Esempio n. 1
0
void central_interval_Bayesian(Model* model,double confidence){
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  cout<<"Calculating central interval with the Bayesian method"<<endl;
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  
  //configure the calculator
  BayesianCalculator bcalc(*model->get_data(),*model->get_complete_likelihood(),*model->get_POI_set(),*model->get_POI_prior(),model->get_nuisance_set());
  
  //get the interval
  bcalc.SetConfidenceLevel(confidence);
  SimpleInterval* interval = bcalc.GetInterval();
  double ll=interval->LowerLimit();
  double ul=interval->UpperLimit();
  std::cout <<confidence <<"% CL confidence interval: " <<ll<<" , "<< ul<<endl;
}
Esempio n. 2
0
void upper_limit_Bayesian(Model* model,double confidence){
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  cout<<"Calculating upper limit with the Bayesian method"<<endl;
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  
  RooWorkspace* wspace = new RooWorkspace("wspace");
  ModelConfig* modelConfig = new ModelConfig("bayes");
  modelConfig->SetWorkspace(*wspace);
  modelConfig->SetPdf(*model->get_complete_likelihood());
  modelConfig->SetPriorPdf(*model->get_POI_prior());
  modelConfig->SetParametersOfInterest(*model->get_POI_set());
  //modelConfig->SetNuisanceParameters(*model->get_nuisance_set());



  //configure the calculator
  //model->Print();

  cout<<" POI size "<<model->get_POI_set()->getSize()<<endl; 
  BayesianCalculator bcalc(*model->get_data(), *modelConfig);
  //BayesianCalculator bcalc(*model->get_data(),*model->get_complete_likelihood(),*model->get_POI_set(),*model->get_POI_prior(),model->get_nuisance_set());
  //BayesianCalculator bcalc(*model->get_data(),*model->get_complete_likelihood(),*model->get_POI_set(),*model->get_POI_prior(),0);
 

  bcalc.SetLeftSideTailFraction(0); //for upper limit

  //get the interval
  bcalc.SetConfidenceLevel(confidence);
  cout<<"Calculating"<<endl;
  SimpleInterval* interval = bcalc.GetInterval();
  double ul=interval->UpperLimit();
  std::cout <<confidence <<"% CL upper limit: "<< ul<<endl;

  TCanvas *c1=new TCanvas;
  bcalc.SetScanOfPosterior(100);
  RooPlot * plot = bcalc.GetPosteriorPlot();
  plot->Draw(); 
  c1->SaveAs("bayesian_PosteriorPlot.png");

}
void StandardBayesianNumericalDemo(const char* infile = "",
                                   const char* workspaceName = "combined",
                                   const char* modelConfigName = "ModelConfig",
                                   const char* dataName = "obsData") {

   // option definitions 
   double confLevel = optBayes.confLevel; 
   TString integrationType = optBayes.integrationType;
   int nToys = optBayes.nToys; 
   bool scanPosterior = optBayes.scanPosterior; 
   int nScanPoints = optBayes.nScanPoints; 
   int intervalType = optBayes.intervalType;
   int  maxPOI =  optBayes.maxPOI;
   double  nSigmaNuisance = optBayes.nSigmaNuisance;
   


  /////////////////////////////////////////////////////////////
  // First part is just to access a user-defined file
  // or create the standard example file if it doesn't exist
  ////////////////////////////////////////////////////////////

   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


  /////////////////////////////////////////////////////////////
  // Tutorial starts here
  ////////////////////////////////////////////////////////////

  // get the workspace out of the file
  RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
  if(!w){
    cout <<"workspace not found" << endl;
    return;
  }

  // get the modelConfig out of the file
  ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

  // get the modelConfig out of the file
  RooAbsData* data = w->data(dataName);

  // make sure ingredients are found
  if(!data || !mc){
    w->Print();
    cout << "data or ModelConfig was not found" <<endl;
    return;
  }

  /////////////////////////////////////////////
  // create and use the BayesianCalculator
  // to find and plot the 95% credible interval
  // on the parameter of interest as specified
  // in the model config

  // before we do that, we must specify our prior
  // it belongs in the model config, but it may not have
  // been specified
  RooUniform prior("prior","",*mc->GetParametersOfInterest());
  w->import(prior);
  mc->SetPriorPdf(*w->pdf("prior"));

  // do without systematics
  //mc->SetNuisanceParameters(RooArgSet() );
  if (nSigmaNuisance > 0) {
     RooAbsPdf * pdf = mc->GetPdf();
     assert(pdf);
     RooFitResult * res = pdf->fitTo(*data, Save(true), Minimizer(ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str()), Hesse(true),
                                     PrintLevel(ROOT::Math::MinimizerOptions::DefaultPrintLevel()-1) );

     res->Print();
     RooArgList nuisPar(*mc->GetNuisanceParameters());
     for (int i = 0; i < nuisPar.getSize(); ++i) {
        RooRealVar * v = dynamic_cast<RooRealVar*> (&nuisPar[i] );
        assert( v);
        v->setMin( TMath::Max( v->getMin(), v->getVal() - nSigmaNuisance * v->getError() ) );
        v->setMax( TMath::Min( v->getMax(), v->getVal() + nSigmaNuisance * v->getError() ) );
        std::cout << "setting interval for nuisance  " << v->GetName() << " : [ " << v->getMin() << " , " << v->getMax() << " ]" << std::endl;
     }
  }


  BayesianCalculator bayesianCalc(*data,*mc);
  bayesianCalc.SetConfidenceLevel(confLevel); // 95% interval

  // default of the calculator is central interval.  here use shortest , central or upper limit depending on input
  // doing a shortest interval might require a longer time since it requires a scan of the posterior function
  if (intervalType == 0)  bayesianCalc.SetShortestInterval(); // for shortest interval
  if (intervalType == 1)  bayesianCalc.SetLeftSideTailFraction(0.5); // for central interval
  if (intervalType == 2)  bayesianCalc.SetLeftSideTailFraction(0.); // for upper limit

  if (!integrationType.IsNull() ) {
     bayesianCalc.SetIntegrationType(integrationType); // set integrationType
     bayesianCalc.SetNumIters(nToys); // set number of ietrations (i.e. number of toys for MC integrations)
  }

  // in case of toyMC make a nnuisance pdf
  if (integrationType.Contains("TOYMC") ) {
    RooAbsPdf * nuisPdf = RooStats::MakeNuisancePdf(*mc, "nuisance_pdf");
    cout << "using TOYMC integration: make nuisance pdf from the model " << std::endl;
    nuisPdf->Print();
    bayesianCalc.ForceNuisancePdf(*nuisPdf);
    scanPosterior = true; // for ToyMC the posterior is scanned anyway so used given points
  }

  // compute interval by scanning the posterior function
  if (scanPosterior)
     bayesianCalc.SetScanOfPosterior(nScanPoints);

  RooRealVar* poi = (RooRealVar*) mc->GetParametersOfInterest()->first();
  if (maxPOI != -999 &&  maxPOI > poi->getMin())
    poi->setMax(maxPOI);


  SimpleInterval* interval = bayesianCalc.GetInterval();

  // print out the iterval on the first Parameter of Interest
  cout << "\n>>>> RESULT : " << confLevel*100 << "% interval on " << poi->GetName()<<" is : ["<<
    interval->LowerLimit() << ", "<<
    interval->UpperLimit() <<"] "<<endl;


  // make a plot
  // since plotting may take a long time (it requires evaluating
  // the posterior in many points) this command will speed up
  // by reducing the number of points to plot - do 50

  // ignore errors of PDF if is zero
  RooAbsReal::setEvalErrorLoggingMode(RooAbsReal::Ignore) ;

  
  cout << "\nDrawing plot of posterior function....." << endl;

  // always plot using numer of scan points
  bayesianCalc.SetScanOfPosterior(nScanPoints);

  RooPlot * plot = bayesianCalc.GetPosteriorPlot();
  plot->Draw();

}
Esempio n. 4
0
//
// calculation of the limit: assumes that wspace is set up and observations
//   contained in data
//
MyLimit computeLimit (RooWorkspace* wspace, RooDataSet* data, StatMethod method, bool draw) {

  // let's time this challenging example
  TStopwatch t;

  //
  // get nominal signal
  //
  RooRealVar exp_sig(*wspace->var("s"));
  double exp_sig_val = exp_sig.getVal();
  std::cout << "exp_sig = " << exp_sig_val << std::endl;
  
  /////////////////////////////////////////////////////
  // Now the statistical tests
  // model config
  std::cout << wspace->pdf("model") << " "
	    << wspace->pdf("prior") << " "
	    << wspace->set("poi") << " "
	    << wspace->set("nuis") << std::endl;
  ModelConfig modelConfig("RA4abcd");
  modelConfig.SetWorkspace(*wspace);
  modelConfig.SetPdf(*wspace->pdf("model"));
  modelConfig.SetPriorPdf(*wspace->pdf("prior"));
  modelConfig.SetParametersOfInterest(*wspace->set("poi"));
  modelConfig.SetNuisanceParameters(*wspace->set("nuis"));


  //////////////////////////////////////////////////
  // If you want to see the covariance matrix uncomment
  // wspace->pdf("model")->fitTo(*data);

  // use ProfileLikelihood
  if ( method == ProfileLikelihoodMethod ) {
    ProfileLikelihoodCalculator plc(*data, modelConfig);
    plc.SetConfidenceLevel(0.95);
    RooFit::MsgLevel msglevel = RooMsgService::instance().globalKillBelow();
    RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL);
    LikelihoodInterval* plInt = plc.GetInterval();
    RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL);
    plInt->LowerLimit( *wspace->var("s") ); // get ugly print out of the way. Fix.
    // RooMsgService::instance().setGlobalKillBelow(RooFit::DEBUG);
    if ( draw ) {
      TCanvas* c = new TCanvas("ProfileLikelihood");
      LikelihoodIntervalPlot* lrplot = new LikelihoodIntervalPlot(plInt);
      lrplot->Draw();
    }
//     RooMsgService::instance().setGlobalKillBelow(msglevel);
    double lowLim = plInt->LowerLimit(*wspace->var("s"));
    double uppLim = plInt->UpperLimit(*wspace->var("s"));
//     double exp_sig_val = wspace->var("s")->getVal();
//     double exp_sig_val = exp_sig.getVal();
    cout << "Profile Likelihood interval on s = [" << 
      lowLim << ", " <<
      uppLim << "]" << " " << exp_sig_val << endl; 
//     MyLimit result(plInt->IsInInterval(exp_sig),
    MyLimit result(exp_sig_val>lowLim&&exp_sig_val<uppLim,lowLim,uppLim);
    // std::cout << "isIn " << result << std::endl;
    delete plInt;
//     delete modelConfig;
    return result;
  }

  // use FeldmaCousins (takes ~20 min)  
  if ( method == FeldmanCousinsMethod ) {
    FeldmanCousins fc(*data, modelConfig);
    fc.SetConfidenceLevel(0.95);
    //number counting: dataset always has 1 entry with N events observed
    fc.FluctuateNumDataEntries(false); 
    fc.UseAdaptiveSampling(true);
    fc.SetNBins(100);
    PointSetInterval* fcInt = NULL;
    fcInt = (PointSetInterval*) fc.GetInterval(); // fix cast
    double lowLim = fcInt->LowerLimit(*wspace->var("s"));
    double uppLim = fcInt->UpperLimit(*wspace->var("s"));
//     double exp_sig_val = wspace->var("s")->getVal();
    cout << "Feldman Cousins interval on s = [" << lowLim << " " << uppLim << endl;
    // std::cout << "isIn " << result << std::endl;
    MyLimit result(exp_sig_val>lowLim&&exp_sig_val<uppLim,
		   fcInt->LowerLimit(*wspace->var("s")),fcInt->UpperLimit(*wspace->var("s")));
    delete fcInt;
    return result;
  }


  // use BayesianCalculator (only 1-d parameter of interest, slow for this problem)  
  if ( method == BayesianMethod ) {
    BayesianCalculator bc(*data, modelConfig);
    bc.SetConfidenceLevel(0.95);
    bc.SetLeftSideTailFraction(0.5);
    SimpleInterval* bInt = NULL;
    if( wspace->set("poi")->getSize() == 1)   {
      bInt = bc.GetInterval();
      if ( draw ) {
	TCanvas* c = new TCanvas("Bayesian");
	// the plot takes a long time and print lots of error
	// using a scan it is better
	bc.SetScanOfPosterior(50);
	RooPlot* bplot = bc.GetPosteriorPlot();
	bplot->Draw();
      }
      cout << "Bayesian interval on s = [" << 
	bInt->LowerLimit( ) << ", " <<
	bInt->UpperLimit( ) << "]" << endl;
      // std::cout << "isIn " << result << std::endl;
      MyLimit result(bInt->IsInInterval(exp_sig),
		     bInt->LowerLimit(),bInt->UpperLimit());
      delete bInt;
      return result;
    } else {
    cout << "Bayesian Calc. only supports on parameter of interest" << endl;
    return MyLimit();
    }
  }


  // use MCMCCalculator  (takes about 1 min)
  // Want an efficient proposal function, so derive it from covariance
  // matrix of fit
  if ( method == MCMCMethod ) {
    RooFitResult* fit = wspace->pdf("model")->fitTo(*data,Save());
    ProposalHelper ph;
    ph.SetVariables((RooArgSet&)fit->floatParsFinal());
    ph.SetCovMatrix(fit->covarianceMatrix());
    ph.SetUpdateProposalParameters(kTRUE); // auto-create mean vars and add mappings
    ph.SetCacheSize(100);
    ProposalFunction* pf = ph.GetProposalFunction();
    
    MCMCCalculator mc(*data, modelConfig);
    mc.SetConfidenceLevel(0.95);
    mc.SetProposalFunction(*pf);
    mc.SetNumBurnInSteps(100); // first N steps to be ignored as burn-in
    mc.SetNumIters(100000);
    mc.SetLeftSideTailFraction(0.5); // make a central interval
    MCMCInterval* mcInt = NULL;
    mcInt = mc.GetInterval();
    MCMCIntervalPlot mcPlot(*mcInt); 
    mcPlot.Draw();
    cout << "MCMC interval on s = [" << 
      mcInt->LowerLimit(*wspace->var("s") ) << ", " <<
      mcInt->UpperLimit(*wspace->var("s") ) << "]" << endl;
    // std::cout << "isIn " << result << std::endl;
    MyLimit result(mcInt->IsInInterval(exp_sig),
		   mcInt->LowerLimit(*wspace->var("s")),mcInt->UpperLimit(*wspace->var("s")));
    delete mcInt;
    return result;
  }
  

  t.Print();

//   delete modelConfig;
  return MyLimit();

}
void rs701_BayesianCalculator(bool useBkg = true, double confLevel = 0.90)
{


  RooWorkspace* w = new RooWorkspace("w",true);
  w->factory("SUM::pdf(s[0.001,15]*Uniform(x[0,1]),b[1,0,2]*Uniform(x))");
  w->factory("Gaussian::prior_b(b,1,1)");
  w->factory("PROD::model(pdf,prior_b)");
  RooAbsPdf* model = w->pdf("model");  // pdf*priorNuisance
  RooArgSet nuisanceParameters(*(w->var("b")));



  RooAbsRealLValue* POI = w->var("s");
  RooAbsPdf* priorPOI  = (RooAbsPdf *) w->factory("Uniform::priorPOI(s)");
  RooAbsPdf* priorPOI2 = (RooAbsPdf *) w->factory("GenericPdf::priorPOI2('1/sqrt(@0)',s)");

  w->factory("n[3]"); // observed number of events
  // create a data set with n observed events
  RooDataSet data("data","",RooArgSet(*(w->var("x")),*(w->var("n"))),"n");
  data.add(RooArgSet(*(w->var("x"))),w->var("n")->getVal());

  // to suppress messgaes when pdf goes to zero
  RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL) ;

  RooArgSet * nuisPar = 0;
  if (useBkg) nuisPar = &nuisanceParameters;
  //if (!useBkg) ((RooRealVar *)w->var("b"))->setVal(0);

  double size = 1.-confLevel;
  std::cout << "\nBayesian Result using a Flat prior " << std::endl;
  BayesianCalculator bcalc(data,*model,RooArgSet(*POI),*priorPOI, nuisPar);
  bcalc.SetTestSize(size);
  SimpleInterval* interval = bcalc.GetInterval();
  double cl = bcalc.ConfidenceLevel();
  std::cout << cl <<"% CL central interval: [ " << interval->LowerLimit() << " - " << interval->UpperLimit()
            << " ] or "
            << cl+(1.-cl)/2 << "% CL limits\n";
  RooPlot * plot = bcalc.GetPosteriorPlot();
  TCanvas * c1 = new TCanvas("c1","Bayesian Calculator Result");
  c1->Divide(1,2);
  c1->cd(1);
  plot->Draw();
  c1->Update();

  std::cout << "\nBayesian Result using a 1/sqrt(s) prior  " << std::endl;
  BayesianCalculator bcalc2(data,*model,RooArgSet(*POI),*priorPOI2,nuisPar);
  bcalc2.SetTestSize(size);
  SimpleInterval* interval2 = bcalc2.GetInterval();
  cl = bcalc2.ConfidenceLevel();
  std::cout << cl <<"% CL central interval: [ " << interval2->LowerLimit() << " - " << interval2->UpperLimit()
            << " ] or "
            << cl+(1.-cl)/2 << "% CL limits\n";

  RooPlot * plot2 = bcalc2.GetPosteriorPlot();
  c1->cd(2);
  plot2->Draw();
  gPad->SetLogy();
  c1->Update();

  // observe one event while expecting one background event -> the 95% CL upper limit on s is 4.10
  // observe one event while expecting zero background event -> the 95% CL upper limit on s is 4.74
}
Esempio n. 6
0
void IntervalExamples()
{

   // Time this macro
   TStopwatch t;
   t.Start();


   // set RooFit random seed for reproducible results
   RooRandom::randomGenerator()->SetSeed(3001);

   // make a simple model via the workspace factory
   RooWorkspace* wspace = new RooWorkspace();
   wspace->factory("Gaussian::normal(x[-10,10],mu[-1,1],sigma[1])");
   wspace->defineSet("poi","mu");
   wspace->defineSet("obs","x");

   // specify components of model for statistical tools
   ModelConfig* modelConfig = new ModelConfig("Example G(x|mu,1)");
   modelConfig->SetWorkspace(*wspace);
   modelConfig->SetPdf( *wspace->pdf("normal") );
   modelConfig->SetParametersOfInterest( *wspace->set("poi") );
   modelConfig->SetObservables( *wspace->set("obs") );

   // create a toy dataset
   RooDataSet* data = wspace->pdf("normal")->generate(*wspace->set("obs"),100);
   data->Print();

   // for convenience later on
   RooRealVar* x = wspace->var("x");
   RooRealVar* mu = wspace->var("mu");

   // set confidence level
   double confidenceLevel = 0.95;

   // example use profile likelihood calculator
   ProfileLikelihoodCalculator plc(*data, *modelConfig);
   plc.SetConfidenceLevel( confidenceLevel);
   LikelihoodInterval* plInt = plc.GetInterval();

   // example use of Feldman-Cousins
   FeldmanCousins fc(*data, *modelConfig);
   fc.SetConfidenceLevel( confidenceLevel);
   fc.SetNBins(100); // number of points to test per parameter
   fc.UseAdaptiveSampling(true); // make it go faster

   // Here, we consider only ensembles with 100 events
   // The PDF could be extended and this could be removed
   fc.FluctuateNumDataEntries(false);

   // Proof
   //  ProofConfig pc(*wspace, 4, "workers=4", kFALSE);    // proof-lite
   //ProofConfig pc(w, 8, "localhost");    // proof cluster at "localhost"
   //  ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
   //  toymcsampler->SetProofConfig(&pc);     // enable proof

   PointSetInterval* interval = (PointSetInterval*) fc.GetInterval();


   // example use of BayesianCalculator
   // now we also need to specify a prior in the ModelConfig
   wspace->factory("Uniform::prior(mu)");
   modelConfig->SetPriorPdf(*wspace->pdf("prior"));

   // example usage of BayesianCalculator
   BayesianCalculator bc(*data, *modelConfig);
   bc.SetConfidenceLevel( confidenceLevel);
   SimpleInterval* bcInt = bc.GetInterval();

   // example use of MCMCInterval
   MCMCCalculator mc(*data, *modelConfig);
   mc.SetConfidenceLevel( confidenceLevel);
   // special options
   mc.SetNumBins(200);        // bins used internally for representing posterior
   mc.SetNumBurnInSteps(500); // first N steps to be ignored as burn-in
   mc.SetNumIters(100000);    // how long to run chain
   mc.SetLeftSideTailFraction(0.5); // for central interval
   MCMCInterval* mcInt = mc.GetInterval();

   // for this example we know the expected intervals
   double expectedLL = data->mean(*x)
      + ROOT::Math::normal_quantile(  (1-confidenceLevel)/2,1)
      / sqrt(data->numEntries());
   double expectedUL = data->mean(*x)
      + ROOT::Math::normal_quantile_c((1-confidenceLevel)/2,1)
      / sqrt(data->numEntries()) ;

   // Use the intervals
   std::cout << "expected interval is [" <<
      expectedLL << ", " <<
      expectedUL << "]" << endl;

   cout << "plc interval is [" <<
      plInt->LowerLimit(*mu) << ", " <<
      plInt->UpperLimit(*mu) << "]" << endl;

   std::cout << "fc interval is ["<<
      interval->LowerLimit(*mu) << " , "  <<
      interval->UpperLimit(*mu) << "]" << endl;

   cout << "bc interval is [" <<
      bcInt->LowerLimit() << ", " <<
      bcInt->UpperLimit() << "]" << endl;

   cout << "mc interval is [" <<
      mcInt->LowerLimit(*mu) << ", " <<
      mcInt->UpperLimit(*mu) << "]" << endl;

   mu->setVal(0);
   cout << "is mu=0 in the interval? " <<
      plInt->IsInInterval(RooArgSet(*mu)) << endl;


   // make a reasonable style
   gStyle->SetCanvasColor(0);
   gStyle->SetCanvasBorderMode(0);
   gStyle->SetPadBorderMode(0);
   gStyle->SetPadColor(0);
   gStyle->SetCanvasColor(0);
   gStyle->SetTitleFillColor(0);
   gStyle->SetFillColor(0);
   gStyle->SetFrameFillColor(0);
   gStyle->SetStatColor(0);


   // some plots
   TCanvas* canvas = new TCanvas("canvas");
   canvas->Divide(2,2);

   // plot the data
   canvas->cd(1);
   RooPlot* frame = x->frame();
   data->plotOn(frame);
   data->statOn(frame);
   frame->Draw();

   // plot the profile likelihood
   canvas->cd(2);
   LikelihoodIntervalPlot plot(plInt);
   plot.Draw();

   // plot the MCMC interval
   canvas->cd(3);
   MCMCIntervalPlot* mcPlot = new MCMCIntervalPlot(*mcInt);
   mcPlot->SetLineColor(kGreen);
   mcPlot->SetLineWidth(2);
   mcPlot->Draw();

   canvas->cd(4);
   RooPlot * bcPlot = bc.GetPosteriorPlot();
   bcPlot->Draw();

   canvas->Update();

   t.Stop();
   t.Print();

}
void StandardBayesianNumericalDemo(const char* infile = "",
		      const char* workspaceName = "combined",
		      const char* modelConfigName = "ModelConfig",
		      const char* dataName = "obsData"){

  /////////////////////////////////////////////////////////////
  // First part is just to access a user-defined file 
  // or create the standard example file if it doesn't exist
  ////////////////////////////////////////////////////////////
  TString filename = infile;
  if (filename.IsNull()) { 
    filename = "results/example_combined_GaussExample_model.root";
    std::cout << "Use standard file generated with HistFactory : " << filename << std::endl;
  }

  // Check if example input file exists
  TFile *file = TFile::Open(filename);

  // if input file was specified but not found, quit
  if(!file && !TString(infile).IsNull()){
     cout <<"file " << filename << " not found" << endl;
     return;
  } 

  // if default file not found, try to create it
  if(!file ){
    // Normally this would be run on the command line
    cout <<"will run standard hist2workspace example"<<endl;
    gROOT->ProcessLine(".! prepareHistFactory .");
    gROOT->ProcessLine(".! hist2workspace config/example.xml");
    cout <<"\n\n---------------------"<<endl;
    cout <<"Done creating example input"<<endl;
    cout <<"---------------------\n\n"<<endl;

    // now try to access the file again
    file = TFile::Open(filename);
  }

  if(!file){
    // if it is still not there, then we can't continue
    cout << "Not able to run hist2workspace to create example input" <<endl;
    return;
  }

  
  /////////////////////////////////////////////////////////////
  // Tutorial starts here
  ////////////////////////////////////////////////////////////

  // get the workspace out of the file
  RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
  if(!w){
    cout <<"workspace not found" << endl;
    return;
  }

  // get the modelConfig out of the file
  ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

  // get the modelConfig out of the file
  RooAbsData* data = w->data(dataName);

  // make sure ingredients are found
  if(!data || !mc){
    w->Print();
    cout << "data or ModelConfig was not found" <<endl;
    return;
  }

  /////////////////////////////////////////////
  // create and use the BayesianCalculator
  // to find and plot the 95% credible interval
  // on the parameter of interest as specified
  // in the model config
  
  // before we do that, we must specify our prior
  // it belongs in the model config, but it may not have
  // been specified
  RooUniform prior("prior","",*mc->GetParametersOfInterest());
  w->import(prior);
  mc->SetPriorPdf(*w->pdf("prior"));

  // do without systematics
  //mc->SetNuisanceParameters(RooArgSet() );

  
  BayesianCalculator bayesianCalc(*data,*mc);
  bayesianCalc.SetConfidenceLevel(0.95); // 95% interval

  // default of the calculator is central interval.  here use shortest , central or upper limit depending on input
  // doing a shortest interval might require a longer time since it requires a scan of the posterior function
  if (intervalType == 0)  bayesianCalc.SetShortestInterval(); // for shortest interval
  if (intervalType == 1)  bayesianCalc.SetLeftSideTailFraction(0.5); // for central interval
  if (intervalType == 2)  bayesianCalc.SetLeftSideTailFraction(0.); // for upper limit

  if (!integrationType.IsNull() ) { 
     bayesianCalc.SetIntegrationType(integrationType); // set integrationType
     bayesianCalc.SetNumIters(nToys); // set number of ietrations (i.e. number of toys for MC integrations)
  }

  // compute interval by scanning the posterior function
  if (scanPosterior)   
     bayesianCalc.SetScanOfPosterior(nScanPoints);


  SimpleInterval* interval = bayesianCalc.GetInterval();

  // print out the iterval on the first Parameter of Interest
  RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
  cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
    interval->LowerLimit() << ", "<<
    interval->UpperLimit() <<"] "<<endl;


  // make a plot 
  // since plotting may take a long time (it requires evaluating 
  // the posterior in many points) this command will speed up 
  // by reducing the number of points to plot - do 50

  cout << "\nDrawing plot of posterior function....." << endl;

  bayesianCalc.SetScanOfPosterior(nScanPoints);

  RooPlot * plot = bayesianCalc.GetPosteriorPlot();
  plot->Draw();  

}
Esempio n. 8
0
void runBATCalculator()
{
    // Definiton of a RooWorkspace containing the statistics model. Later the
    // information for BATCalculator is retrieved from the workspace. This is
    // certainly a bit of overhead but better from an educative point of view.
    cout << "preparing the RooWorkspace object" << endl;

    RooWorkspace* myWS = new RooWorkspace("myWS", true);

    // combined prior for signal contribution
    myWS->factory("Product::signal({sigma_s[0,20],L[5,15],epsilon[0,1]})");
    myWS->factory("N_bkg[0,3]");
    // define prior functions
    // uniform prior for signal crosssection
    myWS->factory("Uniform::prior_sigma_s(sigma_s)");
    // (truncated) prior for efficiency
    myWS->factory("Gaussian::prior_epsilon(epsilon,0.51,0.0765)");
    // (truncated) Gaussian prior for luminosity
    myWS->factory("Gaussian::prior_L(L,10,1)");
    // (truncated) Gaussian prior for bkg crosssection
    myWS->factory("Gaussian::prior_N_bkg(N_bkg,0.52,0.156)");

    // Poisson distribution with mean signal+bkg
    myWS->factory("Poisson::model(n[0,300],sum(signal,N_bkg))");

    // define the global prior function
    myWS->factory("PROD::prior(prior_sigma_s,prior_epsilon,prior_L,prior_N_bkg)");

    // Definition of observables and parameters of interest
    myWS->defineSet("obsSet", "n");
    myWS->defineSet("poiSet", "sigma_s");
    myWS->defineSet("nuisanceSet", "N_bkg,L,epsilon");

    // ->model complete (Additional information can be found in the
    // RooStats manual)

    //  feel free to vary the parameters, but don't forget to choose reasonable ranges for the
    // variables. Currently the Bayesian methods will often not work well if the variable ranges
    // are either too short (for obvious reasons) or too large (for technical reasons).

    // A ModelConfig object is used to associate parts of your workspace with their statistical
    // meaning (it is also possible to initialize BATCalculator directly with elements from the
    // workspace but if you are sharing your workspace with others or if you want to use several
    // different methods the use of ModelConfig will most often turn out to be the better choice.)

    // setup the ModelConfig object
    cout << "preparing the ModelConfig object" << endl;

    ModelConfig modelconfig("modelconfig", "ModelConfig for this example");
    modelconfig.SetWorkspace(*myWS);

    modelconfig.SetPdf(*(myWS->pdf("model")));
    modelconfig.SetParametersOfInterest(*(myWS->set("poiSet")));
    modelconfig.SetPriorPdf(*(myWS->pdf("prior")));
    modelconfig.SetNuisanceParameters(*(myWS->set("nuisanceSet")));
    modelconfig.SetObservables(*(myWS->set("obsSet")));


    // use BATCalculator to the derive credibility intervals as a function of the observed number of
    // events in the hypothetical experiment

    // define vector with tested numbers of events
    TVectorD obsEvents;
    // define vectors which will be filled with the lower and upper limits for each tested number
    // of observed events
    TVectorD BATul;
    TVectorD BATll;

    // fix upper limit of tested observed number of events
    int obslimit = 10;

    obsEvents.ResizeTo(obslimit);
    BATul.ResizeTo(obslimit);
    BATll.ResizeTo(obslimit);


    cout << "starting the calculation of Bayesian credibility intervals with BATCalculator" << endl;
    // loop over observed number of events in the hypothetical experiment
    for (int obs = 1; obs <= obslimit; obs++) {

        obsEvents[obs - 1] = (static_cast<double>(obs));

        // prepare data input for the the observed number of events
        // adjust number of observed events in the workspace. This is communicated to ModelConfig!
        myWS->var("n")->setVal(obs);
        // create data
        RooDataSet data("data", "", *(modelconfig.GetObservables()));
        data.add( *(modelconfig.GetObservables()));

        // prepare BATCalulator
        BATCalculator batcalc(data, modelconfig);

        // give the BATCalculator a unique name (always a good idea in ROOT)
        TString namestring = "mybatc_";
        namestring += obs;
        batcalc.SetName(namestring);

        // fix amount of posterior probability in the calculated interval.
        // the name confidence level is incorrect here
        batcalc.SetConfidenceLevel(0.90);

        // fix length of the Markov chain. (in general: the longer the Markov chain the more
        // precise will be the results)
        batcalc.SetnMCMC(20000);

        // retrieve SimpleInterval object containing the information about the interval (this
        // triggers the actual calculations)
        SimpleInterval* interval = batcalc.GetInterval1D("sigma_s");

        std::cout << "BATCalculator: 90% credibility interval: [ " << interval->LowerLimit() << " - " << interval->UpperLimit() << " ] or 95% credibility upper limit\n";

        // add the interval borders for the current number of observed events to the vectors
        // containing the lower and upper limits
        BATll[obs - 1] = interval->LowerLimit();
        BATul[obs - 1] = interval->UpperLimit();

        // clean up for next loop element
        batcalc.CleanCalculatorForNewData();
        delete interval;
    }
    cout << "all limits calculated" << endl;

    // summarize the results in a plot

    TGraph* grBATll = new TGraph(obsEvents, BATll);
    grBATll->SetLineColor(kGreen);
    grBATll->SetLineWidth(200);
    grBATll->SetFillStyle(3001);
    grBATll->SetFillColor(kGreen);

    TGraph* grBATul = new TGraph(obsEvents, BATul);
    grBATul->SetLineColor(kGreen);
    grBATul->SetLineWidth(-200);
    grBATul->SetFillStyle(3001);
    grBATul->SetFillColor(kGreen);

    // create and draw multigraph
    TMultiGraph* mg = new TMultiGraph("BayesianLimitsBATCalculator", "BayesianLimitsBATCalculator");
    mg->SetTitle("example of Bayesian credibility intervals derived with BATCAlculator ");

    mg->Add(grBATll);
    mg->Add(grBATul);

    mg->Draw("AC");

    mg->GetXaxis()->SetTitle ("# observed events");
    mg->GetYaxis()->SetTitle("limits on signal S (size of test: 0.1)");

    mg->Draw("AC");
}
Esempio n. 9
0
void exercise_3() {
  //Open the rootfile and get the workspace from the exercise_0
  TFile fIn("exercise_0.root");
  fIn.cd();
  RooWorkspace *w = (RooWorkspace*)fIn.Get("w");

  //You can set constant parameters that are known
  //If you leave them floating, the fit procedure will determine their uncertainty
  w->var("mean")->setConstant(kFALSE); //don't fix the mean, it's what we want to know the interval for!
  w->var("sigma")->setConstant(kTRUE);
  w->var("tau")->setConstant(kTRUE);
  w->var("Nsig")->setConstant(kTRUE);
  w->var("Nbkg")->setConstant(kTRUE);

  //Set the RooModelConfig and let it know what the content of the workspace is about
  ModelConfig model;
  model.SetWorkspace(*w);
  model.SetPdf("PDFtot");

  //Let the model know what is the parameter of interest
  RooRealVar* mean = w->var("mean");
  mean->setRange(120., 130.);   //this is mostly for plotting reasons
  RooArgSet poi(*mean);

  // set confidence level
  double confidenceLevel = 0.68;

  //Build the profile likelihood calculator
  ProfileLikelihoodCalculator plc; 
  plc.SetData(*(w->data("PDFtotData"))); 
  plc.SetModel(model);
  plc.SetParameters(poi);
  plc.SetConfidenceLevel(confidenceLevel);

  //Get the interval
  LikelihoodInterval* plInt = plc.GetInterval();

  //Now let's do the same for the Bayesian Calculator
  //Now we also need to specify a prior in the ModelConfig
  //To be quicker, we'll use the PDF factory facility of RooWorkspace
  //NB!! For simplicity, we are using a flat prior, but this doesn't mean it's the best choice!
  w->factory("Uniform::prior(mean)");
  model.SetPriorPdf(*w->pdf("prior"));

  //Construct the bayesian calculator
  BayesianCalculator bc(*(w->data("PDFtotData")), model);
  bc.SetConfidenceLevel(confidenceLevel);
  bc.SetParameters(poi);
  SimpleInterval* bcInt = bc.GetInterval();

  // Let's make a plot
  TCanvas dataCanvas("dataCanvas");
  dataCanvas.Divide(2,1);
  dataCanvas.cd(1);

  LikelihoodIntervalPlot plotInt((LikelihoodInterval*)plInt);
  plotInt.SetTitle("Profile Likelihood Ratio and Posterior for mH");
  plotInt.SetMaximum(3.);
  plotInt.Draw();

  dataCanvas.cd(2);
  RooPlot *bcPlot = bc.GetPosteriorPlot();
  bcPlot->Draw();

  dataCanvas.SaveAs("exercise_3.gif");

  //Now print the interval for mH for the two methods
  cout << "PLC interval is [" << plInt->LowerLimit(*mean) << ", " << 
    plInt->UpperLimit(*mean) << "]" << endl;

  cout << "Bayesian interval is [" << bcInt->LowerLimit() << ", " << 
    bcInt->UpperLimit() << "]" << endl;

}
Esempio n. 10
0
void counting( void ) {
    //
    // this function implements the interval calculation for a counting experiment
    //

    // make model
    RooWorkspace * wspace = new RooWorkspace("myWS");
    wspace -> factory("Uniform::model_pdf_1(x[0,1])");
    wspace -> factory("Uniform::model_pdf_2(x)");
    wspace -> factory("SUM::model_pdf(s[0,15]*model_pdf_1,b[1,0,2]*model_pdf_2)");
    wspace -> factory("Lognormal::likelihood_b(b,1,3)");
    wspace -> factory("PROD::model_likelihood(model_pdf, likelihood_b)");
    wspace -> factory("Uniform::prior_pdf(s)");

    // define observables
    wspace -> defineSet("observables","x");

    // define parameters of interest
    wspace -> defineSet("poi","s");

    // define nuisance parameters
    wspace -> defineSet("nuisance_parameters","b");

    // load data
    RooArgList * observables = new RooArgList( *wspace->set("observables") );
    RooDataSet * data = RooDataSet::read("counting_data_3.ascii", *observables);
    data -> SetName("data");
    wspace -> import(*data);

    // model config
    ModelConfig modelConfig("counting_model_config");
    modelConfig . SetWorkspace(*wspace);
    modelConfig . SetPdf(*wspace->pdf("model_likelihood"));
    modelConfig . SetPriorPdf(*wspace->pdf("prior_pdf"));
    modelConfig . SetParametersOfInterest(*wspace->set("poi"));
    modelConfig . SetNuisanceParameters(*wspace->set("nuisance_parameters"));
    wspace -> import(modelConfig, "counting_model_config");

    // Bayesian Calculator
    BayesianCalculator bc(*data, modelConfig);
    bc.SetName("exostBayes");
    wspace -> import(bc);

    // inspect workspace
    wspace -> Print();

    // save workspace to file
    wspace -> writeToFile("myWS.root");

    // run Bayesian calculation
    bc.SetConfidenceLevel(0.95);
    SimpleInterval* bInt = 0;
    bInt = bc.GetInterval();

    // make plots
    TCanvas * c1 = new TCanvas("c1");
    RooPlot * bplot = bc.GetPosteriorPlot();
    bplot -> Draw();
    c1 -> SaveAs("posterior_pdf.png");

    // query interval
    std::cout << "Bayesian interval on s = [" <<
              bInt->LowerLimit( ) << ", " <<
              bInt->UpperLimit( ) << "]" << std::endl;
}