Esempio n. 1
0
int main(int argc, char* argv[] )
{

    ALWAYS_ERROR_IF(argc != 7, "Usage: " << argv[0]
		    << " curve1infile curve2infile surfaceoutfile point_x point_y point_z" << endl);

    // Open input curve 1 file
    ifstream is1(argv[1]);
    ALWAYS_ERROR_IF(is1.bad(), "Bad or no curve 1 input filename");

    // Open input curve 2 file
    ifstream is2(argv[2]);
    ALWAYS_ERROR_IF(is2.bad(), "Bad or no curve 2 input filename");

    // Open output surface file
    ofstream os(argv[3]);
    ALWAYS_ERROR_IF(os.bad(), "Bad output filename");

    Point pt(atof(argv[4]), atof(argv[5]), atof(argv[6]));

    // Read curves from file
    SplineCurve curv1, curv2;
    ObjectHeader head;
    is1 >> head >> curv1;
    is2 >> head >> curv2;

    SplineSurface* surf = SweepSurfaceCreator::linearSweptSurface(curv1, curv2, pt);

    surf->writeStandardHeader(os);
    surf->write(os);
}
Esempio n. 2
0
//===========================================================================
SplineSurface* Torus::createNonRationalSpline(double eps) const
//===========================================================================
{
  // First fetch the first circular boundary curve in the minor
  // direction
  shared_ptr<Circle> circ = getMinorCircle(domain_.vmin());

  // Feth non-rational spline approximation
  shared_ptr<SplineCurve> crv(circ->createNonRationalSpline(0.5*eps));

  // Rotate this circle the valid angle around the main axis to 
  // create the non-rational spline surface
  // Note that the result will be rational if the tolerance is equal to zero
  int status;
  SISLCurve *qc = Curve2SISL(*crv);
  double *point = const_cast<double*>(location_.begin());
  double *axis =  const_cast<double*>(z_axis_.begin());
  SISLSurf *qs = NULL;
  s1302(qc, 0.5*eps, parbound_.umax()-parbound_.umin(), point, axis,
	&qs, &status);
  if (status < 0 || qs == NULL)
    return NULL;  // Approximation failed

  SplineSurface *surf = SISLSurf2Go(qs);
  surf->setParameterDomain(domain_.umin(), domain_.umax(),
			   domain_.vmin(), domain_.vmax());
  if (isSwapped())
    surf->swapParameterDirection();

  freeSurf(qs);
  return surf;
}
Esempio n. 3
0
int main(int argc, char* argv[] )
{

    ALWAYS_ERROR_IF(argc != 10, "Usage: " << argv[0]
		    << " curveinfile surfaceoutfile angle point_x point_y point_z axis_x axis_y axis_z" << endl);

    // Open input curve file
    ifstream is(argv[1]);
    ALWAYS_ERROR_IF(is.bad(), "Bad or no curve input filename");

    // Open output surface file
    ofstream os(argv[2]);
    ALWAYS_ERROR_IF(os.bad(), "Bad output filename");

    double angle = atof(argv[3]);
    Point pt(atof(argv[4]), atof(argv[5]), atof(argv[6]));
    Point axis(atof(argv[7]), atof(argv[8]), atof(argv[9]));

    // Read curve from file
    SplineCurve curve;
    ObjectHeader head;
    is >> head >> curve;

    SplineSurface* surf = SweepSurfaceCreator::rotationalSweptSurface(curve, angle, pt, axis);

    surf->writeStandardHeader(os);
    surf->write(os);
}
Esempio n. 4
0
//===========================================================================
SplineSurface*
LoftSurfaceCreator::loftSurfaceFromUnifiedCurves(vector<shared_ptr<SplineCurve> >::iterator
						 first_curve,
						 vector<double>::iterator first_param,
						 int nmb_crvs)
//===========================================================================
{

  SplineSurface* surf = loftNonrationalSurface(first_curve, first_param, nmb_crvs);
  if (first_curve[0]->rational())
    {
      int n = surf->numCoefs_u() * surf->numCoefs_v();
      int kdim = surf->dimension() + 1;
      bool all_positive = true;
      vector<double>::const_iterator it = surf->rcoefs_begin();
      it += (kdim - 1);
      for (int i = 0; i < n; ++i)
	if (it[kdim * i] <= 0.0)
	  {
	    all_positive = false;
	    break;
	  }
      if (!all_positive)
	{
	  delete surf;
	  surf = loftRationalSurface(first_curve, first_param, nmb_crvs);
	}
    }

  return surf;
}
Esempio n. 5
0
//==========================================================================
void GeometryTools::splitSurfaceIntoPatches(const SplineSurface& sf,
			     vector<SplineSurface>& pat)
//==========================================================================
{
    SplineSurface orig = sf;
    orig.makeBernsteinKnotsU();
    orig.makeBernsteinKnotsV();

    int num_u = orig.numCoefs_u();
    int num_v = orig.numCoefs_v();
    int order_u = orig.order_u();
    int order_v = orig.order_v();
    int numpat_u = num_u / order_u;
    int numpat_v = num_v / order_v;

    pat.resize(numpat_u * numpat_v);
    typedef vector<double>::const_iterator const_iter;
    const_iter itu = orig.basis_u().begin();
    const_iter itv;
    for (int i = 0; i < numpat_u; ++i) {
	itv = orig.basis_v().begin();
	for (int j = 0; j < numpat_v; ++j) {
	    shared_ptr<SplineSurface>
		new_sf(orig.subSurface(*itu, *itv,
				       *(itu+order_u), *(itv+order_v)));
	    pat[numpat_u*j + i] = *new_sf;
	    itv += order_v;
	}
	itu += order_u;
    }

    return;
}
Esempio n. 6
0
int main(int argc, char* argv[] )
{
    ALWAYS_ERROR_IF(argc < 3, "Usage: " << argv[0]
                    << " inputsurf inputpoints" << endl);


    // Open input surface file
    ifstream is(argv[1]);
    ALWAYS_ERROR_IF(is.bad(), "Bad or no input filename");

    // Read surface from file
    SplineSurface sf;
    is >> sf;

    // Get points
    ifstream pts(argv[2]);
    ALWAYS_ERROR_IF(pts.bad(), "Bad or no input filename");
    int n;
    pts >> n;
    vector<double> pt(n*2);
    for (int i = 0; i < n; ++i) {
        pts >> pt[2*i] >> pt[2*i+1];
    }

    std::vector<Point> p(3, Point(sf.dimension()));
    for (int i = 0; i < 10000; ++i) {
        for (int j = 0; j < n; ++j) {
            sf.point(p, pt[2*j], pt[2*j+1], 0);
        }
    }
//      cout << p[0] << p[1] << p[2] << (p[1] % p[2]);
}
Esempio n. 7
0
//==========================================================================
void GeometryTools::findDominant(const SplineSurface& surface,
		  Vector3D& dominant_u, Vector3D& dominant_v)
//==========================================================================
{
    int nu = surface.numCoefs_u();
    int nv = surface.numCoefs_v();
    vector<double>::const_iterator start = surface.coefs_begin();
    Vector3D temp;
    // Dominant in u-direction
    dominant_u = Vector3D(0.0, 0.0, 0.0);
    for (int j = 0; j < nv; ++j) {
	for (int dd = 0; dd < 3; ++dd) {
	    temp[dd] = *(start + 3*(nu*j + (nu-1)) + dd)
		- *(start + 3*(nu*j) + dd);
	}
	dominant_u += temp;
    }
    // Dominant in v-direction
    dominant_v = Vector3D(0.0, 0.0, 0.0);
    for (int i = 0; i < nu; ++i) {
	for (int dd = 0; dd < 3; ++dd) {
	    temp[dd] = *(start + 3*(nu*(nv-1) + i) + dd)
		- *(start + 3*i + dd);
	}
	dominant_v += temp;
    }

    return;
}
Esempio n. 8
0
//===========================================================================
BoundingBox Torus::boundingBox() const
//===========================================================================
{
    // A rather unefficient hack...
    SplineSurface* tmp = geometrySurface();
    BoundingBox box = tmp->boundingBox();
    delete tmp;
    return box;
}
Esempio n. 9
0
int main()
{
    ObjectHeader header;
    SplineSurface surf;
    cin >> header >> surf;

    PointCloud<3> cloud(surf.coefs_begin(),
                        surf.numCoefs_u()*surf.numCoefs_v());
    cloud.writeStandardHeader(cout);
    cout << cloud;
}
Esempio n. 10
0
//===========================================================================
shared_ptr<SplineSurface> SplineUtils::refineToBezier(const SplineSurface& spline_sf)
//===========================================================================
{
    shared_ptr<SplineSurface> bez_sf;

    const BsplineBasis& bas_u = spline_sf.basis_u();
    const BsplineBasis& bas_v = spline_sf.basis_v();
    const int order_u = bas_u.order();
    const int order_v = bas_v.order();

    // We extract the unique knots.
    vector<double> new_knots_u, new_knots_v;
    // vector<double> ref_knots_u, ref_knots_v;
    vector<double>::const_iterator iter = bas_u.begin();
    while (iter != bas_u.end() - order_u)
    {
	if (iter[0] != iter[1])
	{
	    int knot_mult = bas_u.knotMultiplicity(iter[0]);
	    int num_insert = order_u - knot_mult;
	    if (num_insert > 0)
	    {
		new_knots_u.insert(new_knots_u.end(), num_insert, iter[0]);
	    }
	}
	++iter;
    }

    iter = bas_v.begin();
    while (iter != bas_v.end() - order_v)
    {
	if (iter[0] != iter[1])
	{
	    int knot_mult = bas_v.knotMultiplicity(iter[0]);
	    int num_insert = order_v - knot_mult;
	    if (num_insert > 0)
	    {
		new_knots_v.insert(new_knots_v.end(), num_insert, iter[0]);
	    }
	}
	++iter;
    }

    bez_sf = insertKnots(spline_sf,
			 new_knots_u, new_knots_v);

    return bez_sf;
}
// ============================================================================
vector<CurveVec> SSurfTraceIsocontours(const SplineSurface& ss,
				       const vector<double>& isovals,
				       const double tol, 
				       bool include_3D_curves,
				       bool use_sisl_marching)
// ============================================================================
{
  assert(ss.dimension() == 1); // only intended to work for spline functions
  
  // Compute topology for each requested level-set.  We use SISL for this
  SISLSurf* sislsurf1D = GoSurf2SISL(ss, false);
  SISLSurf* sislsurf3D = use_sisl_marching ? make_sisl_3D(ss) : nullptr;
  
  // Defining function tracing out the level set for a specified isovalue
  const function<CurveVec(double)> comp_lset = [&] (double ival)
    {return compute_levelset(ss, sislsurf1D, sislsurf3D, ival, tol,
			     include_3D_curves, use_sisl_marching);};

  // Computing all level-set curves for all isovalues ("transforming" each
  // isovalue into its corresponding level-set)
  const vector<CurveVec> result = apply_transform(isovals, comp_lset);

  // Cleaning up after use of SISL objects
  freeSurf(sislsurf1D);
  if (sislsurf3D)
    freeSurf(sislsurf3D);

  // Returning result
  return result;
}
Esempio n. 12
0
//==========================================================================
void create_bary_coord_system3D(const SplineSurface& surface,
				BaryCoordSystem3D& bc)
//==========================================================================
{
    BoundingBox box = surface.boundingBox();
    create_bary_coord_system3D(box, bc);
    return;
}
Esempio n. 13
0
//===========================================================================
SplineSurface* Torus::createSplineSurface() const
//===========================================================================
{
    double umin = domain_.umin();
    double umax = domain_.umax();

    shared_ptr<Circle> circle = getMinorCircle(umin);
    shared_ptr<SplineCurve> sccircle(circle->geometryCurve());
    double angle = parbound_.umax() - parbound_.umin();

    SplineSurface* sstorus 
	= SweepSurfaceCreator::rotationalSweptSurface(*sccircle, angle,
						      location_, z_axis_);
    sstorus->basis_u().rescale(umin, umax);

    if (isSwapped())
        sstorus->swapParameterDirection();

    return sstorus;
}
Esempio n. 14
0
int main(int argc, char** argv)
{
    if (argc < 3) {
	cerr << "Usage: " << argv[0] << " u_res v_res" << endl;
	return 1;
    }
    int ures = atoi(argv[1]);
    int vres = atoi(argv[2]);

    ObjectHeader head;
    cin >> head;
    ASSERT(head.classType() == SplineSurface::classType());
    SplineSurface sf;
    cin >> sf;
    vector<double> points;
    vector<double> param_u;
    vector<double> param_v;
    sf.gridEvaluator(ures, vres, points, param_u, param_v);
    RectGrid grid(ures, vres, sf.dimension(), &points[0]);
    grid.writeStandardHeader(cout);
    grid.write(cout);
}
Esempio n. 15
0
int main(int argc, char** argv)
{
    // Read the curve from file
    std::ifstream input(argv[1]);
    if (input.bad()) {
        std::cerr << "File error (no file or corrupt file specified)."
                  << std::endl;
        return 1;
    }
    ObjectHeader header;
    SplineSurface surface;
    input >> header >> surface;

    // Loop through parameter space
    const int samples = 50;
    double increment_u = (surface.endparam_u()
                          - surface.startparam_u()) / (samples-1);
    double increment_v = (surface.endparam_v()
                          - surface.startparam_v()) / (samples-1);
    Point result;
    double param_u = surface.startparam_u();
    int prec = (int)std::cout.precision(15);
    for (int i = 0; i < samples; ++i) {
        double param_v = surface.startparam_v();
        for (int j = 0; j < samples; ++j) {
            surface.point(result, param_u, param_v);
            std::cout << result[0] << "\t" << result[1] << "\t"
                      << result[2] << std::endl;
            param_v += increment_v;
        }
        std::cout << std::endl;
        param_u += increment_u;
    }
    std::cout.precision(prec);

    return 0;
}
Esempio n. 16
0
//===========================================================================
shared_ptr<SplineSurface> SurfaceCreators::mergeRationalParts(const SplineSurface& nom_sf,
							      const SplineSurface& den_sf,
							      bool weights_in_first)
//===========================================================================
{
    ASSERT((!nom_sf.rational()) && (!den_sf.rational()));
    ASSERT(den_sf.dimension() == 1);

    int dim = nom_sf.dimension();

    // We first make sure they share spline space.
    vector<shared_ptr<SplineSurface> > sfs;
    sfs.push_back(shared_ptr<SplineSurface>(nom_sf.clone()));
    sfs.push_back(shared_ptr<SplineSurface>(den_sf.clone()));
    double knot_diff_tol = 1e-06;
    GeometryTools::unifySurfaceSplineSpace(sfs, knot_diff_tol);

    vector<double> rcoefs;
    vector<double>::const_iterator iter = sfs[0]->coefs_begin();
    vector<double>::const_iterator riter = sfs[1]->coefs_begin();
    int num_coefs = sfs[0]->numCoefs_u()*sfs[0]->numCoefs_v();
    for (int ki = 0; ki < num_coefs; ++ki) {
	for (int kj = 0; kj < dim; ++kj) {
	    if (weights_in_first) {
		rcoefs.push_back(iter[ki*dim+kj]);
	    } else {
		rcoefs.push_back(iter[ki*dim+kj]*riter[ki]);
	    }
	}
	rcoefs.push_back(riter[ki]);
    }

    shared_ptr<SplineSurface> rat_sf(new SplineSurface
				     (sfs[0]->numCoefs_u(), sfs[0]->numCoefs_v(),
				      sfs[0]->order_u(), sfs[0]->order_v(),
				      sfs[0]->basis_u().begin(), sfs[0]->basis_v().begin(),
				      rcoefs.begin(), dim, true));

    return rat_sf;
}
Esempio n. 17
0
//===========================================================================
shared_ptr<SplineSurface>
SurfaceCreators::mult1DBezierPatches(const SplineSurface& patch1,
				     const SplineSurface& patch2)
//===========================================================================
{
    // @@sbr This should be fixed shortly. Nothing more than separating the
    // spatial and rational components.
    ASSERT(!patch1.rational() && !patch2.rational());

    // We should of course also check the actual knots, but why bother (trusting the user).
    //     ASSERT(basis1_u.numCoefs() == basis2_u.numCoefs() &&
    // 	   basis1_v.numCoefs() == basis2_v.numCoefs() &&
    // 	   basis1_u.order() == basis2_u.order() &&
    // 	   basis1_v.order() == basis2_v.order());
    ASSERT((patch1.dimension() == 1) && (patch2.dimension() == 1));
    // @@sbr Suppose we could allow for differing orders (but equal parameter domain).

    // Ported from SISL routine s6multsfs().
    int order = max(2*(patch1.order_u() - 1) + 1, 2*(patch1.order_v() - 1) + 1);;
    vector<double> pascal((order+1)*(order+2)/2, 0.0); // Binomial coefficients (Pascal's triangle)
    int ki, kj;
    vector<double>::iterator psl1;     /* Pointer used in Pascals triangle */
    vector<double>::iterator psl2;     /* Pointer used in Pascals triangle */
    for(ki = 0, psl2 = pascal.begin(); ki <= order ; ki++, psl1 = psl2, psl2 += ki) {
	psl2[0] = 1.0;

	for(kj = 1; kj < ki; kj++)
	    psl2[kj] = psl1[kj-1] + psl1[kj];

	psl2[ki] = 1.0;
    }

    int order11 = patch1.order_u();
    int order12 = patch1.order_v();
    int order21 = patch2.order_u();
    int order22 = patch2.order_v();

    vector<double>::const_iterator c1 = patch1.coefs_begin();
    vector<double>::const_iterator c2 = patch2.coefs_begin();

    //     vector<double> mult_coefs(patch1.numCoefs_u()*patch1.numCoefs_v()*patch1.dimension(), 0.0);
    int p1,p2,r1,r2;
    int kgrad11 = order11-1;
    int kgrad12 = order12-1;
    int kgrad21 = order21-1;
    int kgrad22 = order22-1;
    int kgrad1  =  kgrad11 + kgrad21; // Degree of mult basis functions in 1st dir.
    int kgrad2  =  kgrad12 + kgrad22;
    int kstop2 = order12+order22-1;
    int kstop1 = order11+order21-1;
    vector<double> mult_coefs(kstop1*kstop2, 0.0);
    vector<double>::const_iterator psl_kgrad11 = pascal.begin()+kgrad11*(kgrad11+1)/2;
    vector<double>::const_iterator psl_kgrad12 = pascal.begin()+kgrad12*(kgrad12+1)/2;
    vector<double>::const_iterator psl_kgrad21 = pascal.begin()+kgrad21*(kgrad21+1)/2;
    vector<double>::const_iterator psl_kgrad22 = pascal.begin()+kgrad22*(kgrad22+1)/2;
    vector<double>::const_iterator psl_kgrad1  = pascal.begin()+kgrad1 *(kgrad1 +1)/2;
    vector<double>::const_iterator psl_kgrad2  = pascal.begin()+kgrad2 *(kgrad2 +1)/2;
    vector<double>::const_iterator qsc1, qsc2;
    double tsum, sumi;
    vector<double>::iterator temp = mult_coefs.begin();
    double tdiv, t2;
    int kstop3, kstop4;

    for (p2 = 0; p2 < kstop2; ++p2)
	for (p1 = 0; p1 <kstop1; p1++, temp++) {
	    tdiv  =  psl_kgrad1[p1]*psl_kgrad2[p2];
	    kstop4  =  min(p2,kgrad12);
	    for (r2 = max(0,p2-kgrad22),tsum = 0.0; r2 <= kstop4; r2++) {
		t2  =  psl_kgrad12[r2]*psl_kgrad22[p2-r2];
		kstop3  =  min(p1,kgrad11);
		for (r1 = max(0,p1-kgrad21),sumi = 0.0,
			 qsc1 = c1+r2*order11,qsc2 = c2+(p2-r2)*order21;
		     r1 <= kstop3; r1++)
		    sumi +=  psl_kgrad11[r1]*psl_kgrad21[p1-r1]*qsc1[r1]*qsc2[p1-r1];
		tsum +=  t2*sumi;
	    }
	    tsum /=  tdiv;
	    *temp  =  tsum;
	}
    //     *order_newsurf1 = kstop1;
    //     *order_newsurf2 = kstop2; 

    // We must add knots to input basises according to new order.
    vector<double> new_knots_u, new_knots_v;
    new_knots_u.insert(new_knots_u.begin(), kstop1, patch1.startparam_u());
    new_knots_u.insert(new_knots_u.end(), kstop1, patch1.endparam_u());
    new_knots_v.insert(new_knots_v.begin(), kstop2, patch1.startparam_v());
    new_knots_v.insert(new_knots_v.end(), kstop2, patch1.endparam_v());

    // Finally we create the spline sf with the multiplied coefs.
    shared_ptr<SplineSurface> mult_sf(new SplineSurface(kstop1, kstop2, kstop1, kstop2,
							       new_knots_u.begin(), new_knots_v.begin(),
							       mult_coefs.begin(), patch1.dimension(),
							       patch1.rational()));
    //     SplineSurface* mult_sf = new SplineSurface(patch1.numCoefs_u(), patch1.numCoefs_v(),
    // 					       patch1.order_u(), patch1.order_v(),
    // 					       patch1.basis_u().begin(), patch1.basis_v().begin(),
    // 					       mult_coefs.begin(), patch1.dimension(),
    // 					       patch1.rational());

    return mult_sf;
}
Esempio n. 18
0
int main(int argc, char** argv)
{
    // Read the surface from a file in Go-format.
    string filename("degenerate_sf.g2");
    cout << "\nProgram " << argv[0] << " using file " << filename.c_str() << endl;
    ifstream file(filename.c_str());
    if (!file) {
	cerr << "\nFile error. Could not open file: " << filename.c_str() << endl;
	return 1;
    }
    ObjectHeader head;
    SplineSurface surf;
    file >> head;
    if (!head.classType() == SplineSurface::classType()) {
	THROW("Object type is NOT SplineSurface.");
    }
    file >> surf;
    file.close();

    // Read the points from a file. xyz-coordinates.
    string point_filename("inp_degen_surf_close_points.dat");
    ifstream pfile(point_filename.c_str());
    if (!pfile) {
	cerr << "\nFile error. Could not open file: " << point_filename.c_str() << endl;
	return 1;
    }
    vector<Point> points;
    while (1) {
	Point p(3);
	pfile >> p;
	if (!pfile) break;
	points.push_back(p);
    }
    pfile.close();
    int N = (int)points.size();
    
    cout << "\nProgram '" << argv[0] << "' using input files '" << filename.c_str()
	 << "' and '" << point_filename.c_str()
	 << ", and output file 'degen_surf_close_points.g2'." << endl;

    // Find the points on the surface closest to these points.
    double close_u;      // Closest point's u parameter.
    double close_v;      // Closest point's v parameter.
    Point  close_pt(3);  // Closest point's coordinates.
    double close_dist;   // Distance between the two points.
    double epsilon = 1e-8;  // Parameter tolerance

    // Write to file vectors from a point to the closest point on the surface.
    ofstream fout2("degenerate_sf_close_points.g2");
    // Class_LineCloud=410 MAJOR_VERSION=1 MINOR_VERSION=1 auxillary data=4
    // The four auxillary data values defines the colour (r g b alpha)
    fout2 << "410 1 0 4 255 0 0 255" << endl; // Header.
    fout2 << N << endl;

    // Find closest point using the whole surface. (The two last arguments
    // 'RectDomain* domain_of_interest' and 'double *seed' are by default
    // equal to 0).
    cout << "\nClosest points from inputfile points to points on the surface ";
    for (int i=0; i<N; ++i) {
	surf.closestPoint(points[i], close_u, close_v, close_pt, close_dist,
			  epsilon);
	fout2 << points[i] << ' ' <<  close_pt << endl;  // write vector
	cout << "Point: " << points[i] << "  Closest point: " << close_pt
	     << "\nParameter values= " <<  close_u << " , " <<  close_v
	     << "  Closest distance= " << close_dist << endl;
    }
    fout2.close();


    // Find closest point from points on the surface. Should be 0 + some tolerance.
    cout << "\nClosest points from points on the surface." << endl;
    const int nsp = 9;
    double du = (surf.endparam_u() - surf.startparam_u()) / (nsp-1);
    double dv = (surf.endparam_v() - surf.startparam_v()) / (nsp-1);
    cout << "Parameter u from " << surf.startparam_u() << " to " << surf.endparam_u()
	 << "  step "  << du << endl;
    cout << "Parameter v from " << surf.startparam_v() << " to " << surf.endparam_v()
	 << "  step "  << dv << endl;
    double max_dist = 0.0;
    Point point;
    for (double v=surf.startparam_v(); v<=surf.endparam_v(); v += dv) {
	for (double u=surf.startparam_u(); u<=surf.endparam_u(); u += du) {
	    surf.point(point, u, v);  // interpolate at u,v
	    surf.closestPoint(point, close_u, close_v, close_pt, close_dist,
			      epsilon);
#ifdef DEBUG
	    cout << "\n        Point: " << point << "\nClosest point: " << close_pt
		 << "\nParameter values= " <<  close_u << " , " <<  close_v
		 << "  Closest distance= " << close_dist << endl;
#endif
	}
	max_dist = std::max(close_dist, max_dist);
    }
    cout << "\nMaximum distance between an interpolated point and the "
	 << "corresponding input point is " << max_dist << '\n' << endl;

}
Esempio n. 19
0
shared_ptr<SplineSurface>
GeometryTools::surfaceSum(const SplineSurface& sf1, double fac1,
                          const SplineSurface& sf2, double fac2, double num_tol)

//********************************************************************
// Addition of two signed SplineSurfaces, i.e. this function can
// also be used for subtraction. The surfaces is assumed to live on
// the same parameter domain, but may have different knot vectors.
//********************************************************************
{
    // Check input
    ALWAYS_ERROR_IF(fabs(sf1.startparam_u() - sf2.startparam_u()) > num_tol ||
                    fabs(sf1.endparam_u() - sf2.endparam_u()) > num_tol ||
                    fabs(sf1.startparam_v() - sf2.startparam_v()) > num_tol ||
                    fabs(sf1.endparam_v() - sf2.endparam_v()) > num_tol,
                    "Inconsistent parameter domain.");

    // For the time being
    if (sf1.rational() || sf2.rational()) {
        THROW("Sum of rational surfaces is not implemented");
    }

    // Make copy of surfaces
    vector<shared_ptr<SplineSurface> > surfaces;
    surfaces.reserve(2);
    shared_ptr<SplineSurface> sf;
// #ifdef _MSC_VER
//     sf = shared_ptr<SplineSurface>(dynamic_cast<SplineSurface*>(sf1.clone()));
// #else
    sf = shared_ptr<SplineSurface>(sf1.clone());
// #endif
    surfaces.push_back(sf);
// #ifdef _MSC_VER
//     sf = shared_ptr<SplineSurface>(dynamic_cast<SplineSurface*>(sf2.clone()));
// #else
    sf = shared_ptr<SplineSurface>(sf2.clone());
// #endif
    surfaces.push_back(sf);

    // Make sure that the surfaces live on the same knot vector
    GeometryTools::unifySurfaceSplineSpace(surfaces, num_tol);

    // Add signed coefficients
    vector<double> coefs;
    int nmb_coefs_u = surfaces[0]->numCoefs_u();
    int nmb_coefs_v = surfaces[0]->numCoefs_v();
    int dim = surfaces[0]->dimension();
    coefs.resize(dim*nmb_coefs_u*nmb_coefs_v);
    int ki;
    std::vector<double>::iterator s1 = surfaces[0]->coefs_begin();
    std::vector<double>::iterator s2 = surfaces[1]->coefs_begin();
    for (ki=0; ki<dim*nmb_coefs_u*nmb_coefs_v; ki++)
        coefs[ki] = fac1*s1[ki] + fac2*s2[ki];

    // Create output curve
    shared_ptr<SplineSurface>
    surfacesum(new SplineSurface(nmb_coefs_u, nmb_coefs_v,
                                 surfaces[0]->order_u(),
                                 surfaces[0]->order_v(),
                                 surfaces[0]->basis_u().begin(),
                                 surfaces[0]->basis_v().begin(),
                                 &coefs[0], dim, false));

    return surfacesum;
}
Esempio n. 20
0
int main(int argc, char** argv)
{
  if (argc < 3) {
      cerr << "Usage: " << argv[0]
	   << " inputfile outputfile [max_coefs_u max_coefs_v]" << endl;
      return 1;
  }

  ifstream in(argv[1]);
  ofstream out(argv[2]);

  if (!in || !out) {
    cout << "Bad file(s) or filename(s)." << endl;
    return 1;
  }

  ObjectHeader oh;
  SplineSurface sf;

  in >> oh >> sf;


  int m = sf.numCoefs_v() - sf.order_v() + 1;
  int n = sf.numCoefs_u() - sf.order_u() + 1;
  if (argc >= 5) {
      // Note the weird order (v then u)
      m = min(atoi(argv[4])-sf.numCoefs_v(), m);
      n = min(atoi(argv[3])-sf.numCoefs_u(), n);
  }
  int i;
  vector<double> newknots_v;
  vector<double> newknots_u;
  for (i = 0; i < m; ++i) {
    vector<double>::const_iterator it = sf.basis_v().begin();
    double newknot = 0.5*it[sf.order_v()+i-1] + 0.5*it[sf.order_v()+i];
    newknots_v.push_back(newknot);
  }
  for (i = 0; i < n; ++i) {
    vector<double>::const_iterator it = sf.basis_u().begin();
    double newknot = 0.5*it[sf.order_u()+i-1] + 0.5*it[sf.order_u()+i];
    newknots_u.push_back(newknot);
  }

  sf.insertKnot_v(newknots_v);
  sf.insertKnot_u(newknots_u);

  out << oh << sf;
  return 0;
}
Esempio n. 21
0
int main(int argc, char** argv)
{
    const string inp_curve_filename("approj_curve.g2");

    cout << "\nRunning program '" << argv[0]
	 << "'\nSpline curve filename= '"
	 << inp_curve_filename.c_str() << "'." << endl;

    // Read spline curve file
    ifstream cfile(inp_curve_filename.c_str());
    if (!cfile) {
	cerr << "\nFile error. Could not open file: "
	     << inp_curve_filename.c_str() << endl;
	return 1;
    }
    shared_ptr<SplineCurve> curve(new SplineCurve);
    ObjectHeader header;
    cfile >> header;
    if (!header.classType() == SplineCurve::classType()) {
	THROW("Object type is NOT SplineCurve.");
    }
    cfile >> (*curve);
    cfile.close();

    // Print some curve information
    Point pnt3d(3);
    curve->point(pnt3d, curve->startparam());     
    cout << "\nSplineCurve:  Dim= " << curve->dimension()
	 << "\nStart.  Param= " << curve->startparam() << "  Point= "
	 << pnt3d << endl;
    curve->point(pnt3d, curve->endparam());    
    cout << "End.  Param= " << curve->endparam() << "  Point= "
	 << pnt3d << endl;
    cout << "Bounding box =   " << curve->boundingBox() << endl;

    // Create a surface by rotating the curve around the axis an angle of 2PI.
    double angle = 2.0*M_PI;
    Point point_on_axis(0.0, 5.0, 200.0); 
    Point axis_dir(1.0, 0.0, 0.0);
    SplineSurface* surf =
	SweepSurfaceCreator::rotationalSweptSurface(*curve, angle,
						    point_on_axis, axis_dir);
    cout << "\nSurface:  Dim= " << surf->dimension() << endl;
    cout << "Bounding box =  "  << surf->boundingBox() << endl;
    cout << "Point on axis =  " << point_on_axis << endl;
    cout << "Axis direction = " << axis_dir << endl;

    // Open output  file
    ofstream fout("rotational_swept_surface.g2");
    // Write curve to file. Colour=red.
    fout << "100 1 0 4 255 0 0  255" << endl;
    curve->write(fout);

    // Write surface to file. Default colour=blue.    
    surf->writeStandardHeader(fout);
    surf->write(fout);

    // Write axis to file. Colour=green.
    double dlength = 1.2*(surf->boundingBox().high()[0] -
			  surf->boundingBox().low()[0]);
    Point endp = point_on_axis + dlength*axis_dir;
    SplineCurve* axis =  new SplineCurve(point_on_axis, endp);
    fout << "100 1 0 4 0 255 0  255" << endl;
    axis->write(fout);

    // cout << "Open the file 'rotational_swept_surface.g2' in 'goview' to look"
    //      << " at the results" << endl;

    delete surf;
    delete axis;

    return 0;
}
Esempio n. 22
0
//==========================================================================
void make_matrix(const SplineSurface& surf, int deg,
		 vector<vector<double> >& mat)
//==========================================================================
{
    // Create BernsteinMulti. In the rational case the weights are
    // included in an "extra" coordinate.
    int dim = surf.dimension();
    bool rational = surf.rational();
    vector<BernsteinMulti> beta;
    spline_to_bernstein(surf, beta);

    // Make vector of basis functions (with the surface plugged in) by
    // using recursion
    int num = (deg+1) * (deg+2) * (deg+3) / 6;
    vector<BernsteinMulti> basis(num);
    vector<BernsteinMulti> tmp(num);
    basis[0] = BernsteinMulti(1.0);
    BernsteinMulti zero_multi = BernsteinMulti(0.0);
    for (int r = 1; r <= deg; ++r) {
	int m = -1;
	int tmp_num = (r + 1) * (r + 2) * (r + 3) / 6;
	fill(tmp.begin(), tmp.begin() + tmp_num, zero_multi);
	for (int i = 0; i < r; ++i) {
	    int k = (i + 1) * (i + 2) / 2;
	    for (int j = 0; j <= i; ++j) {
		for (int l = 0; l <= j; ++l) {
		    ++m;
		    tmp[m] += beta[0] * basis[m];
		    tmp[m + k] += beta[1] * basis[m];
		    tmp[m + 1 + j + k] += beta[2] * basis[m];
		    tmp[m + 2 + j + k] += beta[3] * basis[m];
		}
	    }
	}
	basis.swap(tmp);
    }

    // Fill up the matrix mat
    int deg_u = surf.order_u() - 1;
    int deg_v = surf.order_v() - 1;
    int numbas = (deg * deg_u + 1) * (deg * deg_v + 1);
    mat.resize(numbas);
    for (int row = 0; row < numbas; ++row) {
	mat[row].resize(num);
	for (int col = 0; col < num; ++col) {
	    mat[row][col] = basis[col][row];
	}
    }

    // If rational, include diagonal scaling matrix. Dividing the
    // D-matrix by the weights has the same effect as multiplying the
    // basis with the same weights. (Included for numerical reasons only -
    // it makes the basis a partition of unity.)
    if (rational) {
        BernsteinMulti weights = BernsteinMulti(1.0);
	for (int i = 1; i <= deg; ++i)
	    weights *= beta[dim];
	for (int row = 0; row < numbas; ++row) {
	    double scaling = 1.0 / weights[row];
	    for (int col = 0; col < num; ++col) {
		mat[row][col] *= scaling;
	    }
	}
    }

//     // Check Frobenius norm
//     double norm = 0.0;
//     for (int irow = 0; irow < numbas; ++irow) {
//  	for (int icol = 0; icol < num; ++icol) {
//  	    norm += mat[irow][icol] * mat[irow][icol];
//  	}
//     }
//     norm = sqrt(norm);
//     cout << "Frobenius norm = " << norm << endl;

    return;
}
Esempio n. 23
0
//===========================================================================
void SplineUtils::refinedBezierCoefsCubic(SplineSurface& spline_sf,
					  int ind_u_min, int ind_v_min,
					  vector<double>& bez_coefs)
//===========================================================================
{
    assert(!spline_sf.rational());

    if (bez_coefs.size() != 48)
	bez_coefs.resize(48);
    std::fill(bez_coefs.begin(), bez_coefs.end(), 0.0);

    // Values for inpute spline surface.
    int dim = spline_sf.dimension();
    int order_u = spline_sf.order_u();
    int order_v = spline_sf.order_u();
    int num_coefs_u = spline_sf.numCoefs_u();
    int num_coefs_v = spline_sf.numCoefs_v();

    // Checking that input index is within range.
    assert(ind_u_min >= order_u - 1 && ind_u_min < num_coefs_u);
    assert(ind_v_min >= order_v - 1 && ind_v_min < num_coefs_v);

    BsplineBasis& basis_u = spline_sf.basis_u();
    BsplineBasis& basis_v = spline_sf.basis_v();
    double* knot_u = &basis_u.begin()[0];
    double* knot_v = &basis_v.begin()[0];

    // We expect the knot index to refer to the last occurence.
    assert(knot_u[ind_u_min] != knot_u[ind_u_min+1]);
    assert(knot_v[ind_v_min] != knot_v[ind_v_min+1]);

    // We expect knot mult to be 1 or 4.
    int knot_mult_umin = (knot_u[ind_u_min-1] == knot_u[ind_u_min]) ? 4 : 1;
    int knot_mult_umax = (knot_u[ind_u_min+1] == knot_u[ind_u_min+2]) ? 4 : 1;
    int knot_mult_vmin = (knot_v[ind_v_min-1] == knot_v[ind_v_min]) ? 4 : 1;
    int knot_mult_vmax = (knot_v[ind_v_min+1] == knot_v[ind_v_min+2]) ? 4 : 1;

    bool kreg_at_ustart = (knot_mult_umin == 4);
    bool kreg_at_uend = (knot_mult_umax == 4);
    vector<double> transf_mat_u(16, 0.0);
    // if (!kreg_at_ustart && !kreg_at_uend)
    splineToBezierTransfMat(knot_u + ind_u_min - 3,
			    transf_mat_u);

#ifndef NDEBUG
    std::cout << "\ntransf_mat_u=" << std::endl;
    for (size_t kj = 0; kj < 4; ++kj)
    {
	for (size_t ki = 0; ki < 4; ++ki)
	    std::cout << transf_mat_u[kj*4+ki] << " ";
	std::cout << std::endl;
    }
    std::cout << std::endl;
#endif // NDEBUG

    // else
    // 	cubicTransfMat(knot_u + ind_u_min - 3,
    // 		       kreg_at_ustart, kreg_at_uend,
    // 		       transf_mat_u);

    bool kreg_at_vstart = (knot_mult_vmin == 4);
    bool kreg_at_vend = (knot_mult_vmax == 4);
    vector<double> transf_mat_v(16, 0.0);
    // if (!kreg_at_ustart && !kreg_at_uend)
    splineToBezierTransfMat(knot_v + ind_v_min - 3,
			    transf_mat_v);

#ifndef NDEBUG
    std::cout << "\ntransf_mat_v=" << std::endl;
    for (size_t kj = 0; kj < 4; ++kj)
    {
	for (size_t ki = 0; ki < 4; ++ki)
	    std::cout << transf_mat_v[kj*4+ki] << " ";
	std::cout << std::endl;
    }
    std::cout << std::endl;
#endif // NDEBUG

    extractBezierCoefs(&spline_sf.coefs_begin()[0],
		       num_coefs_u, num_coefs_v,
		       ind_u_min, ind_v_min,
		       transf_mat_u, transf_mat_v,
		       bez_coefs);

    return;
}
Esempio n. 24
0
//==========================================================================
bool GeometryTools::negativeProj(const SplineSurface& surface,
		  const Array<Vector3D, 2>& refvector,
		  const double eps)
//==========================================================================
{
    int num_u = surface.numCoefs_u();
    int num_v = surface.numCoefs_v();
    Vector3D temp;
    int i = 0, j = 0;
    while (i < num_u-1) {
	j = 0;
	while (j < num_v) {
	    temp[0] = *(surface.coefs_begin() + 3*(num_u*j + i+1))
		- *(surface.coefs_begin() + 3*(num_u*j + i));
	    temp[1] = *(surface.coefs_begin() + 3*(num_u*j + i+1) + 1)
		- *(surface.coefs_begin() + 3*(num_u*j + i) + 1);
	    temp[2] = *(surface.coefs_begin() + 3*(num_u*j + i+1) + 2)
		- *(surface.coefs_begin() + 3*(num_u*j + i) + 2);
	    // Positive tolerance means that there must be a small
	    // _nonzero_ negative projection before it is reported as
	    // negative!
	    if (temp * refvector[0] < -eps)
		return true;
	    ++j;
	}
	++i;
    }
    i = 0;
    while (i < num_u) {
	j = 0;
	while (j < num_v-1) {
	    temp[0] = *(surface.coefs_begin() + 3*(num_u*(j+1) + i))
		- *(surface.coefs_begin() + 3*(num_u*j + i));
	    temp[1] = *(surface.coefs_begin() + 3*(num_u*(j+1) + i) + 1)
		- *(surface.coefs_begin() + 3*(num_u*j + i) +1);
	    temp[2] = *(surface.coefs_begin() + 3*(num_u*(j+1) + i) + 2)
		- *(surface.coefs_begin() + 3*(num_u*j + i) + 2);
	    // Positive tolerance means that there must be a small
	    // _nonzero_ negative projection before it is reported as
	    // negative!
	    if (temp * refvector[1] < -eps)
		return true;
	    ++j;
	}
	++i;
    }

    return false;
}
Esempio n. 25
0
//==========================================================================
void cart_to_bary(const SplineSurface& sf, const BaryCoordSystem3D& bc,
		  SplineSurface& sf_bc)
//==========================================================================
{
    ALWAYS_ERROR_IF(sf.dimension() != 3, "Dimension must be 3.");


    int nu = sf.numCoefs_u();
    int nv = sf.numCoefs_v();
    Vector3D cart;
    Vector4D bary;
    vector<double> new_coefs;
    if (!sf.rational()) {
	new_coefs.resize(4 * nu * nv);
	for (int iv = 0; iv < nv; ++iv) {
	    for (int iu = 0; iu < nu; ++iu) {
		int offset = nu * iv + iu;
		cart = Vector3D(sf.coefs_begin() + 3 * offset);
		bary = bc.cartToBary(cart);
		for (int j = 0; j < 4; ++j) {
		    new_coefs[4*offset + j] = bary[j];
		}
	    }
	}
    } else {
	new_coefs.resize(5 * nu * nv);
	for (int iv = 0; iv < nv; ++iv) {
	    for (int iu = 0; iu < nu; ++iu) {
		int offset = nu * iv + iu;
		cart = Vector3D(sf.coefs_begin() + 3 * offset);
		bary = bc.cartToBary(cart);
		double w = sf.rcoefs_begin()[4*offset + 3];
		for (int j = 0; j < 4; ++j) {
		    new_coefs[5*offset + j] = bary[j] * w;
		}
		new_coefs[5*offset + 4] = w;
	    }
	}
    }
    sf_bc = SplineSurface(nu, nv, sf.order_u(), sf.order_v(),
			  sf.basis_u().begin(), sf.basis_v().begin(),
			  new_coefs.begin(), 4, sf.rational());
    return;	
}
Esempio n. 26
0
//===========================================================================
shared_ptr<SplineSurface> SurfaceCreators::insertParamDomain(const SplineSurface& sf_1d)
//===========================================================================
{
    shared_ptr<SplineSurface> sf_1d_cp(sf_1d.clone());
    int dim = sf_1d.dimension();
    ASSERT(dim == 1);

    bool rat = sf_1d_cp->rational();
    // The returned object should be linear in the first two directions.
    // We create an additional 1d-sf describing the linear param space.
    vector<double> lin_knots_u(4, sf_1d_cp->startparam_u());
    lin_knots_u[2] = lin_knots_u[3] = sf_1d_cp->endparam_u();
    vector<double> lin_knots_v(4, sf_1d_cp->startparam_v());
    lin_knots_v[2] = lin_knots_v[3] = sf_1d_cp->endparam_v();
    int rdim = (rat) ? dim + 1 : dim;
    vector<double> lin_coefs_u(4, 1.0);
    lin_coefs_u[0] = lin_coefs_u[2] = lin_knots_u[0];
    lin_coefs_u[1] = lin_coefs_u[3] = lin_knots_u[2];
    shared_ptr<SplineSurface> lin_sf_u(new SplineSurface(2, 2, 2, 2,
							 lin_knots_u.begin(), lin_knots_v.begin(),
							 lin_coefs_u.begin(), 1));
    vector<double> lin_coefs_v(4*rdim, 1.0);
    lin_coefs_v[0] = lin_coefs_v[1] = lin_knots_v[0];
    lin_coefs_v[2] = lin_coefs_v[3] = lin_knots_v[2];
    shared_ptr<SplineSurface> lin_sf_v(new SplineSurface(2, 2, 2, 2,
							 lin_knots_u.begin(), lin_knots_v.begin(),
							 lin_coefs_v.begin(), 1));

    if (rat) {
	// We extract the rational part (i.e. the denominator sf) and mult it the linear parts.
	vector<shared_ptr<SplineSurface> > rat_parts = separateRationalParts(*sf_1d_cp);
	lin_sf_u = SurfaceCreators::mult1DSurfaces(*lin_sf_u, *rat_parts[1]);
	lin_sf_v = SurfaceCreators::mult1DSurfaces(*lin_sf_v, *rat_parts[1]);

	// We must then raise the order of sf_1d_cp by 1.
	rat_parts[0]->raiseOrder(1, 1);
	rat_parts[1]->raiseOrder(1, 1);
	sf_1d_cp = mergeRationalParts(*rat_parts[0], *rat_parts[1], false);
    } else {
	int raise_u = sf_1d_cp->order_u() - 2;
	int raise_v = sf_1d_cp->order_v() - 2;
	lin_sf_u->raiseOrder(raise_u, raise_v);
	lin_sf_v->raiseOrder(raise_u, raise_v);
    }

    // If not bezier we must also refine the space.
    int ik1 = sf_1d_cp->order_u();
    int ik2 = sf_1d_cp->order_v();
    int in1 = sf_1d_cp->numCoefs_u();
    int in2 = sf_1d_cp->numCoefs_v();
    if (ik1 < in1 || ik2 < in2)
      {
	vector<double> new_knots_u(sf_1d_cp->basis_u().begin() + ik1,
				   sf_1d_cp->basis_u().begin() + in1);
	vector<double> new_knots_v(sf_1d_cp->basis_v().begin() + ik2,
				   sf_1d_cp->basis_v().begin() + in2);
	lin_sf_u->insertKnot_u(new_knots_u);
	lin_sf_u->insertKnot_v(new_knots_v);
	lin_sf_v->insertKnot_u(new_knots_u);
	lin_sf_v->insertKnot_v(new_knots_v);
      }

    // Finally we create our space sf (i.e. living in a 3-dimensional env).
    vector<double> all_coefs;
    int coefs_size = sf_1d_cp->numCoefs_u()*sf_1d_cp->numCoefs_v();
    for (int ki = 0; ki < coefs_size; ++ki) {
	if (rat) {
	    all_coefs.push_back(lin_sf_u->coefs_begin()[ki*dim]);
	    all_coefs.push_back(lin_sf_v->coefs_begin()[ki*dim]);
	    all_coefs.push_back(sf_1d_cp->rcoefs_begin()[ki*rdim]);
	    all_coefs.push_back(sf_1d_cp->rcoefs_begin()[ki*rdim+1]);
	} else {
	    all_coefs.push_back(lin_sf_u->coefs_begin()[ki*dim]);
	    all_coefs.push_back(lin_sf_v->coefs_begin()[ki*dim]);
	    all_coefs.push_back(sf_1d_cp->coefs_begin()[ki*dim]);
	}
    }
    shared_ptr<SplineSurface> return_sf(new SplineSurface(sf_1d_cp->numCoefs_u(), sf_1d_cp->numCoefs_v(),
							  sf_1d_cp->order_u(), sf_1d_cp->order_v(),
							  sf_1d_cp->basis_u().begin(),
							  sf_1d_cp->basis_v().begin(),
							  all_coefs.begin(), 3, rat));

    return return_sf;
}
Esempio n. 27
0
//===========================================================================
vector<shared_ptr<SplineSurface> >
SurfaceCreators::separateRationalParts(const SplineSurface& sf)
//===========================================================================
{
    bool rat = sf.rational();
    ASSERT(rat);

    int dim= sf.dimension();
    int rdim = dim + 1;
    vector<shared_ptr<SplineSurface> > sep_sfs;
    vector<double> coefs(sf.coefs_begin(), sf.coefs_end());
    int nmb1 = sf.numCoefs_u();
    int nmb2 = sf.numCoefs_v();
    vector<double> rcoefs;
    int num_coefs = nmb1*nmb2;
    vector<double>::const_iterator rcoef_iter = sf.rcoefs_begin();
    for (int ki = 0; ki < num_coefs; ++ki) {
	rcoefs.push_back(rcoef_iter[ki*rdim+1]);
	for (int kj = 0; kj < dim; ++kj) {
	    coefs[ki*dim+kj] /= (rcoefs.back());
	}
    }
    sep_sfs.push_back(shared_ptr<SplineSurface>
		      (new SplineSurface(nmb1, nmb2, sf.order_u(), sf.order_v(),
					 sf.basis_u().begin(), sf.basis_v().begin(),
					 coefs.begin(), dim)));
    sep_sfs.push_back(shared_ptr<SplineSurface>
		      (new SplineSurface(nmb1, nmb2, sf.order_u(), sf.order_v(),
					 sf.basis_u().begin(), sf.basis_v().begin(),
					 rcoefs.begin(), 1)));

    return sep_sfs;
}
Esempio n. 28
0
int main(int argc, char** argv)
{
  bool surface_model = true;
  char* infile = 0;

  for (int i = 1; i < argc; i++)
    if (!infile)
      infile = argv[i];
    else
      std::cerr <<"  ** Unknown option ignored: "<< argv[i] << std::endl;
  
  size_t i = 0;
  while (i < strlen(infile) && isspace(infile[i])) i++;
  std::ifstream isp(infile+i);

  // For spline surface models
  std::vector<SplineSurface*> in_surf;

  // For spline volume models
  std::vector<SplineVolume*> in_vol;

  ObjectHeader head;
  int n = 0;
  while (!isp.eof()) {
    head.read(isp);
    if (head.classType() == Class_SplineVolume) {
      SplineVolume* v(new SplineVolume());
      v->read(isp);
      in_vol.push_back(v);
      surface_model = false;
    }
    else if (head.classType() == Class_SplineSurface) {
      SplineSurface* s(new SplineSurface());
      s->read(isp);
      in_surf.push_back(s);
      surface_model = true;
    }
    else
      std::cerr << "Unknown spline model" << std::endl;
    
    // Ignore blanks
    ws(isp); 
  }

  if (surface_model) {
    std::vector<SplineSurface*> out_surf;

    for (i = 0;i < in_surf.size();i++) {
      SplineSurface* s_it = in_surf[i];

      // basis1 should be one degree higher than basis2 and C^p-1 continuous
      int ndim = s_it->dimension();
      Go::BsplineBasis b1 = s_it->basis(0).extendedBasis(s_it->order_u()+1);
      Go::BsplineBasis b2 = s_it->basis(1).extendedBasis(s_it->order_v()+1);

      // Note: Currently this is implemented for non-rational splines only.
      // TODO: Ask the splines people how to fix this properly, that is, how
      // may be obtain the correct weights for basis1 when *surf is a NURBS?
      if (s_it->rational())
        std::cerr <<"WARNING: The geometry basis is rational (using NURBS)\n."
                  <<"         The basis for the unknown fields of one degree"
                  <<" higher will however be non-rational.\n"
                  <<"         This may affect accuracy.\n"<< std::endl;

      // Compute parameter values of the Greville points
      size_t k;
      std::vector<double> ug(b1.numCoefs()), vg(b2.numCoefs());
      for (k = 0; k < ug.size(); k++)
        ug[k] = b1.grevilleParameter(k);
      for (k = 0; k < vg.size(); k++)
        vg[k] = b2.grevilleParameter(k);

      // Evaluate the spline surface at all points
      std::vector<double> XYZ(ndim*ug.size()*vg.size());
      s_it->gridEvaluator(XYZ,ug,vg);

      // Project the coordinates onto the new basis (the 2nd XYZ is dummy here)
      SplineSurface* s;
      s = Go::SurfaceInterpolator::regularInterpolation(b1,b2,
							ug,vg,XYZ,
							ndim,false,XYZ);
      
      out_surf.push_back(s);
      s->writeStandardHeader(std::cout);
      s->write(std::cout);
    }

    for (i = 0;i < out_surf.size();i++) {
      delete in_surf[i];
      delete out_surf[i];
    }
  }
  else {
    std::vector<SplineVolume*> out_vol; 

    for (i = 0;i < in_vol.size();i++) {
      SplineVolume* v_it = in_vol[i];

      // basis1 should be one degree higher than basis2 and C^p-1 continuous
      int ndim = v_it->dimension();
      Go::BsplineBasis b1 = v_it->basis(0).extendedBasis(v_it->order(0)+1);
      Go::BsplineBasis b2 = v_it->basis(1).extendedBasis(v_it->order(1)+1);
      Go::BsplineBasis b3 = v_it->basis(2).extendedBasis(v_it->order(2)+1);

      // Note: Currently this is implemented for non-rational splines only.
      // TODO: Ask the splines people how to fix this properly, that is, how
      // may be obtain the correct weights for basis1 when *v_it is a NURBS?
      if (v_it->rational())
        std::cerr <<"WARNING: The geometry basis is rational (using NURBS)\n."
                  <<"         The basis for the unknown fields of one degree"
                  <<" higher will however be non-rational.\n"
                  <<"         This may affect accuracy.\n"<< std::endl;

      // Compute parameter values of the Greville points
      size_t k;
      std::vector<double> ug(b1.numCoefs()), vg(b2.numCoefs()), wg(b3.numCoefs());
      for (k = 0; i < ug.size(); k++)
        ug[k] = b1.grevilleParameter(k);
      for (k = 0; i < vg.size(); k++)
        vg[k] = b2.grevilleParameter(k);
      for (k = 0; i < wg.size(); k++)
        wg[k] = b3.grevilleParameter(k);

      // Evaluate the spline surface at all points
      std::vector<double> XYZ(ndim*ug.size()*vg.size()*wg.size());
      v_it->gridEvaluator(ug,vg,wg,XYZ);

      // Project the coordinates onto the new basis (the 2nd XYZ is dummy here)
      SplineVolume* v;
      v = Go::VolumeInterpolator::regularInterpolation(b1,b2,b3,
						       ug,vg,wg,XYZ,
						       ndim,false,XYZ);
      
      out_vol.push_back(v);
      v->writeStandardHeader(std::cout);
      v->write(std::cout);
    }

    for (i = 0;i < out_vol.size();i++) {
      delete in_vol[i];
      delete out_vol[i];
    }
  }

  return 0;
}  
Esempio n. 29
0
int main(int argc, char** argv)
{
    if (argc != 4) {
	cout << "Usage: " << argv[0] << " FileSf FileCv aepsge" << endl;
	return 0;
    }

    ObjectHeader header;

    // Read the first curve from file
    ifstream input1(argv[1]);
    if (input1.bad()) {
	cerr << "File #1 error (no file or corrupt file specified)."
	     << std::endl;
	return 1;
    }
    header.read(input1);
    SplineSurface surf;
    surf.read(input1);
    input1.close();
    
    // Read the second curve from file
    ifstream input2(argv[2]);
    if (input2.bad()) {
	cerr << "File #2 error (no file or corrupt file specified)."
	     << std::endl;
	return 1;
    }
    header.read(input2);
    SplineCurve curve;
    curve.read(input2);
    input2.close();

    double aepsge;
    aepsge = atof(argv[3]);

    // Set up and run the intersection algorithm
    SISLCurve* pcurve = Curve2SISL(curve);
    SISLSurf* psurf = GoSurf2SISL(surf);

    double astart1 = curve.startparam();
    double estart2[] = { surf.startparam_u(), surf.startparam_v() };
    double aend1 = curve.endparam();
    double eend2[] = { surf.endparam_u(), surf.endparam_v() };
    cout << "astart1 = " << astart1 << endl
	 << "estart2[] = { " << estart2[0] << ", "
	 << estart2[1] << " }" << endl
	 << "aend1 = " << aend1 << endl
	 << "eend2[] = { " << eend2[0] << ", " 
	 << eend2[1] << " }" << endl;

    double anext1 = astart1;
    double enext2[] = { estart2[0], estart2[1] };
//     double anext1 = 0.0;
//     double enext2[] = { 2.0, 0.0 };
    cout << "anext1 = " << anext1 << endl
	 << "enext2[] = { " << enext2[0] << ", "
	 << enext2[1] << " }" << endl;

    double cpos1;
    double gpos2[2];
    int jstat = 0;
    cout << "jstat = " << jstat << endl;

    s1772(pcurve, psurf, aepsge, astart1, estart2, aend1, eend2,
	  anext1, enext2, &cpos1, gpos2, &jstat);

    // Write the results
    cout << "Results s1772:" << endl
	 << "jstat = " << jstat << endl
	 << "cpos1 = " << cpos1 << endl
	 << "gpos2[] = { " << gpos2[0] << ", "
	 << gpos2[1] << " }" << endl;

    return 0;

}
Esempio n. 30
0
int main(int argc, char** argv)
{

  if (argc != 6)
    {
      cout << "Usage: " << argv[0] << " surfaceinfile surface3doutfile points3doutfile num_u num_v" << endl;
      exit(-1);
    }

  ifstream filein(argv[1]);
  ALWAYS_ERROR_IF(filein.bad(), "Bad or no curvee input filename");
  ObjectHeader head;
  filein >> head;
  if (head.classType() != SplineSurface::classType()) {
    THROW("Not a spline surface");
  }

  SplineSurface sf;
  filein >> sf;

  ofstream fileoutsurf(argv[2]);
  ALWAYS_ERROR_IF(fileoutsurf.bad(), "Bad surface output filename");

  ofstream fileoutpts(argv[3]);
  ALWAYS_ERROR_IF(fileoutpts.bad(), "Bad points output filename");

  int num_u = atoi(argv[4]);
  int num_v = atoi(argv[5]);

  vector<double> pts, param_u, param_v;

  sf.gridEvaluator(num_u, num_v, pts, param_u, param_v);

  vector<double> coefs3d;
  vector<Point> pts3d;
  int dim = sf.dimension();
  bool rational = sf.rational();

  int ctrl_pts = sf.numCoefs_u() * sf.numCoefs_v();
  vector<double>::const_iterator it = sf.ctrl_begin();

  for (int i = 0; i < ctrl_pts; ++i)
    {
      if (dim <= 3)
	for (int j = 0; j < 3; ++j)
	  {
	    if (j>=dim)
	      coefs3d.push_back(0.0);
	    else
	      {
		coefs3d.push_back(*it);
		++it;
	      }
	  }
      else
	{
	  for (int j = 0; j < 3; ++j, ++it)
	    coefs3d.push_back(*it);
	  it += (dim-3);
	}
      if (rational)
	{
	  coefs3d.push_back(*it);
	  ++it;
	}
    }

  int pts_pos = 0;
  for (int i = 0; i < num_u*num_v; ++i)
    {
      double x, y, z;
      if (dim == 0)
	x = 0.0;
      else
	x = pts[pts_pos];
      if (dim <= 1)
	y = 0.0;
      else
	y = pts[pts_pos+1];
      if (dim <= 2)
	z = 0.0;
      else
	z = pts[pts_pos+2];
      pts_pos += dim;
      pts3d.push_back(Point(x, y, z));
    }

  SplineSurface sf3d(sf.basis_u(), sf.basis_v(), coefs3d.begin(), 3, rational);

  sf3d.writeStandardHeader(fileoutsurf);
  sf3d.write(fileoutsurf);

  fileoutpts << "400 1 0 4 255 255 0 255" << endl;
  fileoutpts << pts3d.size() << endl;
  for (int i = 0; i < (int)pts3d.size(); ++i)
    fileoutpts << pts3d[i] << endl;
}