/** * 1. Data sample : pp200 W->e nu with pile-up corresponding to 1 MHz min. bias * events, 50 K event y2011, 10 K event y2012. * * 2. Proof of principal: no pile-up for both PPV and KFV * * a. Reconstructed primary track multiplicity versus corresponding MC * "reconstructable" (i.e. in n STAR acceptance,no. TPC MC hits >= 15) tracks * multiplicity. * * b. Corrected reconstructed primary track multiplicity (i.e. multiplied by * QA/100.) versus corresponding MC "reconstructable" (i.e. in n STAR * acceptance,no. TPC MC hits >= 15) tracks multiplicity. * * c. Efficiency primary vertex reconstruction versus MC "reconstructable" * tracks multiplicity. * * 3. With pileup. repeat above (a-c) with old ranking scheme for * * I. Any reconstructed primary vertex which is matched with MC trigger * vertex (MC = 1) * * II. The best (in sense of ranking) reconstructed primary vertex which is * matched with MC trigger vertex (MC = 1) * * III. The best (in sense of ranking) reconstructed primary vertex which is * not matched with MC trigger vertex (MC != 1) * * 4. With pileup. repeat above (a-c) with new ranking scheme for cases I-III */ void MuMcPrVKFV2012(Long64_t nevent, const char *file, const std::string& outFile, bool fillNtuple) { #ifdef __TMVA__ boost::replace_last(outFile, ".root", ""); outFile += ".TMVArank.root"; // create a set of variables and declare them to the reader // - the variable names must corresponds in name and type to // those given in the weight file(s) that you use TString separator(":"); TString Vnames(vnames); TObjArray *array = Vnames.Tokenize(separator); std::vector<std::string> inputVars; TIter next(array); TObjString *objs; while ((objs = (TObjString *) next())) { std::cout << objs->GetString() << std::endl; } inputVars.push_back("beam"); inputVars.push_back("postx"); inputVars.push_back("prompt"); inputVars.push_back("cross"); inputVars.push_back("tof"); inputVars.push_back("notof"); inputVars.push_back("EEMC"); inputVars.push_back("noEEMC"); inputVars.push_back("chi2"); std::vector<double> *inputVec = new std::vector<double>( inputVars.size() ); IClassifierReader *classReader = new ReadBDT( inputVars ); #endif /* __TMVA__ */ TFile *fOut = TFile::Open(outFile.c_str(), "recreate"); data_t data; // Book histograms const int nMcRecMult = 75; TArrayD xMult(nMcRecMult + 1); xMult[0] = -0.5; for (int i = 1; i <= nMcRecMult; i++) { if (xMult[i - 1] < 50) xMult[i] = xMult[i - 1] + 1; // 1 - 50 else if (xMult[i - 1] < 100) xMult[i] = xMult[i - 1] + 2; // 51 - 75 else if (xMult[i - 1] < 200) xMult[i] = xMult[i - 1] + 10; // 76 - 85 else xMult[i] = xMult[i - 1] + 100; // 86 -100 } TH1D *McRecMulT = new TH1D("McRecMulT", "Reconstructable multiplicity for trigger Mc Vertex", nMcRecMult, xMult.GetArray()); struct Name_t { const Char_t *Name; const Char_t *Title; }; const Name_t HCases[3] = { {"Any", "Any vertex matched with MC == 1"}, {"Good", "The best rank vertex with MC == 1"}, {"Bad", "The best rank vertex with MC != 1"} }; const Name_t Plots[4] = { {"Mult" , "the reconstructed (uncorrected) track multiplicity versus Reconstructable multiplicity"}, {"MultQA" , "the reconstructed (corrected for QA) track multiplicity versus Reconstructable multiplicity"}, {"McRecMul", "Reconstructable multiplicity"}, {"YvsX" , "Bad versus Good value"} }; /* h p */ TH1 *hists[3][4]; for (int h = 0; h < 3; h++) { for (int p = 0; p < 4; p++) { TString Name(Plots[p].Name); Name += HCases[h].Name; TString Title(Plots[p].Title); Title += " for "; Title += HCases[h].Title; Title += " vertex"; if (p < 2) hists[h][p] = new TH2D(Name, Title, nMcRecMult, xMult.GetArray(), nMcRecMult, xMult.GetArray()); else if (p == 2) hists[h][p] = new TH1D(Name, Title, nMcRecMult, xMult.GetArray()); } } TNtuple *VertexG = new TNtuple("VertexG", "good vertex & global params info", vnames); TNtuple *VertexB = new TNtuple("VertexB", "bad vertex & global params info", vnames); // ---------------------------------------------- StMuDstMaker *maker = new StMuDstMaker(0, 0, "", file, "st:MuDst.root", 1e9); // set up maker in read mode // 0,0 this mean read mode // dir read all files in this directory // file bla.lis real all file in this list, if (file!="") dir is ignored // filter apply filter to filenames, multiple filters are separated by ':' // 10 maximum number of file to read maker->SetStatus("*", 0); std::vector<std::string> activeBranchNames = { "MuEvent", "PrimaryVertices", "StStMuMcVertex", "StStMuMcTrack" }; // Set Active braches for (const auto& branchName : activeBranchNames) maker->SetStatus(branchName.c_str(), 1); TChain *tree = maker->chain(); Long64_t nentries = tree->GetEntries(); nevent = TMath::Min(nevent, nentries); std::cout << nentries << " events in chain " << nevent << " will be read." << std::endl; tree->SetCacheSize(-1); //by setting the read cache to -1 we set it to the AutoFlush value when writing tree->SetCacheLearnEntries(1); //one entry is sufficient to learn tree->SetCacheEntryRange(0, nevent); for (Long64_t ev = 0; ev < nevent; ev++) { if (maker->Make()) break; StMuDst *muDst = maker->muDst(); // get a pointer to the StMuDst class, the class that points to all the data StMuEvent *muEvent = muDst->event(); // get a pointer to the class holding event-wise information int referenceMultiplicity = muEvent->refMult(); // get the reference multiplicity TClonesArray *PrimaryVertices = muDst->primaryVertices(); int nPrimaryVertices = PrimaryVertices->GetEntriesFast(); TClonesArray *MuMcVertices = muDst->mcArray(0); int nMuMcVertices = MuMcVertices->GetEntriesFast(); TClonesArray *MuMcTracks = muDst->mcArray(1); int nMuMcTracks = MuMcTracks->GetEntriesFast(); if ( nevent >= 10 && ev % int(nevent*0.1) == 0 ) { std::cout << "Event #" << ev << "\tRun\t" << muEvent->runId() << "\tId: " << muEvent->eventId() << " refMult= " << referenceMultiplicity << "\tPrimaryVertices " << nPrimaryVertices << "\t" << " " << nMuMcVertices << "\t" << " " << nMuMcTracks << std::endl; } // const Double_t field = muEvent->magneticField()*kilogauss; if (! nMuMcVertices || ! nMuMcTracks || nPrimaryVertices <= 0) { std::cout << "Ev. " << ev << " has no MC information ==> skip it" << std::endl; std::cout << "OR no reconstructed verticies found" << std::endl; continue; } // Count number of MC tracks at a vertex with TPC reconstructable tracks std::multimap<int, int> Mc2McHitTracks; for (int m = 0; m < nMuMcTracks; m++) { StMuMcTrack *McTrack = (StMuMcTrack *) MuMcTracks->UncheckedAt(m); if (McTrack->No_tpc_hit() < 15) continue; Mc2McHitTracks.insert(std::pair<int, int>(McTrack->IdVx(), McTrack->Id())); } // This is the "reconstructable" track multiplicity int nMcTracksWithHits = Mc2McHitTracks.count(1); // Let's skip events in which we do not expect to reconstruct any tracks // (and thus vertex) from the primary vertex if (nMcTracksWithHits <= 0) continue; // This is our denominator histogram for efficiencies McRecMulT->Fill(nMcTracksWithHits); // ============= Build map between Rc and Mc vertices std::map<StMuPrimaryVertex *, StMuMcVertex *> reco2McVertices; TArrayF vertexRanks(nPrimaryVertices); int mcMatchedVertexIndex = -1; // any vertex with MC==1 and highest reconstrated multiplicity. int vertexMaxMultiplicity = -1; // First loop over all verticies in this event. There is at least one // must be available for (int recoVertexIndex = 0; recoVertexIndex < nPrimaryVertices; recoVertexIndex++) { vertexRanks[recoVertexIndex] = -1e10; StMuPrimaryVertex *recoVertex = (StMuPrimaryVertex *) PrimaryVertices->UncheckedAt(recoVertexIndex); if ( !AcceptVX(recoVertex) ) continue; // Check Mc if (recoVertex->idTruth() < 0 || recoVertex->idTruth() > nMuMcVertices) { std::cout << "ERROR: Illegal idTruth " << recoVertex->idTruth() << " The track is ignored" << std::endl; continue; } StMuMcVertex *mcVertex = (StMuMcVertex *) MuMcVertices->UncheckedAt(recoVertex->idTruth() - 1); if (mcVertex->Id() != recoVertex->idTruth()) { std::cout << "ERROR: Mismatched idTruth " << recoVertex->idTruth() << " and mcVertex Id " << mcVertex->Id() << " The vertex is ignored" << std::endl; continue; } reco2McVertices[recoVertex] = mcVertex; vertexRanks[recoVertexIndex] = recoVertex->ranking(); if (recoVertex->idTruth() == 1 && recoVertex->noTracks() > vertexMaxMultiplicity) { mcMatchedVertexIndex = recoVertexIndex; vertexMaxMultiplicity = recoVertex->noTracks(); } FillData(data, recoVertex); #ifdef __TMVA__ Float_t *dataArray = &data.beam; for (size_t j = 0; j < inputVec->size(); j++) (*inputVec)[j] = dataArray[j]; vertexRanks[recoVertexIndex] = classReader->GetMvaValue( *inputVec ); #endif } // If we reconstructed a vertex which matches the MC one we fill the // numerator of the "Any" efficiency histogram if (mcMatchedVertexIndex != -1) { StMuPrimaryVertex *recoVertexMatchedMc = (StMuPrimaryVertex*) PrimaryVertices->UncheckedAt(mcMatchedVertexIndex); double nTracks = recoVertexMatchedMc->noTracks(); double nTracksQA = nTracks * recoVertexMatchedMc->qaTruth() / 100.; hists[0][0]->Fill(nMcTracksWithHits, nTracks); hists[0][1]->Fill(nMcTracksWithHits, nTracksQA); hists[0][2]->Fill(nMcTracksWithHits); } // Now deal with the highest rank vertex int maxRankVertexIndex = TMath::LocMax(nPrimaryVertices, vertexRanks.GetArray()); StMuPrimaryVertex *recoVertexMaxRank = (StMuPrimaryVertex*) PrimaryVertices->UncheckedAt(maxRankVertexIndex); StMuMcVertex *mcVertex = reco2McVertices[recoVertexMaxRank]; double nTracks = recoVertexMaxRank->noTracks(); double nTracksQA = nTracks * recoVertexMaxRank->qaTruth() / 100.; // Fill numerator for "good" and "bad" efficiencies int h = ( mcVertex && mcVertex->Id() == 1) ? 1 : 2; hists[h][0]->Fill(nMcTracksWithHits, nTracks); hists[h][1]->Fill(nMcTracksWithHits, nTracksQA); hists[h][2]->Fill(nMcTracksWithHits); // Proceed with filling ntuple only if requested by the user if ( !fillNtuple ) continue; // Second loop over all verticies in this event for (int recoVertexIndex = 0; recoVertexIndex < nPrimaryVertices; recoVertexIndex++) { StMuPrimaryVertex *recoVertex = (StMuPrimaryVertex *) PrimaryVertices->UncheckedAt(recoVertexIndex); if ( !AcceptVX(recoVertex) ) continue; StMuMcVertex *mcVertex = reco2McVertices[recoVertex]; if ( !mcVertex ) { std::cout << "No Match from RC to MC" << std::endl; continue; } if (vtxeval::gDebugFlag) { std::cout << Form("Vx[%3i]", recoVertexIndex) << *recoVertex << " " << *mcVertex; int nMcTracksWithHitsatL = Mc2McHitTracks.count(recoVertex->idTruth()); std::cout << Form("Number of McTkHit %4i rank %8.3f", nMcTracksWithHitsatL, vertexRanks[recoVertexIndex]); } int IdPar = mcVertex->IdParTrk(); if (IdPar > 0 && IdPar <= nMuMcTracks) { StMuMcTrack *mcTrack = (StMuMcTrack *) MuMcTracks->UncheckedAt(IdPar - 1); if (mcTrack && vtxeval::gDebugFlag) std::cout << " " << mcTrack->GeName(); } FillData(data, recoVertex); double nTracks = recoVertex->noTracks(); if (mcVertex->Id() == 1 && nTracks == vertexMaxMultiplicity) {// good VertexG->Fill(&data.beam); } else { // bad VertexB->Fill(&data.beam); } } if ( !gROOT->IsBatch() ) { if (vtxeval::ask_user()) return; } else { vtxeval::gDebugFlag = false; } } fOut->Write(); }
void makeTrees(string fileList, string jobID){ bool makePairs = true; bool makeTrackQA = false; //LOAD LIBRARIES cout << "\n"; gROOT->Macro("/star/u/klandry/ucladisk/2012IFF/StRoot/LoadLibs.C"); if (makePairs) { gSystem->Load("pionPair"); cout << " loading of pionPair library done" << endl; gSystem->Load("pionPairTreeMaker"); cout << " loading of pionPairTreeMaker library done" << endl; } if (makeTrackQA) { gSystem->Load("trackQAmaker"); cout << " loading of trackQAmaker library done" << endl; } cout << "\n"; cout << "\n"; //CHAIN OF MAKERS StChain* chain = new StChain; //MUDST READER StMuDstMaker* muDstMaker = new StMuDstMaker(0,0,"",fileList.c_str(),"",100000,"MuDst"); chain->Make(0); StMuEvent* MuEvent = muDstMaker->muDst()->event(); int runID = MuEvent->runId(); stringstream ss; ss << runID; string runNumber = ss.str(); //StarDbMaker St_db_Maker* dbMaker = new St_db_Maker("db", "MySQL:StarDb", "$STAR/StarDb"); //SPINDBMAKER StSpinDbMaker* spinDbMaker = new StSpinDbMaker("StSpinDbMaker"); cout << "\n"; //pionPairTreemaker if (makePairs) { pionPairTreeMaker* piTreeMaker = new pionPairTreeMaker(muDstMaker); string outFileName; outFileName = "run"; outFileName += runNumber; outFileName += "_"; outFileName += jobID; outFileName += "_pionTree.root"; piTreeMaker->setOutputFile(outFileName.c_str()); cout << "pionPairTree file name: " << outFileName << endl; } //trackQAmaker if (makeTrackQA) { trackQAmaker* trkQAmaker = new trackQAmaker(muDstMaker); string trackOutFileName; trackOutFileName = "run"; trackOutFileName += runNumber; trackOutFileName += "_"; trackOutFileName += jobID; trackOutFileName += "_trackQA.root"; trkQAmaker->setOutputFile(trackOutFileName.c_str()); cout << "track QA file name: " << trackOutFileName << endl; } int iEvent = 0; cout << "\n"; cout << "\n"; cout << "Init() ......." << endl; cout << "\n"; cout << "\n"; chain->Init(); cout << "\n"; cout << "\n"; cout << "Make() ......." << endl; cout << "\n"; cout << "\n"; //int nEvents = 2; //chain->EventLoop(nEvents); //* while (chain->Make(iEvent) == kStOK) { iEvent++; if (iEvent%100000 == 0) {cout << "processing event number " << iEvent << endl;} //if (iEvent >= 10000){break;} }//end while //*/ chain->Finish(); delete chain; }