Esempio n. 1
0
int SkIntersections::computePoints(const SkDLine& line, int used) {
    fPt[0] = line.xyAtT(fT[0][0]);
    if ((fUsed = used) == 2) {
        fPt[1] = line.xyAtT(fT[0][1]);
    }
    return fUsed;
}
static void testLineIntersect(skiatest::Reporter* reporter, const SkDQuad& quad,
                              const SkDLine& line, const double x, const double y) {
    char pathStr[1024];
    sk_bzero(pathStr, sizeof(pathStr));
    char* str = pathStr;
    str += sprintf(str, "    path.moveTo(%1.9g, %1.9g);\n", quad[0].fX, quad[0].fY);
    str += sprintf(str, "    path.quadTo(%1.9g, %1.9g, %1.9g, %1.9g);\n", quad[1].fX,
            quad[1].fY, quad[2].fX, quad[2].fY);
    str += sprintf(str, "    path.moveTo(%1.9g, %1.9g);\n", line[0].fX, line[0].fY);
    str += sprintf(str, "    path.lineTo(%1.9g, %1.9g);\n", line[1].fX, line[1].fY);

    SkIntersections intersections;
    bool flipped = false;
    int result = doIntersect(intersections, quad, line, flipped);
    bool found = false;
    for (int index = 0; index < result; ++index) {
        double quadT = intersections[0][index];
        SkDPoint quadXY = quad.xyAtT(quadT);
        double lineT = intersections[1][index];
        SkDPoint lineXY = line.xyAtT(lineT);
        if (quadXY.approximatelyEqual(lineXY)) {
            found = true;
        }
    }
    REPORTER_ASSERT(reporter, found);
}
// note that this only works if both lines are neither horizontal nor vertical
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
    // see if end points intersect the opposite line
    double t;
    for (int iA = 0; iA < 2; ++iA) {
        if (!checkEndPoint(a[iA].fX, a[iA].fY, b, &t, -1)) {
            continue;
        }
        insert(iA, t, a[iA]);
    }
    for (int iB = 0; iB < 2; ++iB) {
        if (!checkEndPoint(b[iB].fX, b[iB].fY, a, &t, -1)) {
            continue;
        }
        insert(t, iB, b[iB]);
    }
    if (used() > 0) {
        SkASSERT(fUsed <= 2);
        return used(); // coincident lines are returned here
    }
    /* Determine the intersection point of two line segments
       Return FALSE if the lines don't intersect
       from: http://paulbourke.net/geometry/lineline2d/ */
    double axLen = a[1].fX - a[0].fX;
    double ayLen = a[1].fY - a[0].fY;
    double bxLen = b[1].fX - b[0].fX;
    double byLen = b[1].fY - b[0].fY;
    /* Slopes match when denom goes to zero:
                      axLen / ayLen ==                   bxLen / byLen
    (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
             byLen  * axLen         ==  ayLen          * bxLen
             byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
     */
    double denom = byLen * axLen - ayLen * bxLen;
    double ab0y = a[0].fY - b[0].fY;
    double ab0x = a[0].fX - b[0].fX;
    double numerA = ab0y * bxLen - byLen * ab0x;
    double numerB = ab0y * axLen - ayLen * ab0x;
    bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)
            || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB);
    numerA /= denom;
    numerB /= denom;
    if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA)
            && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
            && !sk_double_isnan(numerB)) {
        if (mayNotOverlap) {
            return 0;
        }
        fT[0][0] = numerA;
        fT[1][0] = numerB;
        fPt[0] = a.xyAtT(numerA);
        return computePoints(a, 1);
    }
    return 0;
}
Esempio n. 4
0
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
    double axLen = a[1].fX - a[0].fX;
    double ayLen = a[1].fY - a[0].fY;
    double bxLen = b[1].fX - b[0].fX;
    double byLen = b[1].fY - b[0].fY;
    /* Slopes match when denom goes to zero:
                      axLen / ayLen ==                   bxLen / byLen
    (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
             byLen  * axLen         ==  ayLen          * bxLen
             byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
     */
    double denom = byLen * axLen - ayLen * bxLen;
    double ab0y = a[0].fY - b[0].fY;
    double ab0x = a[0].fX - b[0].fX;
    double numerA = ab0y * bxLen - byLen * ab0x;
    double numerB = ab0y * axLen - ayLen * ab0x;
    bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)
            || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB);
    numerA /= denom;
    numerB /= denom;
    if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA)
            && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
            && !sk_double_isnan(numerB)) {
        if (mayNotOverlap) {
            return fUsed = 0;
        }
        fT[0][0] = numerA;
        fT[1][0] = numerB;
        fPt[0] = a.xyAtT(numerA);
        return computePoints(a, 1);
    }
   /* See if the axis intercepts match:
              ay - ax * ayLen / axLen  ==          by - bx * ayLen / axLen
     axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
     axLen *  ay - ax * ayLen          == axLen *  by - bx * ayLen
    */
    if (!AlmostEqualUlps(axLen * a[0].fY - ayLen * a[0].fX,
            axLen * b[0].fY - ayLen * b[0].fX)) {
        return fUsed = 0;
    }
    const double* aPtr;
    const double* bPtr;
    if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
        aPtr = &a[0].fX;
        bPtr = &b[0].fX;
    } else {
        aPtr = &a[0].fY;
        bPtr = &b[0].fY;
    }
    double a0 = aPtr[0];
    double a1 = aPtr[2];
    double b0 = bPtr[0];
    double b1 = bPtr[2];
    // OPTIMIZATION: restructure to reject before the divide
    // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1))
    // (except efficient)
    double aDenom = a0 - a1;
    if (approximately_zero(aDenom)) {
        if (!between(b0, a0, b1)) {
            return fUsed = 0;
        }
        fT[0][0] = fT[0][1] = 0;
    } else {
        double at0 = (a0 - b0) / aDenom;
        double at1 = (a0 - b1) / aDenom;
        if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
            return fUsed = 0;
        }
        fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
        fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
    }
    double bDenom = b0 - b1;
    if (approximately_zero(bDenom)) {
        fT[1][0] = fT[1][1] = 0;
    } else {
        int bIn = aDenom * bDenom < 0;
        fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0);
        fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0);
    }
    bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON;
    SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second);
    return computePoints(a, 1 + second);
}