Esempio n. 1
0
    void SimulatorFullyImplicitBlackoilPolymer<GridT>::
    handleAdditionalWellInflow(SimulatorTimer& timer,
                                    WellsManager& wells_manager,
                                    typename BaseType::WellState& well_state,
                                    const Wells* wells)
    {
        // compute polymer inflow
        std::unique_ptr<PolymerInflowInterface> polymer_inflow_ptr;
        if (deck_->hasKeyword("WPOLYMER")) {
            if (wells_manager.c_wells() == 0) {
                OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
            }
            polymer_inflow_ptr.reset(new PolymerInflowFromDeck(*BaseType::eclipse_state_, *wells, Opm::UgGridHelpers::numCells(BaseType::grid_), timer.currentStepNum()));
        } else {
            OPM_MESSAGE("Warning: simulating with no WPOLYMER in deck (no polymer will be injected).");
            polymer_inflow_ptr.reset(new PolymerInflowBasic(0.0*Opm::unit::day,
                                                            1.0*Opm::unit::day,
                                                            0.0));
        }
        std::vector<double> polymer_inflow_c(Opm::UgGridHelpers::numCells(BaseType::grid_));
        polymer_inflow_ptr->getInflowValues(timer.simulationTimeElapsed(),
                                            timer.simulationTimeElapsed() + timer.currentStepLength(),
                                            polymer_inflow_c);
        well_state.polymerInflow() = polymer_inflow_c;

        if (has_plyshlog_) {
            computeRepRadiusPerfLength(*BaseType::eclipse_state_, timer.currentStepNum(), BaseType::grid_, wells_rep_radius_, wells_perf_length_, wells_bore_diameter_);
        }
    }
    SimulatorReport SimulatorCompressiblePolymer::Impl::run(SimulatorTimer& timer,
                                                            PolymerBlackoilState& state,
                                                            WellState& well_state)
    {
        std::vector<double> transport_src(grid_.number_of_cells);
        std::vector<double> polymer_inflow_c(grid_.number_of_cells);

        // Initialisation.
        std::vector<double> initial_pressure;
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        std::vector<double> initial_porevol = porevol;

        // Main simulation loop.
        Opm::time::StopWatch pressure_timer;
        double ptime = 0.0;
        Opm::time::StopWatch transport_timer;
        double ttime = 0.0;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        double init_surfvol[2] = { 0.0 };
        double inplace_surfvol[2] = { 0.0 };
        double polymass = computePolymerMass(porevol, state.saturation(), state.getCellData( state.CONCENTRATION ), poly_props_.deadPoreVol());
        double polymass_adsorbed = computePolymerAdsorbed(grid_, props_, poly_props_, state, rock_comp_props_);
        double init_polymass = polymass + polymass_adsorbed;
        double tot_injected[2] = { 0.0 };
        double tot_produced[2] = { 0.0 };
        double tot_polyinj = 0.0;
        double tot_polyprod = 0.0;
        Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
        Opm::Watercut watercut;
        watercut.push(0.0, 0.0, 0.0);
        Opm::WellReport wellreport;
        std::vector<double> fractional_flows;
        std::vector<double> well_resflows_phase;
        if (wells_) {
            well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
            wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
                            state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
        }
        // Report timestep and (optionally) write state to disk.
        timer.report(std::cout);
        if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
        }

        initial_pressure = state.pressure();

        // Solve pressure equation.
        if (check_well_controls_) {
            computeFractionalFlow(props_, poly_props_, allcells_,
                                  state.pressure(), state.temperature(), state.surfacevol(), state.saturation(),
                                  state.getCellData( state.CONCENTRATION ), state.getCellData( state.CMAX ) ,
                                  fractional_flows);
            wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
        }
        bool well_control_passed = !check_well_controls_;
        int well_control_iteration = 0;
        do {
            // Run solver
            pressure_timer.start();
            psolver_.solve(timer.currentStepLength(), state, well_state);

            // Renormalize pressure if both fluids and rock are
            // incompressible, and there are no pressure
            // conditions (bcs or wells).  It is deemed sufficient
            // for now to renormalize using geometric volume
            // instead of pore volume.
            if (psolver_.singularPressure()) {
                // Compute average pressures of previous and last
                // step, and total volume.
                double av_prev_press = 0.0;
                double av_press = 0.0;
                double tot_vol = 0.0;
                const int num_cells = grid_.number_of_cells;
                for (int cell = 0; cell < num_cells; ++cell) {
                    av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
                    av_press      += state.pressure()[cell]*grid_.cell_volumes[cell];
                    tot_vol       += grid_.cell_volumes[cell];
                }
                // Renormalization constant
                const double ren_const = (av_prev_press - av_press)/tot_vol;
                for (int cell = 0; cell < num_cells; ++cell) {
                    state.pressure()[cell] += ren_const;
                }
                const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
                for (int well = 0; well < num_wells; ++well) {
                    well_state.bhp()[well] += ren_const;
                }
            }

            // Stop timer and report
            pressure_timer.stop();
            double pt = pressure_timer.secsSinceStart();
            std::cout << "Pressure solver took:  " << pt << " seconds." << std::endl;
            ptime += pt;

            // Optionally, check if well controls are satisfied.
            if (check_well_controls_) {
                Opm::computePhaseFlowRatesPerWell(*wells_,
                                                  well_state.perfRates(),
                                                  fractional_flows,
                                                  well_resflows_phase);
                std::cout << "Checking well conditions." << std::endl;
                // For testing we set surface := reservoir
                well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
                ++well_control_iteration;
                if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
                    OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
                }
                if (!well_control_passed) {
                    std::cout << "Well controls not passed, solving again." << std::endl;
                } else {
                    std::cout << "Well conditions met." << std::endl;
                }
            }
        } while (!well_control_passed);

        // Update pore volumes if rock is compressible.
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            initial_porevol = porevol;
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        }

        // Process transport sources (to include bdy terms and well flows).
        Opm::computeTransportSource(props_, wells_, well_state, transport_src);

        // Find inflow rate.
        const double current_time = timer.simulationTimeElapsed();
        double stepsize = timer.currentStepLength();
        polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);


        // Solve transport.
        transport_timer.start();
        if (num_transport_substeps_ != 1) {
            stepsize /= double(num_transport_substeps_);
            std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
        }
        double injected[2] = { 0.0 };
        double produced[2] = { 0.0 };
        double polyinj = 0.0;
        double polyprod = 0.0;
        for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
            tsolver_.solve(&state.faceflux()[0], initial_pressure,
                           state.pressure(), state.temperature(), &initial_porevol[0], &porevol[0],
                           &transport_src[0], &polymer_inflow_c[0], stepsize,
                           state.saturation(), state.surfacevol(),
                           state.getCellData( state.CONCENTRATION ), state.getCellData( state.CMAX ));
            double substep_injected[2] = { 0.0 };
            double substep_produced[2] = { 0.0 };
            double substep_polyinj = 0.0;
            double substep_polyprod = 0.0;
            Opm::computeInjectedProduced(props_, poly_props_,
                                         state,
                                         transport_src, polymer_inflow_c, stepsize,
                                         substep_injected, substep_produced,
                                         substep_polyinj, substep_polyprod);
            injected[0] += substep_injected[0];
            injected[1] += substep_injected[1];
            produced[0] += substep_produced[0];
            produced[1] += substep_produced[1];
            polyinj += substep_polyinj;
            polyprod += substep_polyprod;
            if (gravity_ != 0 && use_segregation_split_) {
                tsolver_.solveGravity(columns_, stepsize,
                                      state.saturation(), state.surfacevol(),
                                      state.getCellData( state.CONCENTRATION ), state.getCellData( state.CMAX ));
            }
        }
        transport_timer.stop();
        double tt = transport_timer.secsSinceStart();
        std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
        ttime += tt;

        // Report volume balances.
        Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
        polymass = Opm::computePolymerMass(porevol, state.saturation(), state.getCellData( state.CONCENTRATION ), poly_props_.deadPoreVol());
        polymass_adsorbed = Opm::computePolymerAdsorbed(grid_, props_, poly_props_,
                                                        state, rock_comp_props_);
        tot_injected[0] += injected[0];
        tot_injected[1] += injected[1];
        tot_produced[0] += produced[0];
        tot_produced[1] += produced[1];
        tot_polyinj += polyinj;
        tot_polyprod += polyprod;
        std::cout.precision(5);
        const int width = 18;
        std::cout << "\nMass balance:        "
            "                   water(surfvol)      oil(surfvol)       polymer(kg)\n";
        std::cout << "    In-place:                       "
                  << std::setw(width) << inplace_surfvol[0]
                  << std::setw(width) << inplace_surfvol[1]
                  << std::setw(width) << polymass << std::endl;
        std::cout << "    Adsorbed:                       "
                  << std::setw(width) << 0.0
                  << std::setw(width) << 0.0
                  << std::setw(width) << polymass_adsorbed << std::endl;
        std::cout << "    Injected:                       "
                  << std::setw(width) << injected[0]
                  << std::setw(width) << injected[1]
                  << std::setw(width) << polyinj << std::endl;
        std::cout << "    Produced:                       "
                  << std::setw(width) << produced[0]
                  << std::setw(width) << produced[1]
                  << std::setw(width) << polyprod << std::endl;
        std::cout << "    Total inj:                      "
                  << std::setw(width) << tot_injected[0]
                  << std::setw(width) << tot_injected[1]
                  << std::setw(width) << tot_polyinj << std::endl;
        std::cout << "    Total prod:                     "
                  << std::setw(width) << tot_produced[0]
                  << std::setw(width) << tot_produced[1]
                  << std::setw(width) << tot_polyprod << std::endl;
        const double balance[3] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
                                    init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1],
                                    init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed };
        std::cout << "    Initial - inplace + inj - prod: "
                  << std::setw(width) << balance[0]
                  << std::setw(width) << balance[1]
                  << std::setw(width) << balance[2]
                  << std::endl;
        std::cout << "    Relative mass error:            "
                  << std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
                  << std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
                  << std::setw(width) << balance[2]/(init_polymass + tot_polyinj)
                  << std::endl;
        std::cout.precision(8);

        watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
                      produced[0]/(produced[0] + produced[1]),
                      tot_produced[0]/tot_porevol_init);
        if (wells_) {
        wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
                        state.saturation(), timer.simulationTimeElapsed() + timer.currentStepLength(),
                        well_state.bhp(), well_state.perfRates());
        }

        if (output_) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            outputWaterCut(watercut, output_dir_);
            if (wells_) {
                outputWellReport(wellreport, output_dir_);
            }
        }

        total_timer.stop();

        SimulatorReport report;
        report.pressure_time = ptime;
        report.transport_time = ttime;
        report.total_time = total_timer.secsSinceStart();
        return report;
    }
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
    using namespace Opm;

    std::cout << "\n================    Test program for weakly compressible two-phase flow with polymer    ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<BlackoilPropertiesInterface> props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    Opm::DeckConstPtr deck;
    EclipseStateConstPtr eclipseState;
    std::unique_ptr<PolymerBlackoilState> state;
    Opm::PolymerProperties poly_props;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        ParserPtr parser(new Opm::Parser());
        Opm::ParseContext parseContext({{ ParseContext::PARSE_RANDOM_SLASH , InputError::IGNORE }});
        deck = parser->parseFile(deck_filename , parseContext);
        eclipseState.reset(new Opm::EclipseState(deck , parseContext));

        // Grid init
        grid.reset(new GridManager(deck));
        {
            const UnstructuredGrid& ug_grid = *(grid->c_grid());

            // Rock and fluid init
            props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, ug_grid));
            // check_well_controls = param.getDefault("check_well_controls", false);
            // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);

            state.reset( new PolymerBlackoilState(  UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ), 2));
            // Rock compressibility.
            rock_comp.reset(new RockCompressibility(deck, eclipseState));
            // Gravity.
            gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
            // Init state variables (saturation and pressure).
            if (param.has("init_saturation")) {
                initStateBasic(ug_grid, *props, param, gravity[2], *state);
            } else {
                initStateFromDeck(ug_grid, *props, deck, gravity[2], *state);
            }
            initBlackoilSurfvol(ug_grid, *props, *state);
            // Init polymer properties.
            poly_props.readFromDeck(deck, eclipseState);
        }
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        {
            const UnstructuredGrid& ug_grid = *(grid->c_grid());

            // Rock and fluid init.
            props.reset(new BlackoilPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));
            state.reset( new PolymerBlackoilState(  UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ) , 2));
            // Rock compressibility.
            rock_comp.reset(new RockCompressibility(param));
            // Gravity.
            gravity[2] = param.getDefault("gravity", 0.0);
            // Init state variables (saturation and pressure).
            initStateBasic(ug_grid, *props, param, gravity[2], *state);
            initBlackoilSurfvol(ug_grid, *props, *state);
            // Init Polymer state

            if (param.has("poly_init")) {
                double poly_init = param.getDefault("poly_init", 0.0);
                for (int cell = 0; cell < UgGridHelpers::numCells( ug_grid ); ++cell) {
                    double smin[2], smax[2];

                    auto& saturation = state->saturation();
                    auto& concentration = state->getCellData( state->CONCENTRATION );
                    auto& max_concentration = state->getCellData( state->CMAX );

                    props->satRange(1, &cell, smin, smax);
                    if (saturation[2*cell] > 0.5*(smin[0] + smax[0])) {
                        concentration[cell] = poly_init;
                        max_concentration[cell] = poly_init;
                    } else {
                        saturation[2*cell + 0] = 0.;
                        saturation[2*cell + 1] = 1.;
                        concentration[cell] = 0.;
                        max_concentration[cell] = 0.;
                    }
                }
            }

        }
        // Init polymer properties.
        // Setting defaults to provide a simple example case.
        double c_max = param.getDefault("c_max_limit", 5.0);
        double mix_param = param.getDefault("mix_param", 1.0);
        double rock_density = param.getDefault("rock_density", 1000.0);
        double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
        double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
        double c_max_ads = param.getDefault("c_max_ads", 1.);
        int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
        std::vector<double> c_vals_visc(2, -1e100);
        c_vals_visc[0] = 0.0;
        c_vals_visc[1] = 7.0;
        std::vector<double> visc_mult_vals(2, -1e100);
        visc_mult_vals[0] = 1.0;
        // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
        visc_mult_vals[1] = 20.0;
        std::vector<double> c_vals_ads(3, -1e100);
        c_vals_ads[0] = 0.0;
        c_vals_ads[1] = 2.0;
        c_vals_ads[2] = 8.0;
        std::vector<double> ads_vals(3, -1e100);
        ads_vals[0] = 0.0;
        ads_vals[1] = 0.0015;
        ads_vals[2] = 0.0025;
        // ads_vals[1] = 0.0;
        // ads_vals[2] = 0.0;
        std::vector<double> water_vel_vals(2, -1e100);
        water_vel_vals[0] = 0.0;
        water_vel_vals[1] = 10.0;
        std::vector<double> shear_vrf_vals(2, -1e100);
        shear_vrf_vals[0] = 1.0;
        shear_vrf_vals[1] = 1.0;
        poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
                       static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
                       c_vals_visc,  visc_mult_vals, c_vals_ads, ads_vals, water_vel_vals, shear_vrf_vals);
    }

    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    if (output) {
      std::string output_dir =
        param.getDefault("output_dir", std::string("output"));
      boost::filesystem::path fpath(output_dir);
      try {
        create_directories(fpath);
      }
      catch (...) {
        OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
      }
      param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << std::flush;

    SimulatorReport rep;
    if (!use_deck) {
        // Simple simulation without a deck.
        PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
                                          param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
                                          param.getDefault("poly_amount", poly_props.cMax()));
        WellsManager wells;
        SimulatorCompressiblePolymer simulator(param,
                                               *grid->c_grid(),
                                               *props,
                                               poly_props,
                                               rock_comp->isActive() ? rock_comp.get() : 0,
                                               wells,
                                               polymer_inflow,
                                               linsolver,
                                               grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, *state);
        rep = simulator.run(simtimer, *state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        WellState well_state;
        int step = 0;
        Opm::TimeMapPtr timeMap(new Opm::TimeMap(deck));
        SimulatorTimer simtimer;
        simtimer.init(timeMap);
        // Check for WPOLYMER presence in last report step to decide
        // polymer injection control type.
        const bool use_wpolymer = deck->hasKeyword("WPOLYMER");
        if (use_wpolymer) {
            if (param.has("poly_start_days")) {
                OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. "
                        "You seem to be trying to control it via parameter poly_start_days (etc.) as well.");
            }
        }
        for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) {
            simtimer.setCurrentStepNum(reportStepIdx);

            // Report on start of report step.
            std::cout << "\n\n--------------    Starting report step " << reportStepIdx << "    --------------"
                      << "\n                  (number of remaining steps: "
                      << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, polymer inflow controls.
            WellsManager wells(eclipseState , reportStepIdx , *grid->c_grid(), props->permeability());
            boost::scoped_ptr<PolymerInflowInterface> polymer_inflow;
            if (use_wpolymer) {
                if (wells.c_wells() == 0) {
                    OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
                }
                polymer_inflow.reset(new PolymerInflowFromDeck(eclipseState, *wells.c_wells(), props->numCells(), simtimer.currentStepNum()));
            } else {
                polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
                                                            param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
                                                            param.getDefault("poly_amount", poly_props.cMax())));
            }

            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every report step,
            // since number of wells may change etc.
            if (reportStepIdx == 0) {
                well_state.init(wells.c_wells(), *state);
            }

            // Create and run simulator.
            SimulatorCompressiblePolymer simulator(param,
                                                   *grid->c_grid(),
                                                   *props,
                                                   poly_props,
                                                   rock_comp->isActive() ? rock_comp.get() : 0,
                                                   wells,
                                                   *polymer_inflow,
                                                   linsolver,
                                                   grav);
            if (reportStepIdx == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state);

            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);
}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
    SimulatorReport SimulatorCompressibleAd::Impl::run(SimulatorTimer& timer,
                                                       BlackoilState& state,
                                                       WellState& well_state)
    {
        std::vector<double> transport_src;

        // Initialisation.
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        std::vector<double> initial_porevol = porevol;

        // Main simulation loop.
        Opm::time::StopWatch pressure_timer;
        double ptime = 0.0;
        Opm::time::StopWatch transport_timer;
        double ttime = 0.0;
        Opm::time::StopWatch step_timer;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        double init_surfvol[2] = { 0.0 };
        double inplace_surfvol[2] = { 0.0 };
        double tot_injected[2] = { 0.0 };
        double tot_produced[2] = { 0.0 };
        Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
        Opm::Watercut watercut;
        watercut.push(0.0, 0.0, 0.0);
        Opm::WellReport wellreport;
        std::vector<double> fractional_flows;
        std::vector<double> well_resflows_phase;
        if (wells_) {
            well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
            wellreport.push(props_, *wells_,
                            state.pressure(), state.surfacevol(), state.saturation(),
                            0.0, well_state.bhp(), well_state.perfRates());
        }
        std::fstream tstep_os;
        if (output_) {
            std::string filename = output_dir_ + "/step_timing.param";
            tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
        }
        for (; !timer.done(); ++timer) {
            // Report timestep and (optionally) write state to disk.
            step_timer.start();
            timer.report(std::cout);
            if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
                if (output_vtk_) {
                    outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
                }
                outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            }

            SimulatorReport sreport;

            // Solve pressure equation.
            if (check_well_controls_) {
                computeFractionalFlow(props_, allcells_,
                                      state.pressure(), state.surfacevol(), state.saturation(),
                                      fractional_flows);
                wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
            }
            bool well_control_passed = !check_well_controls_;
            int well_control_iteration = 0;
            do {
                // Run solver.
                pressure_timer.start();
                std::vector<double> initial_pressure = state.pressure();
                psolver_.solve(timer.currentStepLength(), state, well_state);

#if 0
                // Renormalize pressure if both fluids and rock are
                // incompressible, and there are no pressure
                // conditions (bcs or wells).  It is deemed sufficient
                // for now to renormalize using geometric volume
                // instead of pore volume.
                if (psolver_.singularPressure()) {
                    // Compute average pressures of previous and last
                    // step, and total volume.
                    double av_prev_press = 0.0;
                    double av_press = 0.0;
                    double tot_vol = 0.0;
                    const int num_cells = grid_.number_of_cells;
                    for (int cell = 0; cell < num_cells; ++cell) {
                        av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
                        av_press      += state.pressure()[cell]*grid_.cell_volumes[cell];
                        tot_vol       += grid_.cell_volumes[cell];
                    }
                    // Renormalization constant
                    const double ren_const = (av_prev_press - av_press)/tot_vol;
                    for (int cell = 0; cell < num_cells; ++cell) {
                        state.pressure()[cell] += ren_const;
                    }
                    const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
                    for (int well = 0; well < num_wells; ++well) {
                        well_state.bhp()[well] += ren_const;
                    }
                }
#endif

                // Stop timer and report.
                pressure_timer.stop();
                double pt = pressure_timer.secsSinceStart();
                std::cout << "Pressure solver took:  " << pt << " seconds." << std::endl;
                ptime += pt;
                sreport.pressure_time = pt;

                // Optionally, check if well controls are satisfied.
                if (check_well_controls_) {
                    Opm::computePhaseFlowRatesPerWell(*wells_,
                                                      well_state.perfRates(),
                                                      fractional_flows,
                                                      well_resflows_phase);
                    std::cout << "Checking well conditions." << std::endl;
                    // For testing we set surface := reservoir
                    well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
                    ++well_control_iteration;
                    if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
                        THROW("Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
                    }
                    if (!well_control_passed) {
                        std::cout << "Well controls not passed, solving again." << std::endl;
                    } else {
                        std::cout << "Well conditions met." << std::endl;
                    }
                }
            } while (!well_control_passed);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                initial_porevol = porevol;
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // Process transport sources from well flows.
            Opm::computeTransportSource(props_, wells_, well_state, transport_src);

            // Solve transport.
            transport_timer.start();
            double stepsize = timer.currentStepLength();
            if (num_transport_substeps_ != 1) {
                stepsize /= double(num_transport_substeps_);
                std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
            }
            double injected[2] = { 0.0 };
            double produced[2] = { 0.0 };
            for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
                tsolver_.solve(&state.faceflux()[0], &state.pressure()[0],
                               &initial_porevol[0], &porevol[0], &transport_src[0], stepsize,
                               state.saturation(), state.surfacevol());
                double substep_injected[2] = { 0.0 };
                double substep_produced[2] = { 0.0 };
                Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
                                             substep_injected, substep_produced);
                injected[0] += substep_injected[0];
                injected[1] += substep_injected[1];
                produced[0] += substep_produced[0];
                produced[1] += substep_produced[1];
                if (gravity_ != 0 && use_segregation_split_) {
                    tsolver_.solveGravity(columns_, stepsize, state.saturation(), state.surfacevol());
                }
            }
            transport_timer.stop();
            double tt = transport_timer.secsSinceStart();
            sreport.transport_time = tt;
            std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
            ttime += tt;
            // Report volume balances.
            Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
            tot_injected[0] += injected[0];
            tot_injected[1] += injected[1];
            tot_produced[0] += produced[0];
            tot_produced[1] += produced[1];
            std::cout.precision(5);
            const int width = 18;
            std::cout << "\nMass balance report.\n";
            std::cout << "    Injected surface volumes:      "
                      << std::setw(width) << injected[0]
                      << std::setw(width) << injected[1] << std::endl;
            std::cout << "    Produced surface volumes:      "
                      << std::setw(width) << produced[0]
                      << std::setw(width) << produced[1] << std::endl;
            std::cout << "    Total inj surface volumes:     "
                      << std::setw(width) << tot_injected[0]
                      << std::setw(width) << tot_injected[1] << std::endl;
            std::cout << "    Total prod surface volumes:    "
                      << std::setw(width) << tot_produced[0]
                      << std::setw(width) << tot_produced[1] << std::endl;
            const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
                                        init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
            std::cout << "    Initial - inplace + inj - prod: "
                      << std::setw(width) << balance[0]
                      << std::setw(width) << balance[1]
                      << std::endl;
            std::cout << "    Relative mass error:            "
                      << std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
                      << std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
                      << std::endl;
            std::cout.precision(8);

            watercut.push(timer.currentTime() + timer.currentStepLength(),
                          produced[0]/(produced[0] + produced[1]),
                          tot_produced[0]/tot_porevol_init);
            if (wells_) {
                wellreport.push(props_, *wells_,
                                state.pressure(), state.surfacevol(), state.saturation(),
                                timer.currentTime() + timer.currentStepLength(),
                                well_state.bhp(), well_state.perfRates());
            }
            sreport.total_time =  step_timer.secsSinceStart();
            if (output_) {
                sreport.reportParam(tstep_os);
            }
        }

        if (output_) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            outputWaterCut(watercut, output_dir_);
            if (wells_) {
                outputWellReport(wellreport, output_dir_);
            }
            tstep_os.close();
        }

        total_timer.stop();

        SimulatorReport report;
        report.pressure_time = ptime;
        report.transport_time = ttime;
        report.total_time = total_timer.secsSinceStart();
        return report;
    }
Esempio n. 5
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
    using namespace Opm;

    std::cout << "\n================    Test program for incompressible two-phase flow     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<IncompPropertiesInterface> props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    TwophaseState state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        deck.reset(new EclipseGridParser(deck_filename));
        // Grid init
        grid.reset(new GridManager(*deck));
        // Rock and fluid init
        props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
        // check_well_controls = param.getDefault("check_well_controls", false);
        // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(*deck));
        // Gravity.
        gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
        // Init state variables (saturation and pressure).
        if (param.has("init_saturation")) {
            initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        } else {
            initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
        }
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        // Rock and fluid init.
        props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(param));
        // Gravity.
        gravity[2] = param.getDefault("gravity", 0.0);
        // Init state variables (saturation and pressure).
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
    }

    // Warn if gravity but no density difference.
    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    if (use_gravity) {
        if (props->density()[0] == props->density()[1]) {
            std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
        }
    }
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        // Compute pore volumes, in order to enable specifying injection rate
        // terms of total pore volume.
        std::vector<double> porevol;
        if (rock_comp->isActive()) {
            computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
        } else {
            computePorevolume(*grid->c_grid(), props->porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            THROW("Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << "                        (number of epochs: "
              << (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;

    SimulatorReport rep;
    if (!use_deck) {
        // Simple simulation without a deck.
        WellsManager wells; // no wells.
        SimulatorIncompTwophase simulator(param,
                                          *grid->c_grid(),
                                          *props,
                                          rock_comp->isActive() ? rock_comp.get() : 0,
                                          wells,
                                          src,
                                          bcs.c_bcs(),
                                          linsolver,
                                          grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, state);
        rep = simulator.run(simtimer, state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        WellState well_state;
        int step = 0;
        SimulatorTimer simtimer;
        // Use timer for last epoch to obtain total time.
        deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
        simtimer.init(*deck);
        const double total_time = simtimer.totalTime();
        for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
            // Set epoch index.
            deck->setCurrentEpoch(epoch);

            // Update the timer.
            if (deck->hasField("TSTEP")) {
                simtimer.init(*deck);
            } else {
                if (epoch != 0) {
                    THROW("No TSTEP in deck for epoch " << epoch);
                }
                simtimer.init(param);
            }
            simtimer.setCurrentStepNum(step);
            simtimer.setTotalTime(total_time);

            // Report on start of epoch.
            std::cout << "\n\n--------------    Starting epoch " << epoch << "    --------------"
                      << "\n                  (number of steps: "
                      << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, well_state
            WellsManager wells(*deck, *grid->c_grid(), props->permeability());
            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every epoch,
            // since number of wells may change etc.
            if (epoch == 0) {
                well_state.init(wells.c_wells(), state);
            }

            // Create and run simulator.
            SimulatorIncompTwophase simulator(param,
                                              *grid->c_grid(),
                                              *props,
                                              rock_comp->isActive() ? rock_comp.get() : 0,
                                              wells,
                                              src,
                                              bcs.c_bcs(),
                                              linsolver,
                                              grav);
            if (epoch == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
            if (output) {
                epoch_rep.reportParam(epoch_os);
            }
            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);

    if (output) {
      std::string filename = output_dir + "/walltime.param";
      std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
      rep.reportParam(tot_os);
    }

}
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
    using namespace Opm;

    std::cout << "\n================    Test program for weakly compressible two-phase flow with polymer    ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<BlackoilPropertiesInterface> props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    EclipseStateConstPtr eclipseState;
    PolymerBlackoilState state;
    Opm::PolymerProperties poly_props;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        ParserPtr parser(new Opm::Parser());
        eclipseState.reset(new Opm::EclipseState(parser->parseFile(deck_filename)));

        deck.reset(new EclipseGridParser(deck_filename));
        // Grid init
        grid.reset(new GridManager(*deck));
        // Rock and fluid init
        props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid()));
        // check_well_controls = param.getDefault("check_well_controls", false);
        // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(*deck));
        // Gravity.
        gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
        // Init state variables (saturation and pressure).
        if (param.has("init_saturation")) {
            initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        } else {
            initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
        }
        initBlackoilSurfvol(*grid->c_grid(), *props, state);
        // Init polymer properties.
        poly_props.readFromDeck(*deck);
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        // Rock and fluid init.
        props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(param));
        // Gravity.
        gravity[2] = param.getDefault("gravity", 0.0);
        // Init state variables (saturation and pressure).
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        initBlackoilSurfvol(*grid->c_grid(), *props, state);
        // Init Polymer state
        if (param.has("poly_init")) {
            double poly_init = param.getDefault("poly_init", 0.0);
            for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) {
                double smin[2], smax[2];
                props->satRange(1, &cell, smin, smax);
                if (state.saturation()[2*cell] > 0.5*(smin[0] + smax[0])) {
                    state.concentration()[cell] = poly_init;
                    state.maxconcentration()[cell] = poly_init;
                } else {
                    state.saturation()[2*cell + 0] = 0.;
                    state.saturation()[2*cell + 1] = 1.;
                    state.concentration()[cell] = 0.;
                    state.maxconcentration()[cell] = 0.;
                }
            }
        }
        // Init polymer properties.
        // Setting defaults to provide a simple example case.
        double c_max = param.getDefault("c_max_limit", 5.0);
        double mix_param = param.getDefault("mix_param", 1.0);
        double rock_density = param.getDefault("rock_density", 1000.0);
        double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
        double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
        double c_max_ads = param.getDefault("c_max_ads", 1.);
        int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
        std::vector<double> c_vals_visc(2, -1e100);
        c_vals_visc[0] = 0.0;
        c_vals_visc[1] = 7.0;
        std::vector<double> visc_mult_vals(2, -1e100);
        visc_mult_vals[0] = 1.0;
        // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
        visc_mult_vals[1] = 20.0;
        std::vector<double> c_vals_ads(3, -1e100);
        c_vals_ads[0] = 0.0;
        c_vals_ads[1] = 2.0;
        c_vals_ads[2] = 8.0;
        std::vector<double> ads_vals(3, -1e100);
        ads_vals[0] = 0.0;
        ads_vals[1] = 0.0015;
        ads_vals[2] = 0.0025;
        // ads_vals[1] = 0.0;
        // ads_vals[2] = 0.0;
        poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
                       static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
                       c_vals_visc,  visc_mult_vals, c_vals_ads, ads_vals);
    }

    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        // Compute pore volumes, in order to enable specifying injection rate
        // terms of total pore volume.
        std::vector<double> porevol;
        if (rock_comp->isActive()) {
            computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
        } else {
            computePorevolume(*grid->c_grid(), props->porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    if (output) {
      std::string output_dir =
        param.getDefault("output_dir", std::string("output"));
      boost::filesystem::path fpath(output_dir);
      try {
        create_directories(fpath);
      }
      catch (...) {
        OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
      }
      param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << "                        (number of epochs: "
              << (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;

    SimulatorReport rep;
    if (!use_deck) {
        // Simple simulation without a deck.
        PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
                                          param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
                                          param.getDefault("poly_amount", poly_props.cMax()));
        WellsManager wells;
        SimulatorCompressiblePolymer simulator(param,
                                               *grid->c_grid(),
                                               *props,
                                               poly_props,
                                               rock_comp->isActive() ? rock_comp.get() : 0,
                                               wells,
                                               polymer_inflow,
                                               src,
                                               bcs.c_bcs(),
                                               linsolver,
                                               grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, state);
        rep = simulator.run(simtimer, state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        WellState well_state;
        int step = 0;
        SimulatorTimer simtimer;
        // Use timer for last epoch to obtain total time.
        deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
        simtimer.init(*deck);
        const double total_time = simtimer.totalTime();
        // Check for WPOLYMER presence in last epoch to decide
        // polymer injection control type.
        const bool use_wpolymer = deck->hasField("WPOLYMER");
        if (use_wpolymer) {
            if (param.has("poly_start_days")) {
                OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. "
                        "You seem to be trying to control it via parameter poly_start_days (etc.) as well.");
            }
        }
        for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
            // Set epoch index.
            deck->setCurrentEpoch(epoch);

            // Update the timer.
            if (deck->hasField("TSTEP")) {
                simtimer.init(*deck);
            } else {
                if (epoch != 0) {
                    OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch);
                }
                simtimer.init(param);
            }
            simtimer.setCurrentStepNum(step);
            simtimer.setTotalTime(total_time);

            // Report on start of epoch.
            std::cout << "\n\n--------------    Starting epoch " << epoch << "    --------------"
                      << "\n                  (number of steps: "
                      << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, polymer inflow controls.
            WellsManager wells(eclipseState , epoch , *grid->c_grid(), props->permeability());
            boost::scoped_ptr<PolymerInflowInterface> polymer_inflow;
            if (use_wpolymer) {
                if (wells.c_wells() == 0) {
                    OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
                }
                polymer_inflow.reset(new PolymerInflowFromDeck(*deck, *wells.c_wells(), props->numCells()));
            } else {
                polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
                                                            param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
                                                            param.getDefault("poly_amount", poly_props.cMax())));
            }

            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every epoch,
            // since number of wells may change etc.
            if (epoch == 0) {
                well_state.init(wells.c_wells(), state);
            }

            // Create and run simulator.
            SimulatorCompressiblePolymer simulator(param,
                                                   *grid->c_grid(),
                                                   *props,
                                                   poly_props,
                                                   rock_comp->isActive() ? rock_comp.get() : 0,
                                                   wells,
                                                   *polymer_inflow,
                                                   src,
                                                   bcs.c_bcs(),
                                                   linsolver,
                                                   grav);
            if (epoch == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);

            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);
}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
Esempio n. 7
0
    SimulatorReport SimulatorPolymer::Impl::run(SimulatorTimer& timer,
                                                PolymerState& state,
                                                WellState& well_state)
    {
        std::vector<double> transport_src;

        // Initialisation.
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);


        // Main simulation loop.
        Opm::time::StopWatch pressure_timer;
        double ptime = 0.0;
        Opm::time::StopWatch transport_timer;
        double ttime = 0.0;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        double init_satvol[2] = { 0.0 };
        double init_polymass = 0.0;
        double satvol[2] = { 0.0 };
        double polymass = 0.0;
        double polymass_adsorbed = 0.0;
        double injected[2] = { 0.0 };
        double produced[2] = { 0.0 };
        double polyinj = 0.0;
        double polyprod = 0.0;
        double tot_injected[2] = { 0.0 };
        double tot_produced[2] = { 0.0 };
        double tot_polyinj = 0.0;
        double tot_polyprod = 0.0;
        Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
        std::cout << "\nInitial saturations are    " << init_satvol[0]/tot_porevol_init
                  << "    " << init_satvol[1]/tot_porevol_init << std::endl;
        Opm::Watercut watercut;
        watercut.push(0.0, 0.0, 0.0);
        Opm::WellReport wellreport;
        std::vector<double> fractional_flows;
        std::vector<double> well_resflows_phase;
        if (wells_) {
            well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
            wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
        }
        for (; !timer.done(); ++timer) {
            // Report timestep and (optionally) write state to disk.
            timer.report(std::cout);
            if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
                outputState(grid_, state, timer.currentStepNum(), output_dir_);
            }

            // Solve pressure.
            do {
                pressure_timer.start();
                psolver_.solve(timer.currentStepLength(), state, well_state);
                pressure_timer.stop();
                double pt = pressure_timer.secsSinceStart();
                std::cout << "Pressure solver took:  " << pt << " seconds." << std::endl;
                ptime += pt;
            } while (false);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // Process transport sources (to include bdy terms and well flows).
            Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
                                        wells_, well_state.perfRates(), transport_src);

            // Find inflow rate.
            const double current_time = timer.currentTime();
            double stepsize = timer.currentStepLength();
            const double inflowc0 = poly_inflow_(current_time + 1e-5*stepsize);
            const double inflowc1 = poly_inflow_(current_time + (1.0 - 1e-5)*stepsize);
            if (inflowc0 != inflowc1) {
                std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
            }
            const double inflow_c = inflowc0;

            // Solve transport.
            transport_timer.start();
            if (num_transport_substeps_ != 1) {
                stepsize /= double(num_transport_substeps_);
                std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
            }
            for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
                tsolver_.solve(&state.faceflux()[0], &porevol[0], &transport_src[0], stepsize, inflow_c,
                               state.saturation(), state.concentration(), state.maxconcentration());
                Opm::computeInjectedProduced(props_, poly_props_,
                                             state.saturation(), state.concentration(), state.maxconcentration(),
                                             transport_src, timer.currentStepLength(), inflow_c,
                                             injected, produced, polyinj, polyprod);
                if (use_segregation_split_) {
                    tsolver_.solveGravity(columns_, &porevol[0], stepsize,
                                          state.saturation(), state.concentration(), state.maxconcentration());
                }
            }
            transport_timer.stop();
            double tt = transport_timer.secsSinceStart();
            std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
            ttime += tt;

            // Report volume balances.
            Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
            polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), poly_props_.deadPoreVol());
            polymass_adsorbed = Opm::computePolymerAdsorbed(props_, poly_props_, porevol, state.maxconcentration());
            tot_injected[0] += injected[0];
            tot_injected[1] += injected[1];
            tot_produced[0] += produced[0];
            tot_produced[1] += produced[1];
            tot_polyinj += polyinj;
            tot_polyprod += polyprod;
            std::cout.precision(5);
            const int width = 18;
            std::cout << "\nVolume and polymer mass balance: "
                "   water(pv)           oil(pv)       polymer(kg)\n";
            std::cout << "    Saturated volumes:     "
                      << std::setw(width) << satvol[0]/tot_porevol_init
                      << std::setw(width) << satvol[1]/tot_porevol_init
                      << std::setw(width) << polymass << std::endl;
            std::cout << "    Adsorbed volumes:      "
                      << std::setw(width) << 0.0
                      << std::setw(width) << 0.0
                      << std::setw(width) << polymass_adsorbed << std::endl;
            std::cout << "    Injected volumes:      "
                      << std::setw(width) << injected[0]/tot_porevol_init
                      << std::setw(width) << injected[1]/tot_porevol_init
                      << std::setw(width) << polyinj << std::endl;
            std::cout << "    Produced volumes:      "
                      << std::setw(width) << produced[0]/tot_porevol_init
                      << std::setw(width) << produced[1]/tot_porevol_init
                      << std::setw(width) << polyprod << std::endl;
            std::cout << "    Total inj volumes:     "
                      << std::setw(width) << tot_injected[0]/tot_porevol_init
                      << std::setw(width) << tot_injected[1]/tot_porevol_init
                      << std::setw(width) << tot_polyinj << std::endl;
            std::cout << "    Total prod volumes:    "
                      << std::setw(width) << tot_produced[0]/tot_porevol_init
                      << std::setw(width) << tot_produced[1]/tot_porevol_init
                      << std::setw(width) << tot_polyprod << std::endl;
            std::cout << "    In-place + prod - inj: "
                      << std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
                      << std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init
                      << std::setw(width) << (polymass + tot_polyprod - tot_polyinj + polymass_adsorbed) << std::endl;
            std::cout << "    Init - now - pr + inj: "
                      << std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
                      << std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
                      << std::setw(width) << (init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed)
                      << std::endl;
            std::cout.precision(8);

            watercut.push(timer.currentTime() + timer.currentStepLength(),
                          produced[0]/(produced[0] + produced[1]),
                          tot_produced[0]/tot_porevol_init);
            if (wells_) {
                wellreport.push(props_, *wells_, state.saturation(),
                                timer.currentTime() + timer.currentStepLength(),
                                well_state.bhp(), well_state.perfRates());
            }
        }

        if (output_) {
            outputState(grid_, state, timer.currentStepNum(), output_dir_);
            outputWaterCut(watercut, output_dir_);
            if (wells_) {
                outputWellReport(wellreport, output_dir_);
            }
        }

        total_timer.stop();

        SimulatorReport report;
        report.pressure_time = ptime;
        report.transport_time = ttime;
        report.total_time = total_timer.secsSinceStart();
        return report;
    }
Esempio n. 8
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
    using namespace Opm;

    std::cout << "\n================    Test program for incompressible two-phase flow     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

#if ! HAVE_SUITESPARSE_UMFPACK_H
    // This is an extra check to intercept a potentially invalid request for the
    // implicit transport solver as early as possible for the user.
    {
        const bool use_reorder = param.getDefault("use_reorder", true);
        if (!use_reorder) {
            OPM_THROW(std::runtime_error, "Cannot use implicit transport solver without UMFPACK. "
                  "Either reconfigure opm-core with SuiteSparse/UMFPACK support and recompile, "
                  "or use the reordering solver (use_reorder=true).");
        }
    }
#endif

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    EclipseStateConstPtr eclipseState;

    Opm::DeckConstPtr deck;
    std::unique_ptr<GridManager> grid;
    std::unique_ptr<IncompPropertiesInterface> props;
    std::unique_ptr<RockCompressibility> rock_comp;
    std::unique_ptr<TwophaseState> state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        ParserPtr parser(new Opm::Parser());
        ParseContext parseContext;

        std::string deck_filename = param.get<std::string>("deck_filename");
        deck = parser->parseFile(deck_filename , parseContext);
        eclipseState.reset( new EclipseState(*deck, parseContext));
        // Grid init
        grid.reset(new GridManager(*eclipseState->getInputGrid()));
        {
            const UnstructuredGrid& ug_grid = *(grid->c_grid());
            // Rock and fluid init
            props.reset(new IncompPropertiesFromDeck(deck, eclipseState, ug_grid));

            state.reset( new TwophaseState(  UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));

            // Rock compressibility.
            rock_comp.reset(new RockCompressibility(deck, eclipseState));
            // Gravity.
            gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
            // Init state variables (saturation and pressure).
            if (param.has("init_saturation")) {
                initStateBasic(ug_grid, *props, param, gravity[2], *state);
            } else {
                initStateFromDeck(ug_grid, *props, deck, gravity[2], *state);
            }
        }
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        {
            const UnstructuredGrid& ug_grid = *(grid->c_grid());

            // Rock and fluid init.
            props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));

            state.reset( new TwophaseState(  UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));
            // Rock compressibility.
            rock_comp.reset(new RockCompressibility(param));
            // Gravity.
            gravity[2] = param.getDefault("gravity", 0.0);
            // Init state variables (saturation and pressure).
            initStateBasic(ug_grid, *props, param, gravity[2], *state);
        }
    }

    // Warn if gravity but no density difference.
    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    if (use_gravity) {
        if (props->density()[0] == props->density()[1]) {
            std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
        }
    }
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        // Compute pore volumes, in order to enable specifying injection rate
        // terms of total pore volume.
        std::vector<double> porevol;
        if (rock_comp->isActive()) {
            computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol);
        } else {
            computePorevolume(*grid->c_grid(), props->porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }

    SimulatorReport rep;
    if (!use_deck) {
        std::cout << "\n\n================    Starting main simulation loop     ===============\n"
                  << "                        (number of report steps: 1)\n\n" << std::flush;
        // Simple simulation without a deck.
        WellsManager wells; // no wells.
        SimulatorIncompTwophase simulator(param,
                                          *grid->c_grid(),
                                          *props,
                                          rock_comp->isActive() ? rock_comp.get() : 0,
                                          wells,
                                          src,
                                          bcs.c_bcs(),
                                          linsolver,
                                          grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, *state);
        rep = simulator.run(simtimer, *state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        Opm::TimeMapConstPtr timeMap = eclipseState->getSchedule()->getTimeMap();

        std::cout << "\n\n================    Starting main simulation loop     ===============\n"
                  << "                        (number of report steps: "
                  << timeMap->numTimesteps() << ")\n\n" << std::flush;
        WellState well_state;
        int step = 0;
        SimulatorTimer simtimer;
        // Use timer for last epoch to obtain total time.
        simtimer.init(timeMap);
        const double total_time = simtimer.totalTime();
        // for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) {
        size_t reportStepIdx = 0; // Only handle a single, unchanging well setup.
        {
            // Update the timer.
            simtimer.setCurrentStepNum(step);
            simtimer.setTotalTime(total_time);

            // Report on start of report step.
            // std::cout << "\n\n--------------    Starting report step " << reportStepIdx << "    --------------"
            //           << "\n                  (number of time steps: "
            //           << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, well_state
            WellsManager wells(eclipseState , reportStepIdx , *grid->c_grid(), props->permeability());
            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every report step,
            // since number of wells may change etc.
            if (reportStepIdx == 0) {
                well_state.init(wells.c_wells(), *state);
            }

            // Create and run simulator.
            SimulatorIncompTwophase simulator(param,
                                              *grid->c_grid(),
                                              *props,
                                              rock_comp->isActive() ? rock_comp.get() : 0,
                                              wells,
                                              src,
                                              bcs.c_bcs(),
                                              linsolver,
                                              grav);
            if (reportStepIdx == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state);
            if (output) {
                epoch_rep.reportParam(epoch_os);
            }
            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);

    if (output) {
      std::string filename = output_dir + "/walltime.param";
      std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
      rep.reportParam(tot_os);
    }

}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
Esempio n. 9
0
    SimulatorReport SimulatorIncompTwophase::Impl::run(SimulatorTimer& timer,
                                                       TwophaseState& state,
                                                       WellState& well_state)
    {
        std::vector<double> transport_src;

        // Initialisation.
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        std::vector<double> initial_porevol = porevol;

        // Main simulation loop.
        Opm::time::StopWatch pressure_timer;
        double ptime = 0.0;
        Opm::time::StopWatch transport_timer;
        double ttime = 0.0;
        Opm::time::StopWatch callback_timer;
        double time_in_callbacks = 0.0;
        Opm::time::StopWatch step_timer;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        double init_satvol[2] = { 0.0 };
        double satvol[2] = { 0.0 };
        double tot_injected[2] = { 0.0 };
        double tot_produced[2] = { 0.0 };
        Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
        *log_ << "\nInitial saturations are    " << init_satvol[0]/tot_porevol_init
              << "    " << init_satvol[1]/tot_porevol_init << std::endl;
        Opm::Watercut watercut;
        watercut.push(0.0, 0.0, 0.0);
        Opm::WellReport wellreport;
        std::vector<double> fractional_flows;
        std::vector<double> well_resflows_phase;
        if (wells_) {
            well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
            wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
        }
        std::fstream tstep_os;
        if (output_) {
            std::string filename = output_dir_ + "/step_timing.param";
            tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
        }
        while (!timer.done()) {
            // Report timestep and (optionally) write state to disk.
            step_timer.start();
            timer.report(*log_);
            if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
                if (output_vtk_) {
                    outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
                }
                outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
                if (use_reorder_) {
                    // This use of dynamic_cast is not ideal, but should be safe.
                    outputVectorMatlab(std::string("reorder_it"),
                                       dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
                                       timer.currentStepNum(), output_dir_);
                }
            }

            SimulatorReport sreport;

            // Solve pressure equation.
            if (check_well_controls_) {
                computeFractionalFlow(props_, allcells_, state.saturation(), fractional_flows);
                wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
            }
            bool well_control_passed = !check_well_controls_;
            int well_control_iteration = 0;
            do {
                // Run solver.
                pressure_timer.start();
                std::vector<double> initial_pressure = state.pressure();
                psolver_.solve(timer.currentStepLength(), state, well_state);

                // Renormalize pressure if rock is incompressible, and
                // there are no pressure conditions (bcs or wells).
                // It is deemed sufficient for now to renormalize
                // using geometric volume instead of pore volume.
                if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
                    && allNeumannBCs(bcs_) && allRateWells(wells_)) {
                    // Compute average pressures of previous and last
                    // step, and total volume.
                    double av_prev_press = 0.0;
                    double av_press = 0.0;
                    double tot_vol = 0.0;
                    const int num_cells = grid_.number_of_cells;
                    for (int cell = 0; cell < num_cells; ++cell) {
                        av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
                        av_press      += state.pressure()[cell]*grid_.cell_volumes[cell];
                        tot_vol       += grid_.cell_volumes[cell];
                    }
                    // Renormalization constant
                    const double ren_const = (av_prev_press - av_press)/tot_vol;
                    for (int cell = 0; cell < num_cells; ++cell) {
                        state.pressure()[cell] += ren_const;
                    }
                    const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
                    for (int well = 0; well < num_wells; ++well) {
                        well_state.bhp()[well] += ren_const;
                    }
                }

                // Stop timer and report.
                pressure_timer.stop();
                double pt = pressure_timer.secsSinceStart();
                *log_ << "Pressure solver took:  " << pt << " seconds." << std::endl;
                ptime += pt;
                sreport.pressure_time = pt;

                // Optionally, check if well controls are satisfied.
                if (check_well_controls_) {
                    Opm::computePhaseFlowRatesPerWell(*wells_,
                                                      well_state.perfRates(),
                                                      fractional_flows,
                                                      well_resflows_phase);
                    *log_ << "Checking well conditions." << std::endl;
                    // For testing we set surface := reservoir
                    well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
                    ++well_control_iteration;
                    if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
                        OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
                    }
                    if (!well_control_passed) {
                        *log_ << "Well controls not passed, solving again." << std::endl;
                    } else {
                        *log_ << "Well conditions met." << std::endl;
                    }
                }
            } while (!well_control_passed);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                initial_porevol = porevol;
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // Process transport sources (to include bdy terms and well flows).
            Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
                                        wells_, well_state.perfRates(), transport_src);

            // Solve transport.
            transport_timer.start();
            double stepsize = timer.currentStepLength();
            if (num_transport_substeps_ != 1) {
                stepsize /= double(num_transport_substeps_);
                *log_ << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
            }
            double injected[2] = { 0.0 };
            double produced[2] = { 0.0 };
            for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
                tsolver_->solve(&initial_porevol[0], &transport_src[0], stepsize, state);

                double substep_injected[2] = { 0.0 };
                double substep_produced[2] = { 0.0 };
                Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
                                             substep_injected, substep_produced);
                injected[0] += substep_injected[0];
                injected[1] += substep_injected[1];
                produced[0] += substep_produced[0];
                produced[1] += substep_produced[1];
                if (use_reorder_ && use_segregation_split_) {
                    // Again, unfortunate but safe use of dynamic_cast.
                    // Possible solution: refactor gravity solver to its own class.
                    dynamic_cast<TransportSolverTwophaseReorder&>(*tsolver_)
                        .solveGravity(&initial_porevol[0], stepsize, state);
                }
                watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
                              produced[0]/(produced[0] + produced[1]),
                              tot_produced[0]/tot_porevol_init);
                if (wells_) {
                    wellreport.push(props_, *wells_, state.saturation(),
                                    timer.simulationTimeElapsed() + timer.currentStepLength(),
                                    well_state.bhp(), well_state.perfRates());
                }
            }
            transport_timer.stop();
            double tt = transport_timer.secsSinceStart();
            sreport.transport_time = tt;
            *log_ << "Transport solver took: " << tt << " seconds." << std::endl;
            ttime += tt;
            // Report volume balances.
            Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
            tot_injected[0] += injected[0];
            tot_injected[1] += injected[1];
            tot_produced[0] += produced[0];
            tot_produced[1] += produced[1];
            reportVolumes(*log_, satvol, tot_porevol_init,
                          tot_injected, tot_produced,
                          injected, produced,
                          init_satvol);
            sreport.total_time =  step_timer.secsSinceStart();
            if (output_) {
                sreport.reportParam(tstep_os);
            }

            // advance the timer to the end of the timestep *before* notifying
            // the client that the timestep is done
            ++timer;

            // notify all clients that we are done with the timestep
            callback_timer.start ();
            timestep_completed_.signal ();
            callback_timer.stop ();
            time_in_callbacks += callback_timer.secsSinceStart ();
        }

        if (output_) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            if (use_reorder_) {
                // This use of dynamic_cast is not ideal, but should be safe.
                outputVectorMatlab(std::string("reorder_it"),
                                   dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
                                   timer.currentStepNum(), output_dir_);
                }
            outputWaterCut(watercut, output_dir_);
            if (wells_) {
                outputWellReport(wellreport, output_dir_);
            }
            tstep_os.close();
        }

        total_timer.stop();

        SimulatorReport report;
        report.pressure_time = ptime;
        report.transport_time = ttime;
        report.total_time = total_timer.secsSinceStart() - time_in_callbacks;
        return report;
    }
    SimulatorReport SimulatorFullyImplicitCompressiblePolymer::Impl::run(SimulatorTimer& timer,
                                                                         PolymerBlackoilState& state)
    {
        WellStateFullyImplicitBlackoil prev_well_state;
        // Initialisation.
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        std::vector<double> initial_porevol = porevol;

        std::vector<double> polymer_inflow_c(grid_.number_of_cells);
        // Main simulation loop.
        Opm::time::StopWatch solver_timer;
        double stime = 0.0;
        Opm::time::StopWatch step_timer;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        std::string tstep_filename = output_dir_ + "/step_timing.txt";
        std::ofstream tstep_os(tstep_filename.c_str());

        //Main simulation loop.
        while (!timer.done()) {
#if 0
            double tot_injected[2] = { 0.0 };
            double tot_produced[2] = { 0.0 };
            Opm::Watercut watercut;
            watercut.push(0.0, 0.0, 0.0);
            std::vector<double> fractional_flows;
            std::vector<double> well_resflows_phase;
            if (wells_) {
                well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
            }
            std::fstream tstep_os;
            if (output_) {
                std::string filename = output_dir_ + "/step_timing.param";
                tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
            }
#endif
            // Report timestep and (optionally) write state to disk.

            step_timer.start();
            timer.report(std::cout);

            WellsManager wells_manager(eclipse_state_,
                                       timer.currentStepNum(),
                                       Opm::UgGridHelpers::numCells(grid_),
                                       Opm::UgGridHelpers::globalCell(grid_),
                                       Opm::UgGridHelpers::cartDims(grid_),
                                       Opm::UgGridHelpers::dimensions(grid_),
                                       Opm::UgGridHelpers::cell2Faces(grid_),
                                       Opm::UgGridHelpers::beginFaceCentroids(grid_),
                                       props_.permeability());
            const Wells* wells = wells_manager.c_wells();
            WellStateFullyImplicitBlackoil well_state;
            well_state.init(wells, state.blackoilState(), prev_well_state);
            //Compute polymer inflow.
            std::unique_ptr<PolymerInflowInterface> polymer_inflow_ptr;
            if (deck_->hasKeyword("WPOLYMER")) {
                if (wells_manager.c_wells() == 0) {
                    OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
                }
                polymer_inflow_ptr.reset(new PolymerInflowFromDeck(deck_, eclipse_state_, *wells, Opm::UgGridHelpers::numCells(grid_), timer.currentStepNum()));
            } else {
                polymer_inflow_ptr.reset(new PolymerInflowBasic(0.0*Opm::unit::day,
                                                                1.0*Opm::unit::day,
                                                                0.0));
            }
            std::vector<double> polymer_inflow_c(Opm::UgGridHelpers::numCells(grid_));
            polymer_inflow_ptr->getInflowValues(timer.simulationTimeElapsed(),
                                                timer.simulationTimeElapsed() + timer.currentStepLength(),
                                                polymer_inflow_c);

            if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
                if (output_vtk_) {
                    outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
                }
                outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            }
            if (output_) {
                if (timer.currentStepNum() == 0) {
                    output_writer_.writeInit(timer);
                }
                output_writer_.writeTimeStep(timer, state.blackoilState(), well_state);
            }
            // Run solver.
            solver_timer.start();
            FullyImplicitCompressiblePolymerSolver solver(grid_, props_, geo_, rock_comp_props_, polymer_props_, *wells_manager.c_wells(), linsolver_);
            solver.step(timer.currentStepLength(), state, well_state, polymer_inflow_c);
            // Stop timer and report.
            solver_timer.stop();
            const double st = solver_timer.secsSinceStart();
            std::cout << "Fully implicit solver took:  " << st << " seconds." << std::endl;

            stime += st;
            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                initial_porevol = porevol;
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }
/*
            double injected[2] = { 0.0 };
            double produced[2] = { 0.0 };
    		double polyinj = 0;
    		double polyprod = 0;
            Opm::computeInjectedProduced(props_, polymer_props_,
                                         state,
                                         transport_src, polymer_inflow_c, timer.currentStepLength(),
                                         injected, produced,
                                         polyinj, polyprod);
            tot_injected[0] += injected[0];
            tot_injected[1] += injected[1];
            tot_produced[0] += produced[0];
            tot_produced[1] += produced[1];
            watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
                          	  produced[0]/(produced[0] + produced[1]),
                          	  tot_produced[0]/tot_porevol_init);
            std::cout.precision(5);
            const int width = 18;
            std::cout << "\nMass balance report.\n";
            std::cout << "    Injected reservoir volumes:      "
                      << std::setw(width) << injected[0]
                      << std::setw(width) << injected[1] << std::endl;
            std::cout << "    Produced reservoir volumes:      "
                      << std::setw(width) << produced[0]
                      << std::setw(width) << produced[1] << std::endl;
            std::cout << "    Total inj reservoir volumes:     "
                      << std::setw(width) << tot_injected[0]
                      << std::setw(width) << tot_injected[1] << std::endl;
            std::cout << "    Total prod reservoir volumes:    "
                      << std::setw(width) << tot_produced[0]
                      << std::setw(width) << tot_produced[1] << std::endl;
*/
            if (output_) {
                SimulatorReport step_report;
                step_report.pressure_time = st;
                step_report.total_time =  step_timer.secsSinceStart();
                step_report.reportParam(tstep_os);
            }
            ++timer;
            prev_well_state = well_state;
        }
        // Write final simulation state.
        if (output_) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            output_writer_.writeTimeStep(timer, state.blackoilState(), prev_well_state);
        }

        total_timer.stop();
        SimulatorReport report;
        report.pressure_time = stime;
        report.transport_time = 0.0;
        report.total_time = total_timer.secsSinceStart();
        return report;
    }
    SimulatorReport SimulatorFullyImplicitBlackoil::Impl::run(SimulatorTimer& timer,
                                                              BlackoilState& state,
                                                              WellState& well_state)
    {
        // Initialisation.
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        // const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        std::vector<double> initial_porevol = porevol;

        // Main simulation loop.
        Opm::time::StopWatch solver_timer;
        double stime = 0.0;
        Opm::time::StopWatch step_timer;
        Opm::time::StopWatch total_timer;
        total_timer.start();
#if 0
        // These must be changed for three-phase.
        double init_surfvol[2] = { 0.0 };
        double inplace_surfvol[2] = { 0.0 };
        double tot_injected[2] = { 0.0 };
        double tot_produced[2] = { 0.0 };
        Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
        Opm::Watercut watercut;
        watercut.push(0.0, 0.0, 0.0);
        Opm::WellReport wellreport;
#endif
        std::vector<double> fractional_flows;
        std::vector<double> well_resflows_phase;
        if (wells_) {
            well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
#if 0
            wellreport.push(props_, *wells_,
                            state.pressure(), state.surfacevol(), state.saturation(),
                            0.0, well_state.bhp(), well_state.perfRates());
#endif
        }
        std::fstream tstep_os;
        if (output_) {
            std::string filename = output_dir_ + "/step_timing.param";
            tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
        }
        for (; !timer.done(); ++timer) {
            // Report timestep and (optionally) write state to disk.
            step_timer.start();
            timer.report(std::cout);
            if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
                if (output_vtk_) {
                    outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
                }
                outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
                outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);

            }

            SimulatorReport sreport;

            // Solve pressure equation.
            // if (check_well_controls_) {
            //     computeFractionalFlow(props_, allcells_,
            //                           state.pressure(), state.surfacevol(), state.saturation(),
            //                           fractional_flows);
            //     wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
            // }
            bool well_control_passed = !check_well_controls_;
            int well_control_iteration = 0;
            do {
                // Run solver.
                solver_timer.start();
                std::vector<double> initial_pressure = state.pressure();
                solver_.step(timer.currentStepLength(), state, well_state);

                // Stop timer and report.
                solver_timer.stop();
                const double st = solver_timer.secsSinceStart();
                std::cout << "Fully implicit solver took:  " << st << " seconds." << std::endl;
                stime += st;
                sreport.pressure_time = st;

                // Optionally, check if well controls are satisfied.
                if (check_well_controls_) {
                    Opm::computePhaseFlowRatesPerWell(*wells_,
                                                      well_state.perfRates(),
                                                      fractional_flows,
                                                      well_resflows_phase);
                    std::cout << "Checking well conditions." << std::endl;
                    // For testing we set surface := reservoir
                    well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
                    ++well_control_iteration;
                    if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
                        OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
                    }
                    if (!well_control_passed) {
                        std::cout << "Well controls not passed, solving again." << std::endl;
                    } else {
                        std::cout << "Well conditions met." << std::endl;
                    }
                }
            } while (!well_control_passed);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                initial_porevol = porevol;
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // The reports below are geared towards two phases only.
#if 0
            // Report mass balances.
            double injected[2] = { 0.0 };
            double produced[2] = { 0.0 };
            Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
                                         injected, produced);
            Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
            tot_injected[0] += injected[0];
            tot_injected[1] += injected[1];
            tot_produced[0] += produced[0];
            tot_produced[1] += produced[1];
            std::cout.precision(5);
            const int width = 18;
            std::cout << "\nMass balance report.\n";
            std::cout << "    Injected surface volumes:      "
                      << std::setw(width) << injected[0]
                      << std::setw(width) << injected[1] << std::endl;
            std::cout << "    Produced surface volumes:      "
                      << std::setw(width) << produced[0]
                      << std::setw(width) << produced[1] << std::endl;
            std::cout << "    Total inj surface volumes:     "
                      << std::setw(width) << tot_injected[0]
                      << std::setw(width) << tot_injected[1] << std::endl;
            std::cout << "    Total prod surface volumes:    "
                      << std::setw(width) << tot_produced[0]
                      << std::setw(width) << tot_produced[1] << std::endl;
            const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
                                        init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
            std::cout << "    Initial - inplace + inj - prod: "
                      << std::setw(width) << balance[0]
                      << std::setw(width) << balance[1]
                      << std::endl;
            std::cout << "    Relative mass error:            "
                      << std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
                      << std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
                      << std::endl;
            std::cout.precision(8);

            // Make well reports.
            watercut.push(timer.currentTime() + timer.currentStepLength(),
                          produced[0]/(produced[0] + produced[1]),
                          tot_produced[0]/tot_porevol_init);
            if (wells_) {
                wellreport.push(props_, *wells_,
                                state.pressure(), state.surfacevol(), state.saturation(),
                                timer.currentTime() + timer.currentStepLength(),
                                well_state.bhp(), well_state.perfRates());
            }
#endif
            sreport.total_time =  step_timer.secsSinceStart();
            if (output_) {
                sreport.reportParam(tstep_os);
            }
        }

        if (output_) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
#if 0
            outputWaterCut(watercut, output_dir_);
            if (wells_) {
                outputWellReport(wellreport, output_dir_);
            }
#endif
            tstep_os.close();
        }

        total_timer.stop();

        SimulatorReport report;
        report.pressure_time = stime;
        report.transport_time = 0.0;
        report.total_time = total_timer.secsSinceStart();
        return report;
    }
Esempio n. 12
0
    SimulatorReport SimulatorBase<Implementation>::run(SimulatorTimer& timer,
                                                       ReservoirState& state)
    {
        WellState prev_well_state;

        // Create timers and file for writing timing info.
        Opm::time::StopWatch solver_timer;
        double stime = 0.0;
        Opm::time::StopWatch step_timer;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
        std::ofstream tstep_os(tstep_filename.c_str());

        // adaptive time stepping
        std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
        if( param_.getDefault("timestep.adaptive", true ) )
        {
            adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, solver_.parallelInformation() ) );
        }

        // init output writer
        output_writer_.writeInit( timer );

        std::string restorefilename = param_.getDefault("restorefile", std::string("") );
        if( ! restorefilename.empty() )
        {
            // -1 means that we'll take the last report step that was written
            const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
            output_writer_.restore( timer, state, prev_well_state, restorefilename, desiredRestoreStep );
        }

        unsigned int totalNewtonIterations = 0;
        unsigned int totalLinearIterations = 0;

        // Main simulation loop.
        while (!timer.done()) {
            // Report timestep.
            step_timer.start();
            if ( terminal_output_ )
            {
                timer.report(std::cout);
            }

            // Create wells and well state.
            WellsManager wells_manager(eclipse_state_,
                                       timer.currentStepNum(),
                                       Opm::UgGridHelpers::numCells(grid_),
                                       Opm::UgGridHelpers::globalCell(grid_),
                                       Opm::UgGridHelpers::cartDims(grid_),
                                       Opm::UgGridHelpers::dimensions(grid_),
                                       Opm::UgGridHelpers::cell2Faces(grid_),
                                       Opm::UgGridHelpers::beginFaceCentroids(grid_),
                                       props_.permeability(),
                                       is_parallel_run_);
            const Wells* wells = wells_manager.c_wells();
            WellState well_state;
            well_state.init(wells, state, prev_well_state);

            // give the polymer and surfactant simulators the chance to do their stuff
            asImpl().handleAdditionalWellInflow(timer, wells_manager, well_state, wells);

            // write simulation state at the report stage
            output_writer_.writeTimeStep( timer, state, well_state );

            // Max oil saturation (for VPPARS), hysteresis update.
            props_.updateSatOilMax(state.saturation());
            props_.updateSatHyst(state.saturation(), allcells_);

            // Compute reservoir volumes for RESV controls.
            asImpl().computeRESV(timer.currentStepNum(), wells, state, well_state);

            // Run a multiple steps of the solver depending on the time step control.
            solver_timer.start();

            auto solver = asImpl().createSolver(wells);

            // If sub stepping is enabled allow the solver to sub cycle
            // in case the report steps are too large for the solver to converge
            //
            // \Note: The report steps are met in any case
            // \Note: The sub stepping will require a copy of the state variables
            if( adaptiveTimeStepping ) {
                adaptiveTimeStepping->step( timer, *solver, state, well_state,  output_writer_ );
            }
            else {
                // solve for complete report step
                solver->step(timer.currentStepLength(), state, well_state);
            }

            // take time that was used to solve system for this reportStep
            solver_timer.stop();

            // accumulate the number of Newton and Linear Iterations
            totalNewtonIterations += solver->newtonIterations();
            totalLinearIterations += solver->linearIterations();

            // Report timing.
            const double st = solver_timer.secsSinceStart();

            if ( terminal_output_ )
            {
                std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
            }

            stime += st;
            if ( output_writer_.output() ) {
                SimulatorReport step_report;
                step_report.pressure_time = st;
                step_report.total_time =  step_timer.secsSinceStart();
                step_report.reportParam(tstep_os);
            }

            // Increment timer, remember well state.
            ++timer;
            prev_well_state = well_state;
        }

        // Write final simulation state.
        output_writer_.writeTimeStep( timer, state, prev_well_state );

        // Stop timer and create timing report
        total_timer.stop();
        SimulatorReport report;
        report.pressure_time = stime;
        report.transport_time = 0.0;
        report.total_time = total_timer.secsSinceStart();
        report.total_newton_iterations = totalNewtonIterations;
        report.total_linear_iterations = totalLinearIterations;
        return report;
    }
Esempio n. 13
0
    SimulatorReport SimulatorBase<Implementation>::run(SimulatorTimer& timer,
                                                       ReservoirState& state)
    {
        WellState prev_well_state;


		if (output_writer_.isRestart()) {
			// This is a restart, populate WellState and ReservoirState state objects from restart file
			output_writer_.initFromRestartFile(props_.phaseUsage(), props_.permeability(), grid_, state, prev_well_state);
		}

        // Create timers and file for writing timing info.
        Opm::time::StopWatch solver_timer;
        double stime = 0.0;
        Opm::time::StopWatch step_timer;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
        std::ofstream tstep_os(tstep_filename.c_str());

        const auto& schedule = eclipse_state_->getSchedule();
        const auto& events = schedule->getEvents();

        // adaptive time stepping
        std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
        if( param_.getDefault("timestep.adaptive", true ) )
        {
            adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
        }

        // init output writer
        output_writer_.writeInit( timer );

        std::string restorefilename = param_.getDefault("restorefile", std::string("") );
        if( ! restorefilename.empty() )
        {
            // -1 means that we'll take the last report step that was written
            const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
            output_writer_.restore( timer, state, prev_well_state, restorefilename, desiredRestoreStep );
        }

        unsigned int totalNonlinearIterations = 0;
        unsigned int totalLinearIterations = 0;
        bool is_well_potentials_computed = param_.getDefault("compute_well_potentials", false );
        std::vector<double> well_potentials;

        // Main simulation loop.
        while (!timer.done()) {
            // Report timestep.
            step_timer.start();
            if ( terminal_output_ )
            {
                timer.report(std::cout);
            }

            // Create wells and well state.
            WellsManager wells_manager(eclipse_state_,
                                       timer.currentStepNum(),
                                       Opm::UgGridHelpers::numCells(grid_),
                                       Opm::UgGridHelpers::globalCell(grid_),
                                       Opm::UgGridHelpers::cartDims(grid_),
                                       Opm::UgGridHelpers::dimensions(grid_),
                                       Opm::UgGridHelpers::cell2Faces(grid_),
                                       Opm::UgGridHelpers::beginFaceCentroids(grid_),
                                       props_.permeability(),
                                       is_parallel_run_,
                                       well_potentials);
            const Wells* wells = wells_manager.c_wells();
            WellState well_state;
            well_state.init(wells, state, prev_well_state);

            // give the polymer and surfactant simulators the chance to do their stuff
            asImpl().handleAdditionalWellInflow(timer, wells_manager, well_state, wells);

            // write simulation state at the report stage
            output_writer_.writeTimeStep( timer, state, well_state );


            // Max oil saturation (for VPPARS), hysteresis update.
            props_.updateSatOilMax(state.saturation());
            props_.updateSatHyst(state.saturation(), allcells_);

            // Compute reservoir volumes for RESV controls.
            asImpl().computeRESV(timer.currentStepNum(), wells, state, well_state);

            // Run a multiple steps of the solver depending on the time step control.
            solver_timer.start();

            auto solver = asImpl().createSolver(wells);

            // If sub stepping is enabled allow the solver to sub cycle
            // in case the report steps are too large for the solver to converge
            //
            // \Note: The report steps are met in any case
            // \Note: The sub stepping will require a copy of the state variables
            if( adaptiveTimeStepping ) {
                adaptiveTimeStepping->step( timer, *solver, state, well_state,  output_writer_ );
            }
            else {
                // solve for complete report step
                solver->step(timer.currentStepLength(), state, well_state);
            }

            // update the derived geology (transmissibilities, pore volumes, etc) if the
            // has geology changed for the next report step
            const int nextTimeStepIdx = timer.currentStepNum() + 1;
            if (nextTimeStepIdx < timer.numSteps()
                && events.hasEvent(ScheduleEvents::GEO_MODIFIER, nextTimeStepIdx)) {
                // bring the contents of the keywords to the current state of the SCHEDULE
                // section
                //
                // TODO (?): handle the parallel case (maybe this works out of the box)
                DeckConstPtr miniDeck = schedule->getModifierDeck(nextTimeStepIdx);
                eclipse_state_->applyModifierDeck(miniDeck);
                geo_.update(grid_, props_, eclipse_state_, gravity_);
            }

            // take time that was used to solve system for this reportStep
            solver_timer.stop();

            // accumulate the number of nonlinear and linear Iterations
            totalNonlinearIterations += solver->nonlinearIterations();
            totalLinearIterations += solver->linearIterations();

            // Report timing.
            const double st = solver_timer.secsSinceStart();

            // accumulate total time
            stime += st;

            if ( terminal_output_ )
            {
                std::cout << "Fully implicit solver took: " << st << " seconds. Total solver time taken: " << stime << " seconds." << std::endl;
            }

            if ( output_writer_.output() ) {
                SimulatorReport step_report;
                step_report.pressure_time = st;
                step_report.total_time =  step_timer.secsSinceStart();
                step_report.reportParam(tstep_os);
            }

            // Increment timer, remember well state.
            ++timer;
            prev_well_state = well_state;
            // The well potentials are only computed if they are needed
            // For now thay are only used to determine default guide rates for group controlled wells
            if ( is_well_potentials_computed ) {
                asImpl().computeWellPotentials(wells, well_state, well_potentials);
            }

        }
        // Write final simulation state.
        output_writer_.writeTimeStep( timer, state, prev_well_state );

        // Stop timer and create timing report
        total_timer.stop();
        SimulatorReport report;
        report.pressure_time = stime;
        report.transport_time = 0.0;
        report.total_time = total_timer.secsSinceStart();
        report.total_newton_iterations = totalNonlinearIterations;
        report.total_linear_iterations = totalLinearIterations;
        return report;
    }
Esempio n. 14
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
    using namespace Opm;

    std::cout << "\n================    Test program for fully implicit three-phase black-oil flow     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    if (!use_deck) {
        OPM_THROW(std::runtime_error, "This program must be run with an input deck. "
                  "Specify the deck with deck_filename=deckname.data (for example).");
    }
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<BlackoilPropertiesInterface> props;
    boost::scoped_ptr<BlackoilPropsAdInterface> new_props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    BlackoilState state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    std::string deck_filename = param.get<std::string>("deck_filename");
    deck.reset(new EclipseGridParser(deck_filename));
    // Grid init
    grid.reset(new GridManager(*deck));

    // use the capitalized part of the deck's filename between the
    // last '/' and the last '.' character as base name.
    std::string baseName = deck_filename;
    auto charPos = baseName.rfind('/');
    if (charPos != std::string::npos)
        baseName = baseName.substr(charPos + 1);
    charPos = baseName.rfind('.');
    if (charPos != std::string::npos)
        baseName = baseName.substr(0, charPos);
    baseName = boost::to_upper_copy(baseName);

    Opm::EclipseWriter outputWriter(param, share_obj(*deck), share_obj(*grid->c_grid()));
    // Rock and fluid init
    props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid(), param));
    new_props.reset(new BlackoilPropsAdFromDeck(*deck, *grid->c_grid()));
    // check_well_controls = param.getDefault("check_well_controls", false);
    // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
    // Rock compressibility.
    rock_comp.reset(new RockCompressibility(*deck));
    // Gravity.
    gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
    // Init state variables (saturation and pressure).
    if (param.has("init_saturation")) {
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        initBlackoilSurfvol(*grid->c_grid(), *props, state);
        enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour };
        const PhaseUsage pu = props->phaseUsage();
        if (pu.phase_used[Oil] && pu.phase_used[Gas]) {
            const int np = props->numPhases();
            const int nc = grid->c_grid()->number_of_cells;
            for (int c = 0; c < nc; ++c) {
                state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]]
                    / state.surfacevol()[c*np + pu.phase_pos[Oil]];
            }
        }
    } else {
        initBlackoilStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
    }

    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << "                        (number of epochs: "
              << (deck->numberOfEpochs()) << ")\n\n" << std::flush;

    SimulatorReport rep;
    // With a deck, we may have more epochs etc.
    WellState well_state;
    int step = 0;
    SimulatorTimer simtimer;
    // Use timer for last epoch to obtain total time.
    deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
    simtimer.init(*deck);
    const double total_time = simtimer.totalTime();
    for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
        // Set epoch index.
        deck->setCurrentEpoch(epoch);

        // Update the timer.
        if (deck->hasField("TSTEP")) {
            simtimer.init(*deck);
        } else {
            if (epoch != 0) {
                OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch);
            }
            simtimer.init(param);
        }
        simtimer.setCurrentStepNum(step);
        simtimer.setTotalTime(total_time);

        // Report on start of epoch.
        std::cout << "\n\n--------------    Starting epoch " << epoch << "    --------------"
                  << "\n                  (number of steps: "
                  << simtimer.numSteps() - step << ")\n\n" << std::flush;

        // Create new wells, well_state
        WellsManager wells(*deck, *grid->c_grid(), props->permeability());
        // @@@ HACK: we should really make a new well state and
        // properly transfer old well state to it every epoch,
        // since number of wells may change etc.
        if (epoch == 0) {
            well_state.init(wells.c_wells(), state);
        }

        // Create and run simulator.
        SimulatorFullyImplicitBlackoil simulator(param,
                                                 *grid->c_grid(),
                                                 *new_props,
                                                 rock_comp->isActive() ? rock_comp.get() : 0,
                                                 wells,
                                                 linsolver,
                                                 grav,
                                                 outputWriter);
        if (epoch == 0) {
            warnIfUnusedParams(param);
        }
        SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
        if (output) {
            epoch_rep.reportParam(epoch_os);
        }
        // Update total timing report and remember step number.
        rep += epoch_rep;
        step = simtimer.currentStepNum();
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);

    if (output) {
        std::string filename = output_dir + "/walltime.param";
        std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
        rep.reportParam(tot_os);
    }

}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}