void NetworkManager::Run() { int threadId; struct epoll_event events[100]; int numOfEvent, n; g_networkThreadCountLock.Lock(); threadId = g_networkThreadCount++; g_networkThreadCountLock.Unlock(); for(;;) { numOfEvent = epoll_wait(m_epollFdList[threadId], m_epollEvent2DList[threadId], 100, 2000); //printf("NW thread %d\n", threadId); if(numOfEvent < 0){ // critical error fprintf(stderr, "[ERROR] epoll_wait() ERROR : %s\n", strerror(errno)); exit(1); } if(numOfEvent == 0) { continue; } //printf("NT %d activated\n", TC); OnEvent(numOfEvent, threadId); } close(m_serverFd); for(int i=0; i<NETWORK_THREAD_NUM; i++) close(m_epollFdList[i]); }
void func(int i) { g_lock.lock(); std::this_thread::sleep_for(std::chrono::milliseconds(10)); std::cout << std::this_thread::get_id() << "add : " << i << std::endl; sum++; g_lock.unlock(); }
void SingletonReleaseHashTable() { g_SpinLockHashTable.Lock(); if (g_pObjHash) { delete g_pObjHash; g_pObjHash = 0; } g_SpinLockHashTable.Unlock(); }
void SingletonReleaseTextVector() { g_SpinLockTextVec.Lock(); if (g_pTextVec) { delete g_pTextVec; g_pTextVec = 0; } g_SpinLockTextVec.Unlock(); }
TextBufVecType * SingletonGetTextVector() { if (!g_pTextVec) { g_SpinLockTextVec.Lock(); if (!g_pTextVec) g_pTextVec = new TextBufVecType; g_SpinLockTextVec.Unlock(); } return g_pTextVec; }
HashType * SingletonGetHashTable() { if (!g_pObjHash) { g_SpinLockHashTable.Lock(); if (!g_pObjHash) g_pObjHash = new HashType; g_SpinLockHashTable.Unlock(); } return g_pObjHash; }
/** * Return the number of bytes consumed by all free list blocks. * * This does not define the number of bytes available for actual usable allocation, and should not be used * by non-implementation code outside of unit tests or debugging. */ vm_size_t debug_bytes_free () { vm_size_t bytes_free = 0; _lock.lock(); control_block *first = _free_list; for (control_block *b = _free_list; b != NULL; b = b->_next) { bytes_free += b->_size; if (b->_next == first) break; } _lock.unlock(); return bytes_free; }
ThreadingManagerOMP(int req = -1) : start_counter(1), barrier_protocol(*static_cast<ThreadingManager*>(this)) { assert(req == -1); // In the OpenMP backend, the ThreadManager is instantiated // in a serial section, so in contrast to the threaded backend // we do not know the number of threads here. // Instead we find out when we are called again in thread_main() startup_lock.lock(); lock_workers_initialized.lock(); Options::ThreadAffinity::init(); }
void ParsingProcInternal() { while(true) { WString currentParsingText; { SpinLock::Scope scope(parsingTextLock); currentParsingText=parsingText; parsingText=L""; } if(currentParsingText==L"") { isParsingRunning=false; break; } List<Ptr<ParsingError>> errors; Ptr<ParsingTreeObject> node=grammarParser->Parse(currentParsingText, L"ParserDecl", errors).Cast<ParsingTreeObject>(); Ptr<ParserDecl> decl; if(node) { node->InitializeQueryCache(); decl=new ParserDecl(node); } { SpinLock::Scope scope(parsingTreeLock); parsingTreeNode=node; parsingTreeDecl=decl; node=0; } RestartColorizer(); } parsingRunningEvent.Leave(); }
// See that timer_trylock_or_cancel acquires the lock when the holder releases it. static bool trylock_or_cancel_get_lock() { BEGIN_TEST; // We need 2 or more CPUs for this test. if (get_num_cpus_online() < 2) { printf("skipping test trylock_or_cancel_get_lock, not enough online cpus\n"); return true; } timer_args arg{}; timer_t t = TIMER_INITIAL_VALUE(t); SpinLock lock; arg.lock = lock.GetInternal(); arg.wait = 1; arch_disable_ints(); uint timer_cpu = arch_curr_cpu_num(); const Deadline deadline = Deadline::no_slack(current_time() + ZX_USEC(100)); timer_set(&t, deadline, timer_trylock_cb, &arg); // The timer is set to run on timer_cpu, switch to a different CPU, acquire the spinlock then // signal the callback to proceed. thread_set_cpu_affinity(get_current_thread(), ~cpu_num_to_mask(timer_cpu)); DEBUG_ASSERT(arch_curr_cpu_num() != timer_cpu); arch_enable_ints(); { AutoSpinLock guard(&lock); while (!atomic_load(&arg.timer_fired)) { } // Callback should now be running. Tell it to stop waiting and start trylocking. atomic_store(&arg.wait, 0); } // See that timer_cancel returns false indicating that the timer ran. ASSERT_FALSE(timer_cancel(&t), ""); // Note, we cannot assert the value of arg.result. We have both released the lock and canceled // the timer, but we don't know which of these events the timer observed first. END_TEST; }
void init_master() { Options::ThreadAffinity::pin_main_thread(); num_cpus = decide_num_cpus(); threads = new TaskExecutor<Options> *[num_cpus]; task_queues = new TaskQueue*[num_cpus]; threads[0] = new TaskExecutor<Options>(0, *this); task_queues[0] = &threads[0]->get_task_queue(); startup_lock.unlock(); while (start_counter != num_cpus) Atomic::rep_nop(); if (!workers_start_paused()) lock_workers_initialized.unlock(); }
void Scheduler::sleepAndRelease ( SpinLock &lock ) { lockScheduling(); currentThread->state_=Sleeping; lock.release(); unlockScheduling(); yield(); }
TEST(ParallelUtils,SpinLock) { const int N = 1000000; SpinLock lock; volatile int c =0; #pragma omp parallel for num_threads(4) for(int i=0; i<N; i++) { lock.lock(); c++; lock.unlock(); } EXPECT_EQ(N, c); }
void duplicate_node::match(vector<duplicate_node*>& entrances, search_duplicate_files_status* status, SpinLock& lock) { duplicate_node* iter = this; while (iter) { bool first_matched = true; duplicate_node* current_node = iter; duplicate_node* last_node = iter; euint current_symbol = iter->m_symbol; while (current_node) { { SpinLock::Instance inst = lock.Lock(); if (status) { status->m_current_status = search_duplicate_files_status::Matching; status->m_processing_file = current_node->m_path.c_str(); } } if (current_node->m_symbol == current_symbol && current_node != last_node) { last_node->m_next1 = current_node; if (first_matched) { entrances.push_back(last_node); first_matched = false; } last_node->m_is_matched = true; current_node->m_is_matched = true; last_node = current_node; } current_node = current_node->m_next0; } iter = iter->m_next0; while (iter && iter->m_is_matched) { iter = iter->m_next0; } } { SpinLock::Instance inst = lock.Lock(); if (status) { status->m_current_status = search_duplicate_files_status::Idling; status->m_processing_file = nullptr; } } }
void init_worker(int id) { Options::ThreadAffinity::pin_workerthread(id); // allocate Worker on thread TaskExecutor<Options> *te = new TaskExecutor<Options>(id, *this); // wait until main thread has initialized the threadmanager startup_lock.lock(); startup_lock.unlock(); threads[id] = te; task_queues[id] = &te->get_task_queue(); Atomic::increase(&start_counter); lock_workers_initialized.lock(); lock_workers_initialized.unlock(); te->work_loop(); }
euint64 duplicate_node::prepare(duplicate_node_cache* cache, search_duplicate_files_status* status, SpinLock& lock) { euint64 proced_size = 0; duplicate_node* iter = this; while (iter) { iter->m_next1 = nullptr; iter->m_symbol = 0; iter->m_is_matched = false; cache->open(iter); { SpinLock::Instance inst = lock.Lock(); if (status) { status->m_current_status = search_duplicate_files_status::Reading; status->m_processing_file = iter->m_path.c_str(); } } ///fseek(iter->m_file.get(), iter->m_offset, SEEK_SET); iter->m_file.Seek(iter->m_offset); ///fread(&iter->m_symbol, 1, sizeof(SYMBOL), iter->m_file.get()); iter->m_file.Read(&iter->m_symbol, sizeof(SYMBOL)); proced_size += sizeof(SYMBOL); m_remainder -= sizeof(SYMBOL); iter->m_offset += sizeof(SYMBOL); iter = iter->m_next0; } { { SpinLock::Instance inst = lock.Lock(); if (status) { status->m_current_status = search_duplicate_files_status::Idling; status->m_processing_file = nullptr; } } } return proced_size; }
void xhn::thread::assign_to_local_thread(thread_ptr& local_thread, thread_ptr& global_thread, SpinLock& lock) { { xhn::SpinLock::Instance inst = lock.Lock(); local_thread = global_thread; } if (!local_thread) { local_thread = VNEW xhn::thread; while (!local_thread->is_running()) {} { xhn::SpinLock::Instance inst = lock.Lock(); if (!global_thread) { global_thread = local_thread; } else { local_thread = global_thread; } } } }
Font Font::getDefault() { static Font font; static SpinLock lock; lock.lock(); if (font.getHandle() == nullptr) { jni::Class Button("libnative/ui/TextComponent"); jni::method_t viewConstructor = Button.getConstructor("(Landroid/content/Context;)V"); jni::Object button = Button.newInstance(viewConstructor, (jni::Object*) App::getAppHandle()); // Android already scales its default fonts. font._size = button.call<float>("getScaledTextSize"); font._shared->handle = new jni::Object(button.call<jni::Object>("getTypeface()Landroid/graphics/Typeface;")); } lock.release(); return font; }
void stop() { if (get_thread_num() != 0) { // workers don't come here until terminate() has been called int nv = Atomic::decrease_nv(&start_counter); // wait until all workers reached this step // all threads must agree that we are shutting // down before we can continue and invoke the // destructor startup_lock.lock(); startup_lock.unlock(); return; } start_executing(); // make sure threads have been started, or we will wait forever in barrier barrier_protocol.barrier(*threads[0]); startup_lock.lock(); for (int i = 1; i < get_num_cpus(); ++i) threads[i]->terminate(); // wait for all threads to join while (start_counter != 1) Atomic::rep_nop(); // signal that threads can destruct startup_lock.unlock(); for (int i = 1; i < get_num_cpus(); ++i) delete threads[i]; delete [] threads; delete [] task_queues; }
void SubmitCurrentText(const wchar_t* text) { { // copy the text because this is a cross thread accessible data SpinLock::Scope scope(parsingTextLock); parsingText=text; } if(!isParsingRunning) { isParsingRunning=true; parsingRunningEvent.Enter(); ThreadPoolLite::Queue(&ParsingProc, this); } }
SpinGuard(SpinLock& mutex) : _mutex(&mutex){ _mutex->lock(); }
~SpinGuard(){ _mutex->unlock(); }
void func(int n) { g_Lock.lock(); std::cout << "Output from thread: " << n << std::endl; g_Lock.unlock(); }
~GrammarColorizer() { finalizing=true; parsingRunningEvent.Enter(); parsingRunningEvent.Leave(); }
void start_executing() { if (workers_start_paused()) { if (lock_workers_initialized.is_locked()) lock_workers_initialized.unlock(); } }
void addToCommittedByteCount(long byteCount) { ASSERT(spinlock.IsHeld()); ASSERT(static_cast<long>(committedBytesCount) + byteCount > -1); committedBytesCount += byteCount; }
namespace JSC { static size_t committedBytesCount = 0; static SpinLock spinlock = SPINLOCK_INITIALIZER; // FreeListEntry describes a free chunk of memory, stored in the freeList. struct FreeListEntry { FreeListEntry(void* pointer, size_t size) : pointer(pointer) , size(size) , nextEntry(0) , less(0) , greater(0) , balanceFactor(0) { } // All entries of the same size share a single entry // in the AVLTree, and are linked together in a linked // list, using nextEntry. void* pointer; size_t size; FreeListEntry* nextEntry; // These fields are used by AVLTree. FreeListEntry* less; FreeListEntry* greater; int balanceFactor; }; // Abstractor class for use in AVLTree. // Nodes in the AVLTree are of type FreeListEntry, keyed on // (and thus sorted by) their size. struct AVLTreeAbstractorForFreeList { typedef FreeListEntry* handle; typedef int32_t size; typedef size_t key; handle get_less(handle h) { return h->less; } void set_less(handle h, handle lh) { h->less = lh; } handle get_greater(handle h) { return h->greater; } void set_greater(handle h, handle gh) { h->greater = gh; } int get_balance_factor(handle h) { return h->balanceFactor; } void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; } static handle null() { return 0; } int compare_key_key(key va, key vb) { return va - vb; } int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); } int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); } }; // Used to reverse sort an array of FreeListEntry pointers. static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr) { FreeListEntry* left = *(FreeListEntry**)leftPtr; FreeListEntry* right = *(FreeListEntry**)rightPtr; return (intptr_t)(right->pointer) - (intptr_t)(left->pointer); } // Used to reverse sort an array of pointers. static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr) { void* left = *(void**)leftPtr; void* right = *(void**)rightPtr; return (intptr_t)right - (intptr_t)left; } class FixedVMPoolAllocator { // The free list is stored in a sorted tree. typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree; void release(void* position, size_t size) { m_allocation.decommit(position, size); addToCommittedByteCount(-static_cast<long>(size)); } void reuse(void* position, size_t size) { bool okay = m_allocation.commit(position, size); ASSERT_UNUSED(okay, okay); addToCommittedByteCount(static_cast<long>(size)); } // All addition to the free list should go through this method, rather than // calling insert directly, to avoid multiple entries being added with the // same key. All nodes being added should be singletons, they should not // already be a part of a chain. void addToFreeList(FreeListEntry* entry) { ASSERT(!entry->nextEntry); if (entry->size == m_commonSize) { m_commonSizedAllocations.append(entry->pointer); delete entry; } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) { // m_freeList already contain an entry for this size - insert this node into the chain. entry->nextEntry = entryInFreeList->nextEntry; entryInFreeList->nextEntry = entry; } else m_freeList.insert(entry); } // We do not attempt to coalesce addition, which may lead to fragmentation; // instead we periodically perform a sweep to try to coalesce neighboring // entries in m_freeList. Presently this is triggered at the point 16MB // of memory has been released. void coalesceFreeSpace() { Vector<FreeListEntry*> freeListEntries; SizeSortedFreeTree::Iterator iter; iter.start_iter_least(m_freeList); // Empty m_freeList into a Vector. for (FreeListEntry* entry; (entry = *iter); ++iter) { // Each entry in m_freeList might correspond to multiple // free chunks of memory (of the same size). Walk the chain // (this is likely of course only be one entry long!) adding // each entry to the Vector (at reseting the next in chain // pointer to separate each node out). FreeListEntry* next; do { next = entry->nextEntry; entry->nextEntry = 0; freeListEntries.append(entry); } while ((entry = next)); } // All entries are now in the Vector; purge the tree. m_freeList.purge(); // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors. // We reverse-sort so that we can logically work forwards through memory, // whilst popping items off the end of the Vectors using last() and removeLast(). qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer); qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations); // The entries from m_commonSizedAllocations that cannot be // coalesced into larger chunks will be temporarily stored here. Vector<void*> newCommonSizedAllocations; // Keep processing so long as entries remain in either of the vectors. while (freeListEntries.size() || m_commonSizedAllocations.size()) { // We're going to try to find a FreeListEntry node that we can coalesce onto. FreeListEntry* coalescionEntry = 0; // Is the lowest addressed chunk of free memory of common-size, or is it in the free list? if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) { // Pop an item from the m_commonSizedAllocations vector - this is the lowest // addressed free chunk. Find out the begin and end addresses of the memory chunk. void* begin = m_commonSizedAllocations.last(); void* end = (void*)((intptr_t)begin + m_commonSize); m_commonSizedAllocations.removeLast(); // Try to find another free chunk abutting onto the end of the one we have already found. if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) { // There is an existing FreeListEntry for the next chunk of memory! // we can reuse this. Pop it off the end of m_freeList. coalescionEntry = freeListEntries.last(); freeListEntries.removeLast(); // Update the existing node to include the common-sized chunk that we also found. coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize); coalescionEntry->size += m_commonSize; } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) { // There is a second common-sized chunk that can be coalesced. // Allocate a new node. m_commonSizedAllocations.removeLast(); coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize); } else { // Nope - this poor little guy is all on his own. :-( // Add him into the newCommonSizedAllocations vector for now, we're // going to end up adding him back into the m_commonSizedAllocations // list when we're done. newCommonSizedAllocations.append(begin); continue; } } else { ASSERT(freeListEntries.size()); ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last())); // The lowest addressed item is from m_freeList; pop it from the Vector. coalescionEntry = freeListEntries.last(); freeListEntries.removeLast(); } // Right, we have a FreeListEntry, we just need check if there is anything else // to coalesce onto the end. ASSERT(coalescionEntry); while (true) { // Calculate the end address of the chunk we have found so far. void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size); // Is there another chunk adjacent to the one we already have? if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) { // Yes - another FreeListEntry -pop it from the list. FreeListEntry* coalescee = freeListEntries.last(); freeListEntries.removeLast(); // Add it's size onto our existing node. coalescionEntry->size += coalescee->size; delete coalescee; } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) { // We can coalesce the next common-sized chunk. m_commonSizedAllocations.removeLast(); coalescionEntry->size += m_commonSize; } else break; // Nope, nothing to be added - stop here. } // We've coalesced everything we can onto the current chunk. // Add it back into m_freeList. addToFreeList(coalescionEntry); } // All chunks of free memory larger than m_commonSize should be // back in m_freeList by now. All that remains to be done is to // copy the contents on the newCommonSizedAllocations back into // the m_commonSizedAllocations Vector. ASSERT(m_commonSizedAllocations.size() == 0); m_commonSizedAllocations.append(newCommonSizedAllocations); } public: FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize) : m_commonSize(commonSize) , m_countFreedSinceLastCoalesce(0) { // Cook up an address to allocate at, using the following recipe: // 17 bits of zero, stay in userspace kids. // 26 bits of randomness for ASLR. // 21 bits of zero, at least stay aligned within one level of the pagetables. // // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854), // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus // 2^24, which should put up somewhere in the middle of userspace (in the address range // 0x200000000000 .. 0x5fffffffffff). #if VM_POOL_ASLR intptr_t randomLocation = 0; randomLocation = arc4random() & ((1 << 25) - 1); randomLocation += (1 << 24); randomLocation <<= 21; m_allocation = PageReservation::reserveAt(reinterpret_cast<void*>(randomLocation), false, totalHeapSize, PageAllocation::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true); #else m_allocation = PageReservation::reserve(totalHeapSize, PageAllocation::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true); #endif if (!!m_allocation) m_freeList.insert(new FreeListEntry(m_allocation.base(), m_allocation.size())); #if !ENABLE(INTERPRETER) else CRASH(); #endif } ExecutablePool::Allocation alloc(size_t size) { return ExecutablePool::Allocation(allocInternal(size), size); } void free(ExecutablePool::Allocation allocation) { void* pointer = allocation.base(); size_t size = allocation.size(); ASSERT(!!m_allocation); // Call release to report to the operating system that this // memory is no longer in use, and need not be paged out. ASSERT(isWithinVMPool(pointer, size)); release(pointer, size); // Common-sized allocations are stored in the m_commonSizedAllocations // vector; all other freed chunks are added to m_freeList. if (size == m_commonSize) m_commonSizedAllocations.append(pointer); else addToFreeList(new FreeListEntry(pointer, size)); // Do some housekeeping. Every time we reach a point that // 16MB of allocations have been freed, sweep m_freeList // coalescing any neighboring fragments. m_countFreedSinceLastCoalesce += size; if (m_countFreedSinceLastCoalesce >= COALESCE_LIMIT) { m_countFreedSinceLastCoalesce = 0; coalesceFreeSpace(); } } bool isValid() const { return !!m_allocation; } private: void* allocInternal(size_t size) { #if ENABLE(INTERPRETER) if (!m_allocation) return 0; #else ASSERT(!!m_allocation); #endif void* result; // Freed allocations of the common size are not stored back into the main // m_freeList, but are instead stored in a separate vector. If the request // is for a common sized allocation, check this list. if ((size == m_commonSize) && m_commonSizedAllocations.size()) { result = m_commonSizedAllocations.last(); m_commonSizedAllocations.removeLast(); } else { // Search m_freeList for a suitable sized chunk to allocate memory from. FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL); // This would be bad news. if (!entry) { // Errk! Lets take a last-ditch desperation attempt at defragmentation... coalesceFreeSpace(); // Did that free up a large enough chunk? entry = m_freeList.search(size, m_freeList.GREATER_EQUAL); // No?... *BOOM!* if (!entry) CRASH(); } ASSERT(entry->size != m_commonSize); // Remove the entry from m_freeList. But! - // Each entry in the tree may represent a chain of multiple chunks of the // same size, and we only want to remove one on them. So, if this entry // does have a chain, just remove the first-but-one item from the chain. if (FreeListEntry* next = entry->nextEntry) { // We're going to leave 'entry' in the tree; remove 'next' from its chain. entry->nextEntry = next->nextEntry; next->nextEntry = 0; entry = next; } else m_freeList.remove(entry->size); // Whoo!, we have a result! ASSERT(entry->size >= size); result = entry->pointer; // If the allocation exactly fits the chunk we found in the, // m_freeList then the FreeListEntry node is no longer needed. if (entry->size == size) delete entry; else { // There is memory left over, and it is not of the common size. // We can reuse the existing FreeListEntry node to add this back // into m_freeList. entry->pointer = (void*)((intptr_t)entry->pointer + size); entry->size -= size; addToFreeList(entry); } } // Call reuse to report to the operating system that this memory is in use. ASSERT(isWithinVMPool(result, size)); reuse(result, size); return result; } #ifndef NDEBUG bool isWithinVMPool(void* pointer, size_t size) { return pointer >= m_allocation.base() && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_allocation.base()) + m_allocation.size()); } #endif void addToCommittedByteCount(long byteCount) { ASSERT(spinlock.IsHeld()); ASSERT(static_cast<long>(committedBytesCount) + byteCount > -1); committedBytesCount += byteCount; } // Freed space from the most common sized allocations will be held in this list, ... const size_t m_commonSize; Vector<void*> m_commonSizedAllocations; // ... and all other freed allocations are held in m_freeList. SizeSortedFreeTree m_freeList; // This is used for housekeeping, to trigger defragmentation of the freed lists. size_t m_countFreedSinceLastCoalesce; PageReservation m_allocation; }; size_t ExecutableAllocator::committedByteCount() { SpinLockHolder lockHolder(&spinlock); return committedBytesCount; } void ExecutableAllocator::intializePageSize() { ExecutableAllocator::pageSize = getpagesize(); } static FixedVMPoolAllocator* allocator = 0; bool ExecutableAllocator::isValid() const { SpinLockHolder lock_holder(&spinlock); if (!allocator) allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, VM_POOL_SIZE); return allocator->isValid(); } ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size) { SpinLockHolder lock_holder(&spinlock); ASSERT(allocator); return allocator->alloc(size); } void ExecutablePool::systemRelease(ExecutablePool::Allocation& allocation) { SpinLockHolder lock_holder(&spinlock); ASSERT(allocator); allocator->free(allocation); } }