//---------------------------------------------------------------------------
    SpdMatrix Marginal::forecast_precision() const {
      const Selector &observed(model_->observed_status(time_index()));
      
      DiagonalMatrix observation_precision =
          model_->observation_variance(time_index()).inv();

      
      const SparseKalmanMatrix *observation_coefficients(
          model_->observation_coefficients(time_index(), observed));

      SpdMatrix variance;
      if (previous()) {
        variance = previous()->state_variance();
      } else {
        variance = model_->initial_state_variance();
      }
      // 'inner' is  I + P * Z' Hinv Z
      Matrix inner = variance * observation_coefficients->inner(
          observation_precision.diag());
      inner.diag() += 1.0;
      SpdMatrix outer = inner.solve(variance);
      SpdMatrix ans = observation_precision.sandwich(
          observation_coefficients->sandwich(outer));
      ans *= -1;
      ans.diag() += observation_precision.diag();
      return ans;      
    }
 //---------------------------------------------------------------------------
 SpdMatrix Marginal::direct_forecast_precision() const {
   SpdMatrix variance;
   if (previous()) {
     variance = previous()->state_variance();
   } else {
     variance = model_->initial_state_variance();
   }
   const Selector &observed(model_->observed_status(time_index()));
   SpdMatrix ans = model_->observation_coefficients(
       time_index(), observed)->sandwich(variance);
   ans.diag() += model_->observation_variance(time_index()).diag();
   return ans.inv();
 }