapeInfo.m_shapePart = partId;
								shapeInfo.m_triangleIndex = triangleIndex;
								
								CollisionWorld::LocalRayResult rayResult
								(m_collisionObject, 
									&shapeInfo,
									hitNormalLocal,
									hitFraction);
								
								return m_resultCallback->AddSingleResult(rayResult);
								
								
							}
	
						};


						BridgeTriangleRaycastCallback	rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh);
						rcb.m_hitFraction = resultCallback.m_closestHitFraction;

						SimdVector3 rayAabbMinLocal = rayFromLocal;
						rayAabbMinLocal.setMin(rayToLocal);
						SimdVector3 rayAabbMaxLocal = rayFromLocal;
						rayAabbMaxLocal.setMax(rayToLocal);

						triangleMesh->ProcessAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal);
											
					} else
					{
						//todo: use AABB tree or other BVH acceleration structure!
						if (collisionShape->IsCompound())
						{
							const CompoundShape* compoundShape = static_cast<const CompoundShape*>(collisionShape);
							int i=0;
							for (i=0;i<compoundShape->GetNumChildShapes();i++)
							{
								SimdTransform childTrans = compoundShape->GetChildTransform(i);
								const CollisionShape* childCollisionShape = compoundShape->GetChildShape(i);
								SimdTransform childWorldTrans = colObjWorldTransform * childTrans;
								RayTestSingle(rayFromTrans,rayToTrans,
									collisionObject,
									childCollisionShape,
									childWorldTrans,
									resultCallback);

							}


						}
					}
			}
}
Esempio n. 23
0
			virtual void ConvexDecompResult(ConvexDecomposition::ConvexResult &result)
			{

				TriangleMesh* trimesh = new TriangleMesh();

				SimdVector3 localScaling(6.f,6.f,6.f);

				//export data to .obj
				printf("ConvexResult\n");
				if (mOutputFile)
				{
					fprintf(mOutputFile,"## Hull Piece %d with %d vertices and %d triangles.\r\n", mHullCount, result.mHullVcount, result.mHullTcount );

					fprintf(mOutputFile,"usemtl Material%i\r\n",mBaseCount);
					fprintf(mOutputFile,"o Object%i\r\n",mBaseCount);

					for (unsigned int i=0; i<result.mHullVcount; i++)
					{
						const float *p = &result.mHullVertices[i*3];
						fprintf(mOutputFile,"v %0.9f %0.9f %0.9f\r\n", p[0], p[1], p[2] );
					}

					//calc centroid, to shift vertices around center of mass
					centroid.setValue(0,0,0);
					if ( 1 )
					{
						const unsigned int *src = result.mHullIndices;
						for (unsigned int i=0; i<result.mHullTcount; i++)
						{
							unsigned int index0 = *src++;
							unsigned int index1 = *src++;
							unsigned int index2 = *src++;
							SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]);
							SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]);
							SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]);
							vertex0 *= localScaling;
							vertex1 *= localScaling;
							vertex2 *= localScaling;
							centroid += vertex0;
							centroid += vertex1;
							centroid += vertex2;
							
						}
					}

					centroid *= 1.f/(float(result.mHullTcount) * 3);

					if ( 1 )
					{
						const unsigned int *src = result.mHullIndices;
						for (unsigned int i=0; i<result.mHullTcount; i++)
						{
							unsigned int index0 = *src++;
							unsigned int index1 = *src++;
							unsigned int index2 = *src++;


							SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]);
							SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]);
							SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]);
							vertex0 *= localScaling;
							vertex1 *= localScaling;
							vertex2 *= localScaling;
							
							vertex0 -= centroid;
							vertex1 -= centroid;
							vertex2 -= centroid;

							trimesh->AddTriangle(vertex0,vertex1,vertex2);

							index0+=mBaseCount;
							index1+=mBaseCount;
							index2+=mBaseCount;
							
							fprintf(mOutputFile,"f %d %d %d\r\n", index0+1, index1+1, index2+1 );
						}
					}

					bool isDynamic = true;
					float mass = 1.f;
					CollisionShape* convexShape = new ConvexTriangleMeshShape(trimesh);
					SimdTransform trans;
					trans.setIdentity();
					trans.setOrigin(centroid);
					m_convexDemo->LocalCreatePhysicsObject(isDynamic, mass, trans,convexShape);

					mBaseCount+=result.mHullVcount; // advance the 'base index' counter.


				}
			}
Esempio n. 24
0
void LinearConvexCastDemo::displayCallback(void) 
{
	updateCamera();

    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
	glDisable(GL_LIGHTING);

	//GL_ShapeDrawer::DrawCoordSystem();

	float m[16];
	int i;

	for (i=0;i<numObjects;i++)
	{
		tr[i].getOpenGLMatrix( m );
		GL_ShapeDrawer::DrawOpenGL(m,shapePtr[i],SimdVector3(1,1,1),getDebugMode());
	}

	
	int shapeIndex = 1;

	SimdQuaternion orn;
	orn.setEuler(yaw,pitch,roll);
	tr[shapeIndex].setRotation(orn);
	

	if (m_stepping || m_singleStep)
	{
		m_singleStep = false;
		pitch += 0.005f;
		yaw += 0.01f;
	}

	SimdVector3 fromA(-25,11,0);
	SimdVector3 toA(15,11,0);

	SimdQuaternion ornFromA(0.f,0.f,0.f,1.f);
	SimdQuaternion ornToA(0.f,0.f,0.f,1.f);

	SimdTransform	rayFromWorld(ornFromA,fromA);
	SimdTransform	rayToWorld(ornToA,toA);

	tr[0] = rayFromWorld;

	if (drawLine)
	{
		glBegin(GL_LINES);
		glColor3f(0, 0, 1);
		glVertex3d(rayFromWorld.getOrigin().x(), rayFromWorld.getOrigin().y(),rayFromWorld.getOrigin().z());
		glVertex3d(rayToWorld.getOrigin().x(),rayToWorld.getOrigin().y(),rayToWorld.getOrigin().z());
		glEnd();
	}

	//now perform a raycast on the shapes, in local (shape) space
	
	//choose one of the following lines

	

	for (i=1;i<numObjects;i++)
	{
		ContinuousConvexCollision convexCaster0(shapePtr[0],shapePtr[i],&gGjkSimplexSolver,0);
		GjkConvexCast	convexCaster1(shapePtr[0],shapePtr[i],&gGjkSimplexSolver);
		
		//BU_CollisionPair (algebraic version) is currently broken, will look into this
		//BU_CollisionPair convexCaster2(shapePtr[0],shapePtr[i]);
		SubsimplexConvexCast convexCaster3(shapePtr[0],shapePtr[i],&gGjkSimplexSolver);
				
		gGjkSimplexSolver.reset();

		ConvexCast::CastResult rayResult;
		
	

		if (convexCaster3.calcTimeOfImpact(rayFromWorld,rayToWorld,tr[i],tr[i],rayResult))
		{

			glDisable(GL_DEPTH_TEST);
			SimdVector3 hitPoint;
			hitPoint.setInterpolate3(rayFromWorld.getOrigin(),rayToWorld.getOrigin(),rayResult.m_fraction);
			
			//draw the raycast result
			glBegin(GL_LINES);
			glColor3f(1, 1, 1);
			glVertex3d(rayFromWorld.getOrigin().x(), rayFromWorld.getOrigin().y(),rayFromWorld.getOrigin().z());
			glVertex3d(hitPoint.x(),hitPoint.y(),hitPoint.z());
			glEnd();
			glEnable(GL_DEPTH_TEST);

			SimdTransform	toTransWorld;
			toTransWorld = tr[0];
			toTransWorld.setOrigin(hitPoint);

			toTransWorld.getOpenGLMatrix( m );
			GL_ShapeDrawer::DrawOpenGL(m,shapePtr[0],SimdVector3(0,1,1),getDebugMode());


		}
	}

	glFlush();
    glutSwapBuffers();
}
Esempio n. 25
0
int main(int argc,char** argv)
{

	setCameraDistance(30.f);

#define TRISIZE 10.f
#ifdef DEBUG_MESH
	SimdVector3 vert0(-TRISIZE ,0,TRISIZE );
	SimdVector3 vert1(TRISIZE ,10,TRISIZE );
	SimdVector3 vert2(TRISIZE ,0,-TRISIZE );
	meshData.AddTriangle(vert0,vert1,vert2);
	SimdVector3 vert3(-TRISIZE ,0,TRISIZE );
	SimdVector3 vert4(TRISIZE ,0,-TRISIZE );
	SimdVector3 vert5(-TRISIZE ,0,-TRISIZE );
	meshData.AddTriangle(vert3,vert4,vert5);
#else
#ifdef ODE_MESH
	SimdVector3 Size = SimdVector3(15.f,15.f,12.5f);
	
  gVertices[0][0] = -Size[0];
  gVertices[0][1] = Size[2];
  gVertices[0][2] = -Size[1];
  
  gVertices[1][0] = Size[0];
  gVertices[1][1] = Size[2];
  gVertices[1][2] = -Size[1];
  
  gVertices[2][0] = Size[0];
  gVertices[2][1] = Size[2];
  gVertices[2][2] = Size[1];  

  gVertices[3][0] = -Size[0];
  gVertices[3][1] = Size[2];
  gVertices[3][2] = Size[1];
  
  gVertices[4][0] = 0;
  gVertices[4][1] = 0;
  gVertices[4][2] = 0;
  
  gIndices[0] = 0;
  gIndices[1] = 1;
  gIndices[2] = 4;
  
  gIndices[3] = 1;
  gIndices[4] = 2;
  gIndices[5] = 4;
  
  gIndices[6] = 2;
  gIndices[7] = 3;
  gIndices[8] = 4;
  
  gIndices[9] = 3;
  gIndices[10] = 0;
  gIndices[11] = 4;

  int vertStride = sizeof(SimdVector3);
  int indexStride = 3*sizeof(int);

	TriangleIndexVertexArray* indexVertexArrays = new TriangleIndexVertexArray(NUM_TRIANGLES,
		gIndices,
		indexStride,
		NUM_VERTICES,(float*) &gVertices[0].x(),vertStride);

	//shapePtr[4] = new TriangleMeshShape(indexVertexArrays);
	shapePtr[4] = new BvhTriangleMeshShape(indexVertexArrays);
#else

	int vertStride = sizeof(SimdVector3);
	int indexStride = 3*sizeof(int);

	const int NUM_VERTS_X = 50;
	const int NUM_VERTS_Y = 50;
	const int totalVerts = NUM_VERTS_X*NUM_VERTS_Y;
	
	const int totalTriangles = 2*(NUM_VERTS_X-1)*(NUM_VERTS_Y-1);

	SimdVector3*	gVertices = new SimdVector3[totalVerts];
	int*	gIndices = new int[totalTriangles*3];

	int i;

	for ( i=0;i<NUM_VERTS_X;i++)
	{
		for (int j=0;j<NUM_VERTS_Y;j++)
		{
			gVertices[i+j*NUM_VERTS_X].setValue((i-NUM_VERTS_X*0.5f)*10.f,2.f*sinf((float)i)*cosf((float)j),(j-NUM_VERTS_Y*0.5f)*10.f);
		}
	}

	int index=0;
	for ( i=0;i<NUM_VERTS_X-1;i++)
	{
		for (int j=0;j<NUM_VERTS_Y-1;j++)
		{
			gIndices[index++] = j*NUM_VERTS_X+i;
			gIndices[index++] = j*NUM_VERTS_X+i+1;
			gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;

			gIndices[index++] = j*NUM_VERTS_X+i;
			gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
			gIndices[index++] = (j+1)*NUM_VERTS_X+i;
		}
	}
	
	TriangleIndexVertexArray* indexVertexArrays = new TriangleIndexVertexArray(totalTriangles,
		gIndices,
		indexStride,
		totalVerts,(float*) &gVertices[0].x(),vertStride);

	//shapePtr[4] = new TriangleMeshShape(indexVertexArrays);
	shapePtr[4] = new BvhTriangleMeshShape(indexVertexArrays);
#endif

	

#endif//DEBUG_MESH


//	GLDebugDrawer	debugDrawer;

	//ConstraintSolver* solver = new SimpleConstraintSolver;
	ConstraintSolver* solver = new OdeConstraintSolver;

	CollisionDispatcher* dispatcher = new	CollisionDispatcher();
		
	BroadphaseInterface* broadphase = new SimpleBroadphase();


	physicsEnvironmentPtr = new CcdPhysicsEnvironment(dispatcher,broadphase);
	

	physicsEnvironmentPtr->setGravity(-1,-10,1);
	PHY_ShapeProps shapeProps;
	
	shapeProps.m_do_anisotropic = false;
	shapeProps.m_do_fh = false;
	shapeProps.m_do_rot_fh = false;
	shapeProps.m_friction_scaling[0] = 1.;
	shapeProps.m_friction_scaling[1] = 1.;
	shapeProps.m_friction_scaling[2] = 1.;

	shapeProps.m_inertia = 1.f;
	shapeProps.m_lin_drag = 0.95999998f;
	shapeProps.m_ang_drag = 0.89999998f;
	shapeProps.m_mass = 1.0f;
	
	PHY_MaterialProps materialProps;
	materialProps.m_friction = 0.f;// 50.5f;
	materialProps.m_restitution = 0.1f;

	CcdConstructionInfo ccdObjectCi;
	ccdObjectCi.m_friction = 0.f;//50.5f;

	ccdObjectCi.m_linearDamping = shapeProps.m_lin_drag;
	ccdObjectCi.m_angularDamping = shapeProps.m_ang_drag;

	SimdTransform tr;
	tr.setIdentity();

	
	for (i=0;i<numObjects;i++)
	{
		if (i>0)
			shapeIndex[i] = 1;//2 = tetrahedron
		else
			shapeIndex[i] = 4;
	}
	for (i=0;i<numObjects;i++)
	{
		shapeProps.m_shape = shapePtr[shapeIndex[i]];

		bool isDyna = i>0;
		
		if (!i)
		{
			//SimdQuaternion orn(0,0,0.1*SIMD_HALF_PI);
			//ms[i].setWorldOrientation(orn.x(),orn.y(),orn.z(),orn[3]);
			//ms[i].setWorldPosition(0,-10,0);
		} else
		{
				ms[i].setWorldPosition(10,i*15-10,0);
		}
		
//either create a few stacks, to show several islands, or create 1 large stack, showing stability
		//ms[i].setWorldPosition((i*5) % 30,i*15-10,0);
		

		ccdObjectCi.m_MotionState = &ms[i];
		ccdObjectCi.m_gravity = SimdVector3(0,0,0);
		ccdObjectCi.m_localInertiaTensor =SimdVector3(0,0,0);
		if (!isDyna)
		{
			shapeProps.m_mass = 0.f;
			ccdObjectCi.m_mass = shapeProps.m_mass;
		}
		else
		{
			shapeProps.m_mass = 1.f;
			ccdObjectCi.m_mass = shapeProps.m_mass;
		}

		
		SimdVector3 localInertia;
		if (shapeProps.m_mass>0.f)
		{
			shapePtr[shapeIndex[i]]->CalculateLocalInertia(shapeProps.m_mass,localInertia);
		} else
		{
			localInertia.setValue(0.f,0.f,0.f);

		}
		ccdObjectCi.m_localInertiaTensor = localInertia;

		ccdObjectCi.m_collisionShape = shapePtr[shapeIndex[i]];


		physObjects[i]= new CcdPhysicsController( ccdObjectCi);
		physicsEnvironmentPtr->addCcdPhysicsController( physObjects[i]);

/*		if (i==0)
		{
			physObjects[i]->SetAngularVelocity(0,0,-2,true);
			physObjects[i]->GetRigidBody()->setDamping(0,0);
		}
*/
		//for the line that represents the AABB extents
//	physicsEnvironmentPtr->setDebugDrawer(&debugDrawer);

		
	}
	return glutmain(argc, argv,640,480,"Static Concave Mesh Demo");
}
Esempio n. 26
0
bool EpaPenetrationDepthSolver::HybridPenDepth( SimplexSolverInterface& simplexSolver,
												ConvexShape* pConvexA, ConvexShape* pConvexB,
												const SimdTransform& transformA, const SimdTransform& transformB,
												SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB,
											    SimdScalar& penDepth, SimdVector3& v )
{
	SimdScalar squaredDistance = SIMD_INFINITY;
	SimdScalar delta = 0.f;

	const SimdScalar margin     = pConvexA->GetMargin() + pConvexB->GetMargin();
	const SimdScalar marginSqrd = margin * margin;

	simplexSolver.reset();

	int nbIterations = 0;

	while ( true )
	{
		assert( ( v.length2() > 0 ) && "Warning: v is the zero vector!" );

		SimdVector3 seperatingAxisInA = -v * transformA.getBasis();
		SimdVector3 seperatingAxisInB =  v * transformB.getBasis();

		SimdVector3 pInA = pConvexA->LocalGetSupportingVertexWithoutMargin( seperatingAxisInA );
		SimdVector3 qInB = pConvexB->LocalGetSupportingVertexWithoutMargin( seperatingAxisInB );

		SimdPoint3  pWorld = transformA( pInA );
		SimdPoint3  qWorld = transformB( qInB );

		SimdVector3 w = pWorld - qWorld;
		delta = v.dot( w );

		// potential exit, they don't overlap
		if ( ( delta > 0 ) && ( ( delta * delta / squaredDistance ) > marginSqrd ) )
		{
			// Convex shapes do not overlap
			// Returning true means that Hybrid's result is ok and there's no need to run EPA
			penDepth = 0;
			return true;
		}

		//exit 0: the new point is already in the simplex, or we didn't come any closer
		if ( ( squaredDistance - delta <= squaredDistance * g_GJKMaxRelErrorSqrd ) || simplexSolver.inSimplex( w ) )
		{
			simplexSolver.compute_points( wWitnessOnA, wWitnessOnB );

			assert( ( squaredDistance > 0 ) && "squaredDistance is zero!" );
			SimdScalar vLength = sqrt( squaredDistance );

			wWitnessOnA -= v * ( pConvexA->GetMargin() / vLength );
			wWitnessOnB += v * ( pConvexB->GetMargin() / vLength );

			penDepth = pConvexA->GetMargin() + pConvexB->GetMargin() - vLength;

			// Returning true means that Hybrid's result is ok and there's no need to run EPA
			return true;
		}

		//add current vertex to simplex
		simplexSolver.addVertex( w, pWorld, qWorld );

		//calculate the closest point to the origin (update vector v)
		if ( !simplexSolver.closest( v ) )
		{
			simplexSolver.compute_points( wWitnessOnA, wWitnessOnB );

			assert( ( squaredDistance > 0 ) && "squaredDistance is zero!" );
			SimdScalar vLength = sqrt( squaredDistance );

			wWitnessOnA -= v * ( pConvexA->GetMargin() / vLength );
			wWitnessOnB += v * ( pConvexB->GetMargin() / vLength );

			penDepth = pConvexA->GetMargin() + pConvexB->GetMargin() - vLength;

			// Returning true means that Hybrid's result is ok and there's no need to run EPA
			return true;
		}

		SimdScalar previousSquaredDistance = squaredDistance;
		squaredDistance = v.length2();

		//are we getting any closer ?
		if ( previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance ) 
		{ 
			simplexSolver.backup_closest( v );
			squaredDistance = v.length2();

			simplexSolver.compute_points( wWitnessOnA, wWitnessOnB );

			assert( ( squaredDistance > 0 ) && "squaredDistance is zero!" );
			SimdScalar vLength = sqrt( squaredDistance );

			wWitnessOnA -= v * ( pConvexA->GetMargin() / vLength );
			wWitnessOnB += v * ( pConvexB->GetMargin() / vLength );

			penDepth = pConvexA->GetMargin() + pConvexB->GetMargin() - vLength;

			// Returning true means that Hybrid's result is ok and there's no need to run EPA
			return true;
		}

		if ( simplexSolver.fullSimplex() || ( squaredDistance <= SIMD_EPSILON * simplexSolver.maxVertex() ) )
		{
			// Convex Shapes intersect - we need to run EPA
			// Returning false means that Hybrid couldn't do anything for us
			// and that we need to run EPA to calculate the pen depth
			return false;
		}

		++nbIterations;
	}
}
Esempio n. 27
0
bool BU_CollisionPair::calcTimeOfImpact(
					const SimdTransform& fromA,
					const SimdTransform& toA,
					const SimdTransform& fromB,
					const SimdTransform& toB,
					CastResult& result)
{



	
	SimdVector3 linvelA,angvelA;
	SimdVector3 linvelB,angvelB;

	SimdTransformUtil::CalculateVelocity(fromA,toA,1.f,linvelA,angvelA);
	SimdTransformUtil::CalculateVelocity(fromB,toB,1.f,linvelB,angvelB);


	SimdVector3 linearMotionA = toA.getOrigin() - fromA.getOrigin();
	SimdQuaternion angularMotionA(0,0,0,1.f);
	SimdVector3 linearMotionB = toB.getOrigin() - fromB.getOrigin();
	SimdQuaternion angularMotionB(0,0,0,1);
	


	result.m_fraction = 1.f;

	SimdTransform impactTransA;
	SimdTransform impactTransB;

	int index=0;

	SimdScalar toiUnscaled=result.m_fraction;
	const SimdScalar toiUnscaledLimit = result.m_fraction;

	SimdTransform a2w;
	a2w = fromA;
	SimdTransform b2w = fromB;

/* debugging code
	{
		const int numvertsB = m_convexB->GetNumVertices();
		for (int v=0;v<numvertsB;v++)
		{
			SimdPoint3 pt;
			m_convexB->GetVertex(v,pt);
			pt = b2w * pt;
			char buf[1000];

			if (pt.y() < 0.)
			{
				sprintf(buf,"PRE ERROR (%d) %.20E %.20E %.20E!!!!!!!!!\n",v,pt.x(),pt.y(),pt.z());
				if (debugFile)
					fwrite(buf,1,strlen(buf),debugFile);
			} else
			{
				sprintf(buf,"PRE %d = %.20E,%.20E,%.20E\n",v,pt.x(),pt.y(),pt.z());
				if (debugFile)
					fwrite(buf,1,strlen(buf),debugFile);

			}
		}
	}
*/


	SimdTransform b2wp = b2w;
	
	b2wp.setOrigin(b2w.getOrigin() + linearMotionB);
	b2wp.setRotation( b2w.getRotation() + angularMotionB);

	impactTransB = b2wp;
	
	SimdTransform a2wp;
	a2wp.setOrigin(a2w.getOrigin()+ linearMotionA);
	a2wp.setRotation(a2w.getRotation()+angularMotionA);

	impactTransA = a2wp;

	SimdTransform a2winv;
	a2winv = a2w.inverse();

	SimdTransform b2wpinv;
	b2wpinv = b2wp.inverse();

	SimdTransform b2winv;
	b2winv = b2w.inverse();

	SimdTransform a2wpinv;
	a2wpinv = a2wp.inverse();

		//Redon's version with concatenated transforms

	SimdTransform relative;

	relative = b2w * b2wpinv * a2wp * a2winv;

	//relative = a2winv * a2wp  * b2wpinv * b2w;

	SimdQuaternion qrel;
	relative.getBasis().getRotation(qrel);

	SimdVector3 linvel = relative.getOrigin();

	if (linvel.length() < SCREWEPSILON)
	{
		linvel.setValue(0.,0.,0.);
	}
	SimdVector3 angvel;
	angvel[0] = 2.f * SimdAsin (qrel[0]);
	angvel[1] = 2.f * SimdAsin (qrel[1]);
	angvel[2] = 2.f * SimdAsin (qrel[2]);
	
	if (angvel.length() < SCREWEPSILON)
	{
		angvel.setValue(0.f,0.f,0.f);
	}

	//Redon's version with concatenated transforms
	m_screwing = BU_Screwing(linvel,angvel);
	
	SimdTransform w2s;
	m_screwing.LocalMatrix(w2s);

	SimdTransform s2w;
	s2w = w2s.inverse();

	//impactTransA = a2w;
	//impactTransB = b2w;

	bool hit = false;
	
	if (SimdFuzzyZero(m_screwing.GetS()) && SimdFuzzyZero(m_screwing.GetW()))
	{
		//W = 0 , S = 0 , no collision
		//toi = 0;
	/*	
		{
			const int numvertsB = m_convexB->GetNumVertices();
			for (int v=0;v<numvertsB;v++)
			{
				SimdPoint3 pt;
				m_convexB->GetVertex(v,pt);
				pt = impactTransB * pt;
				char buf[1000];
				
				if (pt.y() < 0.)
				{
					sprintf(buf,"EARLY POST ERROR (%d) %.20E,%.20E,%.20E!!!!!!!!!\n",v,pt.x(),pt.y(),pt.z());
					if (debugFile)
						fwrite(buf,1,strlen(buf),debugFile);
				}
				else
				{
					sprintf(buf,"EARLY POST %d = %.20E,%.20E,%.20E\n",v,pt.x(),pt.y(),pt.z());
					if (debugFile)
						fwrite(buf,1,strlen(buf),debugFile);
				}
			}
		}
	*/	
		
		return false;//don't continue moving within epsilon
	}

#define EDGEEDGE
#ifdef EDGEEDGE

	BU_EdgeEdge edgeEdge;

	//for all edged in A check agains all edges in B
	for (int ea = 0;ea < m_convexA->GetNumEdges();ea++)
	{
		SimdPoint3 pA0,pA1;

		m_convexA->GetEdge(ea,pA0,pA1);

		pA0= a2w * pA0;//in world space
		pA0 = w2s * pA0;//in screwing space

		pA1= a2w * pA1;//in world space
		pA1 = w2s * pA1;//in screwing space

		int numedgesB = m_convexB->GetNumEdges();
		for (int eb = 0; eb < numedgesB;eb++)
		{
			{
				SimdPoint3 pB0,pB1;
				m_convexB->GetEdge(eb,pB0,pB1);

				pB0= b2w * pB0;//in world space
				pB0 = w2s * pB0;//in screwing space

				pB1= b2w * pB1;//in world space
				pB1 = w2s * pB1;//in screwing space


				SimdScalar lambda,mu;
				
				toiUnscaled = 1.;

				SimdVector3 edgeDirA(pA1-pA0);
				SimdVector3 edgeDirB(pB1-pB0);

				if (edgeEdge.GetTimeOfImpact(m_screwing,pA0,edgeDirA,pB0,edgeDirB,toiUnscaled,lambda,mu))
				{
					//printf("edgeedge potential hit\n");
					if (toiUnscaled>=0)
					{
						if (toiUnscaled < toiUnscaledLimit)							
						{
		
							//inside check is already done by checking the mu and gamma !

							SimdPoint3 vtx  = pA0+lambda * (pA1-pA0);
							SimdPoint3 hitpt = m_screwing.InBetweenPosition(vtx,toiUnscaled);
							
							SimdPoint3 hitptWorld =   s2w * hitpt;
							{

								if (toiUnscaled < result.m_fraction)
									result.m_fraction = toiUnscaled;

								hit = true;

								SimdVector3 hitNormal = edgeDirB.cross(edgeDirA);
								
								hitNormal = m_screwing.InBetweenVector(hitNormal,toiUnscaled);
							

								hitNormal.normalize();
								
								//an approximated normal can be calculated by taking the cross product of both edges
								//take care of the sign !
								
								SimdVector3 hitNormalWorld = s2w.getBasis() * hitNormal ;
						
								SimdScalar dist = m_screwing.GetU().dot(hitNormalWorld);
								if (dist > 0)
									hitNormalWorld *= -1;
								
								//todo: this is the wrong point, because b2winv is still at begin of motion
								// not at time-of-impact location!
								//bhitpt = b2winv * hitptWorld;

//								m_manifold.SetContactPoint(BUM_FeatureEdgeEdge,index,ea,eb,hitptWorld,hitNormalWorld);
							}
					
						}
					}
				}
			}

			index++;
		}
	};
#endif //EDGEEDGE

#define VERTEXFACE
#ifdef VERTEXFACE

	// for all vertices in A, for each face in B,do vertex-face
	{
		const int numvertsA = m_convexA->GetNumVertices();
		for (int v=0;v<numvertsA;v++)
		//int v=3;

		{
			SimdPoint3 vtx;
			m_convexA->GetVertex(v,vtx);

			vtx = a2w * vtx;//in world space
			vtx = w2s * vtx;//in screwing space

			const int numplanesB = m_convexB->GetNumPlanes();

			for (int p = 0 ; p < numplanesB; p++)
			//int p=2;
			{

				{
				
					SimdVector3 planeNorm;
					SimdPoint3 planeSupport;

					m_convexB->GetPlane(planeNorm,planeSupport,p);


					planeSupport = b2w * planeSupport;//transform to world space
					SimdVector3 planeNormWorld =  b2w.getBasis() * planeNorm;
				
					planeSupport =  w2s * planeSupport  ; //transform to screwing space
					planeNorm =  w2s.getBasis() * planeNormWorld;

					planeNorm.normalize();

					SimdScalar d = planeSupport.dot(planeNorm);
					
					SimdVector4 planeEq(planeNorm[0],planeNorm[1],planeNorm[2],d);
				
					BU_VertexPoly vtxApolyB;

					toiUnscaled = 1.;

					if ((p==2) && (v==6))
					{
//						printf("%f toiUnscaled\n",toiUnscaled);

					}
					if (vtxApolyB.GetTimeOfImpact(m_screwing,vtx,planeEq,toiUnscaled,false))
					{
					


						
						if (toiUnscaled >= 0. )
						{
							//not only collect the first point, get every contactpoint, later we have to check the
							//manifold properly!

							if (toiUnscaled <= toiUnscaledLimit)
							{
	//							printf("toiUnscaled %f\n",toiUnscaled );

								SimdPoint3 hitpt = m_screwing.InBetweenPosition(vtx,toiUnscaled);
								SimdVector3 hitNormal = m_screwing.InBetweenVector(planeNorm ,toiUnscaled);

								SimdVector3 hitNormalWorld = s2w.getBasis() * hitNormal ;
								SimdPoint3 hitptWorld = s2w * hitpt;


								hitpt = b2winv * hitptWorld;
								//vertex has to be 'within' the facet's boundary
								if (m_convexB->IsInside(hitpt,m_tolerance))
								{
//									m_manifold.SetContactPoint(BUM_FeatureVertexFace, index,v,p,hitptWorld,hitNormalWorld);
									
									if (toiUnscaled < result.m_fraction)
										result.m_fraction= toiUnscaled;
									hit = true;

								}
							}
						}
					}
					
				}

				index++;
			}
		}
	}

	//
	// for all vertices in B, for each face in A,do vertex-face
	//copy and pasted from all verts A -> all planes B so potential typos!
	//todo: make this into one method with a kind of 'swapped' logic
	//
	{
		const int numvertsB = m_convexB->GetNumVertices();
		for (int v=0;v<numvertsB;v++)
		//int v=0;

		{
			SimdPoint3 vtx;
			m_convexB->GetVertex(v,vtx);

			vtx = b2w * vtx;//in world space
/*
			
			char buf[1000];

			if (vtx.y() < 0.)
			{
				sprintf(buf,"ERROR !!!!!!!!!\n",v,vtx.x(),vtx.y(),vtx.z());
				if (debugFile)
					fwrite(buf,1,strlen(buf),debugFile);
			}
			sprintf(buf,"vertexWorld(%d) = (%.20E,%.20E,%.20E)\n",v,vtx.x(),vtx.y(),vtx.z());
			if (debugFile)
				fwrite(buf,1,strlen(buf),debugFile);

*/			
			vtx = w2s * vtx;//in screwing space

			const int numplanesA = m_convexA->GetNumPlanes();

			for (int p = 0 ; p < numplanesA; p++)
			//int p=2;
			{

				{
					SimdVector3 planeNorm;
					SimdPoint3 planeSupport;

					m_convexA->GetPlane(planeNorm,planeSupport,p);


					planeSupport = a2w * planeSupport;//transform to world space
					SimdVector3 planeNormWorld =  a2w.getBasis() * planeNorm;
				
					planeSupport =  w2s * planeSupport  ; //transform to screwing space
					planeNorm =  w2s.getBasis() * planeNormWorld;

					planeNorm.normalize();

					SimdScalar d = planeSupport.dot(planeNorm);
					
					SimdVector4 planeEq(planeNorm[0],planeNorm[1],planeNorm[2],d);
				
					BU_VertexPoly vtxBpolyA;

					toiUnscaled = 1.;

					if (vtxBpolyA.GetTimeOfImpact(m_screwing,vtx,planeEq,toiUnscaled,true))
					{
						if (toiUnscaled>=0.)
						{
							if (toiUnscaled < toiUnscaledLimit)
							{
								SimdPoint3 hitpt = m_screwing.InBetweenPosition( vtx , -toiUnscaled);
								SimdVector3 hitNormal = m_screwing.InBetweenVector(-planeNorm ,-toiUnscaled);
								//SimdScalar len =  hitNormal.length()-1;

								//assert( SimdFuzzyZero(len) );

								
								SimdVector3 hitNormalWorld = s2w.getBasis() * hitNormal ;
								SimdPoint3 hitptWorld = s2w * hitpt;
								hitpt = a2winv * hitptWorld;
							
							
								//vertex has to be 'within' the facet's boundary
								if (m_convexA->IsInside(hitpt,m_tolerance))
								{
									
//									m_manifold.SetContactPoint(BUM_FeatureFaceVertex,index,p,v,hitptWorld,hitNormalWorld);
									if (toiUnscaled <result.m_fraction)
										result.m_fraction = toiUnscaled;
									hit = true;
								}
							}
						
						}
					
					}
					}

			}
		
			index++;
		}
	}
	

#endif// VERTEXFACE

	//the manifold now consists of all points/normals generated by feature-pairs that have a time-of-impact within this frame
	//in addition there are contact points from previous frames
	//we have to cleanup the manifold, using an additional epsilon/tolerance
	//as long as the distance from the contactpoint (in worldspace) to both objects is within this epsilon we keep the point
	//else throw it away
	

	if (hit)
	{

		//try to avoid numerical drift on close contact
		
		if (result.m_fraction < 0.00001)
		{
//			printf("toiUnscaledMin< 0.00001\n");
			impactTransA = a2w;
			impactTransB = b2w;

		} else
		{

			//SimdScalar vel = linearMotionB.length();
			
			//todo: check this margin
			result.m_fraction *= 0.99f;

			//move B to new position
			impactTransB.setOrigin(b2w.getOrigin()+ result.m_fraction*linearMotionB);
			SimdQuaternion ornB = b2w.getRotation()+angularMotionB*result.m_fraction;
			ornB.normalize();
			impactTransB.setRotation(ornB);

			//now transform A
			SimdTransform a2s,a2b;
			a2s.mult( w2s , a2w);
			a2s= m_screwing.InBetweenTransform(a2s,result.m_fraction);
			a2s.multInverseLeft(w2s,a2s);
			a2b.multInverseLeft(b2w, a2s);

			//transform by motion B
			impactTransA.mult(impactTransB, a2b);
			//normalize rotation
			SimdQuaternion orn;
			impactTransA.getBasis().getRotation(orn);
			orn.normalize();
			impactTransA.setBasis(SimdMatrix3x3(orn));
		}
	}

/*
	{
		const int numvertsB = m_convexB->GetNumVertices();
		for (int v=0;v<numvertsB;v++)
		{
			SimdPoint3 pt;
			m_convexB->GetVertex(v,pt);
			pt = impactTransB * pt;
			char buf[1000];

			if (pt.y() < 0.)
			{
				sprintf(buf,"POST ERROR (%d) %.20E,%.20E,%.20E!!!!!!!!!\n",v,pt.x(),pt.y(),pt.z());
				if (debugFile)
					fwrite(buf,1,strlen(buf),debugFile);
			}
			else
			{
				sprintf(buf,"POST %d = %.20E,%.20E,%.20E\n",v,pt.x(),pt.y(),pt.z());
				if (debugFile)
					fwrite(buf,1,strlen(buf),debugFile);
			}
		}
	}
*/
	return hit;
}