int SkIntersections::computePoints(const SkDLine& line, int used) { fPt[0] = line.xyAtT(fT[0][0]); if ((fUsed = used) == 2) { fPt[1] = line.xyAtT(fT[0][1]); } return fUsed; }
static void testLineIntersect(skiatest::Reporter* reporter, const SkDQuad& quad, const SkDLine& line, const double x, const double y) { char pathStr[1024]; sk_bzero(pathStr, sizeof(pathStr)); char* str = pathStr; str += sprintf(str, " path.moveTo(%1.9g, %1.9g);\n", quad[0].fX, quad[0].fY); str += sprintf(str, " path.quadTo(%1.9g, %1.9g, %1.9g, %1.9g);\n", quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); str += sprintf(str, " path.moveTo(%1.9g, %1.9g);\n", line[0].fX, line[0].fY); str += sprintf(str, " path.lineTo(%1.9g, %1.9g);\n", line[1].fX, line[1].fY); SkIntersections intersections; bool flipped = false; int result = doIntersect(intersections, quad, line, flipped); bool found = false; for (int index = 0; index < result; ++index) { double quadT = intersections[0][index]; SkDPoint quadXY = quad.xyAtT(quadT); double lineT = intersections[1][index]; SkDPoint lineXY = line.xyAtT(lineT); if (quadXY.approximatelyEqual(lineXY)) { found = true; } } REPORTER_ASSERT(reporter, found); }
// note that this only works if both lines are neither horizontal nor vertical int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) { // see if end points intersect the opposite line double t; for (int iA = 0; iA < 2; ++iA) { if (!checkEndPoint(a[iA].fX, a[iA].fY, b, &t, -1)) { continue; } insert(iA, t, a[iA]); } for (int iB = 0; iB < 2; ++iB) { if (!checkEndPoint(b[iB].fX, b[iB].fY, a, &t, -1)) { continue; } insert(t, iB, b[iB]); } if (used() > 0) { SkASSERT(fUsed <= 2); return used(); // coincident lines are returned here } /* Determine the intersection point of two line segments Return FALSE if the lines don't intersect from: http://paulbourke.net/geometry/lineline2d/ */ double axLen = a[1].fX - a[0].fX; double ayLen = a[1].fY - a[0].fY; double bxLen = b[1].fX - b[0].fX; double byLen = b[1].fY - b[0].fY; /* Slopes match when denom goes to zero: axLen / ayLen == bxLen / byLen (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen byLen * axLen == ayLen * bxLen byLen * axLen - ayLen * bxLen == 0 ( == denom ) */ double denom = byLen * axLen - ayLen * bxLen; double ab0y = a[0].fY - b[0].fY; double ab0x = a[0].fX - b[0].fX; double numerA = ab0y * bxLen - byLen * ab0x; double numerB = ab0y * axLen - ayLen * ab0x; bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA) || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB); numerA /= denom; numerB /= denom; if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA) && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA) && !sk_double_isnan(numerB)) { if (mayNotOverlap) { return 0; } fT[0][0] = numerA; fT[1][0] = numerB; fPt[0] = a.xyAtT(numerA); return computePoints(a, 1); } return 0; }
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) { double axLen = a[1].fX - a[0].fX; double ayLen = a[1].fY - a[0].fY; double bxLen = b[1].fX - b[0].fX; double byLen = b[1].fY - b[0].fY; /* Slopes match when denom goes to zero: axLen / ayLen == bxLen / byLen (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen byLen * axLen == ayLen * bxLen byLen * axLen - ayLen * bxLen == 0 ( == denom ) */ double denom = byLen * axLen - ayLen * bxLen; double ab0y = a[0].fY - b[0].fY; double ab0x = a[0].fX - b[0].fX; double numerA = ab0y * bxLen - byLen * ab0x; double numerB = ab0y * axLen - ayLen * ab0x; bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA) || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB); numerA /= denom; numerB /= denom; if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA) && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA) && !sk_double_isnan(numerB)) { if (mayNotOverlap) { return fUsed = 0; } fT[0][0] = numerA; fT[1][0] = numerB; fPt[0] = a.xyAtT(numerA); return computePoints(a, 1); } /* See if the axis intercepts match: ay - ax * ayLen / axLen == by - bx * ayLen / axLen axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen) axLen * ay - ax * ayLen == axLen * by - bx * ayLen */ if (!AlmostEqualUlps(axLen * a[0].fY - ayLen * a[0].fX, axLen * b[0].fY - ayLen * b[0].fX)) { return fUsed = 0; } const double* aPtr; const double* bPtr; if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) { aPtr = &a[0].fX; bPtr = &b[0].fX; } else { aPtr = &a[0].fY; bPtr = &b[0].fY; } double a0 = aPtr[0]; double a1 = aPtr[2]; double b0 = bPtr[0]; double b1 = bPtr[2]; // OPTIMIZATION: restructure to reject before the divide // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1)) // (except efficient) double aDenom = a0 - a1; if (approximately_zero(aDenom)) { if (!between(b0, a0, b1)) { return fUsed = 0; } fT[0][0] = fT[0][1] = 0; } else { double at0 = (a0 - b0) / aDenom; double at1 = (a0 - b1) / aDenom; if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { return fUsed = 0; } fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); } double bDenom = b0 - b1; if (approximately_zero(bDenom)) { fT[1][0] = fT[1][1] = 0; } else { int bIn = aDenom * bDenom < 0; fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0); fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0); } bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON; SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second); return computePoints(a, 1 + second); }