static void TestTLList(skiatest::Reporter* reporter) { typedef SkTLList<ListElement> ElList; typedef ElList::Iter Iter; SkMWCRandom random; for (int i = 1; i <= 16; i *= 2) { ElList list1(i); ElList list2(i); Iter iter1; Iter iter2; Iter iter3; Iter iter4; #if SK_ENABLE_INST_COUNT SkASSERT(0 == ListElement::InstanceCount()); #endif REPORTER_ASSERT(reporter, list1.isEmpty()); REPORTER_ASSERT(reporter, NULL == iter1.init(list1, Iter::kHead_IterStart)); REPORTER_ASSERT(reporter, NULL == iter1.init(list1, Iter::kTail_IterStart)); // Try popping an empty list list1.popHead(); list1.popTail(); REPORTER_ASSERT(reporter, list1.isEmpty()); REPORTER_ASSERT(reporter, list1 == list2); // Create two identical lists, one by appending to head and the other to the tail. list1.addToHead(ListElement(1)); list2.addToTail(ListElement(1)); #if SK_ENABLE_INST_COUNT SkASSERT(2 == ListElement::InstanceCount()); #endif iter1.init(list1, Iter::kHead_IterStart); iter2.init(list1, Iter::kTail_IterStart); REPORTER_ASSERT(reporter, iter1.get()->fID == iter2.get()->fID); iter3.init(list2, Iter::kHead_IterStart); iter4.init(list2, Iter::kTail_IterStart); REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, list1 == list2); list2.reset(); // use both before/after in-place construction on an empty list SkNEW_INSERT_IN_LLIST_BEFORE(&list2, list2.headIter(), ListElement, (1)); REPORTER_ASSERT(reporter, list2 == list1); list2.reset(); SkNEW_INSERT_IN_LLIST_AFTER(&list2, list2.tailIter(), ListElement, (1)); REPORTER_ASSERT(reporter, list2 == list1); // add an element to the second list, check that iters are still valid iter3.init(list2, Iter::kHead_IterStart); iter4.init(list2, Iter::kTail_IterStart); list2.addToHead(ListElement(2)); #if SK_ENABLE_INST_COUNT SkASSERT(3 == ListElement::InstanceCount()); #endif REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID); REPORTER_ASSERT(reporter, 1 == Iter(list2, Iter::kTail_IterStart).get()->fID); REPORTER_ASSERT(reporter, 2 == Iter(list2, Iter::kHead_IterStart).get()->fID); REPORTER_ASSERT(reporter, list1 != list2); list1.addToHead(ListElement(2)); REPORTER_ASSERT(reporter, list1 == list2); #if SK_ENABLE_INST_COUNT SkASSERT(4 == ListElement::InstanceCount()); #endif REPORTER_ASSERT(reporter, !list1.isEmpty()); list1.reset(); list2.reset(); #if SK_ENABLE_INST_COUNT SkASSERT(0 == ListElement::InstanceCount()); #endif REPORTER_ASSERT(reporter, list1.isEmpty() && list2.isEmpty()); // randomly perform insertions and deletions on a list and perform tests int count = 0; for (int j = 0; j < 100; ++j) { if (list1.isEmpty() || random.nextBiasedBool(3 * SK_Scalar1 / 4)) { int id = j; // Choose one of three ways to insert a new element: at the head, at the tail, // before a random element, after a random element int numValidMethods = 0 == count ? 2 : 4; int insertionMethod = random.nextULessThan(numValidMethods); switch (insertionMethod) { case 0: list1.addToHead(ListElement(id)); break; case 1: list1.addToTail(ListElement(id)); break; case 2: // fallthru to share code that picks random element. case 3: { int n = random.nextULessThan(list1.count()); Iter iter = list1.headIter(); // remember the elements before/after the insertion point. while (n--) { iter.next(); } Iter prev(iter); Iter next(iter); next.next(); prev.prev(); SkASSERT(NULL != iter.get()); // insert either before or after the iterator, then check that the // surrounding sequence is correct. if (2 == insertionMethod) { SkNEW_INSERT_IN_LLIST_BEFORE(&list1, iter, ListElement, (id)); Iter newItem(iter); newItem.prev(); REPORTER_ASSERT(reporter, newItem.get()->fID == id); if (NULL != next.get()) { REPORTER_ASSERT(reporter, next.prev()->fID == iter.get()->fID); } if (NULL != prev.get()) { REPORTER_ASSERT(reporter, prev.next()->fID == id); } } else { SkNEW_INSERT_IN_LLIST_AFTER(&list1, iter, ListElement, (id)); Iter newItem(iter); newItem.next(); REPORTER_ASSERT(reporter, newItem.get()->fID == id); if (NULL != next.get()) { REPORTER_ASSERT(reporter, next.prev()->fID == id); } if (NULL != prev.get()) { REPORTER_ASSERT(reporter, prev.next()->fID == iter.get()->fID); } } } } ++count; } else { // walk to a random place either forward or backwards and remove. int n = random.nextULessThan(list1.count()); Iter::IterStart start; ListElement* (Iter::*incrFunc)(); if (random.nextBool()) { start = Iter::kHead_IterStart; incrFunc = &Iter::next; } else { start = Iter::kTail_IterStart; incrFunc = &Iter::prev; } // find the element Iter iter(list1, start); while (n--) { REPORTER_ASSERT(reporter, NULL != iter.get()); (iter.*incrFunc)(); } REPORTER_ASSERT(reporter, NULL != iter.get()); // remember the prev and next elements from the element to be removed Iter prev = iter; Iter next = iter; prev.prev(); next.next(); list1.remove(iter.get()); // make sure the remembered next/prev iters still work Iter pn = prev; pn.next(); Iter np = next; np.prev(); // pn should match next unless the target node was the head, in which case prev // walked off the list. REPORTER_ASSERT(reporter, pn.get() == next.get() || NULL == prev.get()); // Similarly, np should match prev unless next originally walked off the tail. REPORTER_ASSERT(reporter, np.get() == prev.get() || NULL == next.get()); --count; } REPORTER_ASSERT(reporter, count == list1.count()); #if SK_ENABLE_INST_COUNT SkASSERT(count == ListElement::InstanceCount()); #endif } list1.reset(); #if SK_ENABLE_INST_COUNT SkASSERT(0 == ListElement::InstanceCount()); #endif } }
bool GrGpuGL::programUnitTest(int maxStages) { GrTextureDesc dummyDesc; dummyDesc.fFlags = kRenderTarget_GrTextureFlagBit; dummyDesc.fConfig = kSkia8888_GrPixelConfig; dummyDesc.fWidth = 34; dummyDesc.fHeight = 18; SkAutoTUnref<GrTexture> dummyTexture1(this->createTexture(dummyDesc, NULL, 0)); dummyDesc.fFlags = kNone_GrTextureFlags; dummyDesc.fConfig = kAlpha_8_GrPixelConfig; dummyDesc.fWidth = 16; dummyDesc.fHeight = 22; SkAutoTUnref<GrTexture> dummyTexture2(this->createTexture(dummyDesc, NULL, 0)); static const int NUM_TESTS = 512; SkMWCRandom random; for (int t = 0; t < NUM_TESTS; ++t) { #if 0 GrPrintf("\nTest Program %d\n-------------\n", t); static const int stop = -1; if (t == stop) { int breakpointhere = 9; } #endif GrGLProgramDesc pdesc; int currAttribIndex = 1; // we need to always leave room for position int attribIndices[2]; GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()}; int numStages = random.nextULessThan(maxStages + 1); int numColorStages = random.nextULessThan(numStages + 1); int numCoverageStages = numStages - numColorStages; SkAutoSTMalloc<8, const GrEffectStage*> stages(numStages); for (int s = 0; s < numStages; ++s) { SkAutoTUnref<const GrEffectRef> effect(GrEffectTestFactory::CreateStage( &random, this->getContext(), *this->caps(), dummyTextures)); int numAttribs = (*effect)->numVertexAttribs(); // If adding this effect would exceed the max attrib count then generate a // new random effect. if (currAttribIndex + numAttribs > GrDrawState::kMaxVertexAttribCnt) { --s; continue; } for (int i = 0; i < numAttribs; ++i) { attribIndices[i] = currAttribIndex++; } GrEffectStage* stage = SkNEW_ARGS(GrEffectStage, (effect.get(), attribIndices[0], attribIndices[1])); stages[s] = stage; } const GrTexture* dstTexture = random.nextBool() ? dummyTextures[0] : dummyTextures[1]; pdesc.setRandom(&random, this, dummyTextures[0]->asRenderTarget(), dstTexture, stages.get(), numColorStages, numCoverageStages, currAttribIndex); SkAutoTUnref<GrGLProgram> program(GrGLProgram::Create(this, pdesc, stages, stages + numColorStages)); for (int s = 0; s < numStages; ++s) { SkDELETE(stages[s]); } if (NULL == program.get()) { return false; } } return true; }