void create_neuland_geo(const char* geoTag) { fGlobalTrans->SetTranslation(0.0,0.0,0.0); Double_t neuLAND_paddle_dimx = 125.; // half of the length [cm] Double_t neuLAND_paddle_dimy = 2.4; // half of the width [cm] Double_t neuLAND_paddle_dimz = 2.4; // half of the depth [cm] Double_t neuLAND_depth_dim = 20.; // half detector depth [cm] Double_t neuLAND_gap_dim = 0.03; // total detector depth [cm] Double_t neuLAND_wrapping1_dim = 0.02; // thickness of wrapping material [cm] Double_t neuLAND_wrapping2_dim = 0.05; // thickness of wrapping material [cm] // ------- Load media from media file ----------------------------------- FairGeoLoader* geoLoad = new FairGeoLoader("TGeo","FairGeoLoader"); FairGeoInterface* geoFace = geoLoad->getGeoInterface(); TString geoPath = gSystem->Getenv("VMCWORKDIR"); TString medFile = geoPath + "/geometry/media_r3b.geo"; geoFace->setMediaFile(medFile); geoFace->readMedia(); gGeoMan = gGeoManager; // -------------------------------------------------------------------------- // ------- Geometry file name (output) ---------------------------------- TString geoFileName = geoPath + "/geometry/neuland_"; geoFileName = geoFileName + geoTag + ".geo.root"; // -------------------------------------------------------------------------- // ----------------- Get and create the required media ----------------- FairGeoMedia* geoMedia = geoFace->getMedia(); FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder(); FairGeoMedium* mBC408 = geoMedia->getMedium("BC408"); if ( ! mBC408 ) Fatal("Main", "FairMedium BC408 not found"); geoBuild->createMedium(mBC408); TGeoMedium* pMed37 = gGeoMan->GetMedium("BC408"); if ( ! pMed37 ) Fatal("Main", "Medium BC408 not found"); FairGeoMedium* mCH2 = geoMedia->getMedium("CH2"); if ( ! mCH2 ) Fatal("Main", "FairMedium CH2 not found"); geoBuild->createMedium(mCH2); TGeoMedium* pMed38 = gGeoMan->GetMedium("CH2"); if ( ! pMed38 ) Fatal("Main", "Medium CH2 not found"); FairGeoMedium* mAl = geoMedia->getMedium("aluminium"); if ( ! mAl ) Fatal("Main", "FairMedium aluminium not found"); geoBuild->createMedium(mAl); TGeoMedium* pMedAl = gGeoMan->GetMedium("aluminium"); if ( ! pMedAl ) Fatal("Main", "Medium aluminium not found"); // -------------------------------------------------------------------------- // -------------- Create geometry and top volume ------------------------- gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom"); gGeoMan->SetName("NEULANDgeom"); TGeoVolume* top = new TGeoVolumeAssembly("TOP"); gGeoMan->SetTopVolume(top); // -------------------------------------------------------------------------- Double_t tx,ty,tz; //------------------ BC408 paddles ----------------------------------------- TGeoVolume *padle_h_box5 = gGeoManager->MakeBox("padle_h_box5", pMed37, neuLAND_paddle_dimx, neuLAND_paddle_dimy, neuLAND_paddle_dimz); //------------------ wrapping Alu------------------------------------------ TGeoShape* padle_h_box1 = new TGeoBBox("padle_h_box1", neuLAND_paddle_dimx, neuLAND_paddle_dimy + neuLAND_wrapping1_dim, neuLAND_paddle_dimz + neuLAND_wrapping1_dim); TGeoShape* padle_h_box2 = new TGeoBBox("padle_h_box2", neuLAND_paddle_dimx, neuLAND_paddle_dimy, neuLAND_paddle_dimz); // Create a composite shape TGeoCompositeShape *wrapping1 = new TGeoCompositeShape("diffbox", "padle_h_box1 - padle_h_box2"); TGeoVolume *bvol1 = new TGeoVolume("wrapping1", wrapping1, pMedAl); //------------------ wrapping Tape------------------------------------------ TGeoShape* padle_h_box3 = new TGeoBBox("padle_h_box3", neuLAND_paddle_dimx, neuLAND_paddle_dimy + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim, neuLAND_paddle_dimz + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim); TGeoShape* padle_h_box4 = new TGeoBBox("padle_h_box4", neuLAND_paddle_dimx, neuLAND_paddle_dimy + neuLAND_wrapping1_dim, neuLAND_paddle_dimz + neuLAND_wrapping1_dim); // Create a composite shape TGeoCompositeShape *wrapping2 = new TGeoCompositeShape("diffbox", "padle_h_box3 - padle_h_box4"); TGeoVolume *bvol2 = new TGeoVolume("wrapping2", wrapping2, pMed38); // Make the elementary assembly of the whole structure TGeoVolume *aLand = new TGeoVolumeAssembly("ALAND"); Double_t total_dimx = neuLAND_paddle_dimx; Double_t total_dimy = neuLAND_paddle_dimy + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim + neuLAND_gap_dim; Double_t total_dimz = neuLAND_paddle_dimz + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim + neuLAND_gap_dim; //paddles TGeoRotation *zeroRotation = new TGeoRotation(); zeroRotation->RotateX(0.); zeroRotation->RotateY(0.); zeroRotation->RotateZ(0.); TGeoRotation *rot1 = new TGeoRotation(); rot1->RotateX(0.); rot1->RotateY(0.); rot1->RotateZ(90.); Double_t xx = 0.; Double_t yy = 0.; Double_t zz = 0.; aLand->AddNode(padle_h_box5, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation)); aLand->AddNode(bvol1, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation)); aLand->AddNode(bvol2, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation)); TGeoVolume *cell = new TGeoVolumeAssembly("CELL"); Int_t nindex = 0, i = 0; tx = 0.; tz = -neuLAND_depth_dim + total_dimz; for(tz = -neuLAND_depth_dim + total_dimz; tz < neuLAND_depth_dim; tz += total_dimz*2) { i += 1; for (ty = -total_dimx + total_dimy; ty < total_dimx; ty += total_dimy*2) { nindex++; if (i % 2 == 1) { cell->AddNode(aLand, nindex, new TGeoCombiTrans(tx, ty, tz, zeroRotation)); } else { cell->AddNode(aLand, nindex, new TGeoCombiTrans(ty, tx, tz, rot1)); } } } tx = 0.0; ty = 0.0; tz = fZ; TGeoCombiTrans *t0 = new TGeoCombiTrans(tx, ty, tz, zeroRotation); top->AddNode(cell, 1, /*GetGlobalPosition(t0)*/t0); // --------------- Finish ----------------------------------------------- gGeoMan->CloseGeometry(); gGeoMan->CheckOverlaps(0.001); gGeoMan->PrintOverlaps(); gGeoMan->Test(); TFile* geoFile = new TFile(geoFileName, "RECREATE"); top->Write(); geoFile->Close(); // -------------------------------------------------------------------------- }
void create_dch_geo(const char* geoTag) { fGlobalTrans->SetTranslation(0.0,0.0,0.0); // ------- Load media from media file ----------------------------------- FairGeoLoader* geoLoad = new FairGeoLoader("TGeo","FairGeoLoader"); FairGeoInterface* geoFace = geoLoad->getGeoInterface(); TString geoPath = gSystem->Getenv("VMCWORKDIR"); TString medFile = geoPath + "/geometry/media_r3b.geo"; geoFace->setMediaFile(medFile); geoFace->readMedia(); gGeoMan = gGeoManager; // -------------------------------------------------------------------------- // ------- Geometry file name (output) ---------------------------------- TString geoFileName = geoPath + "/geometry/dch_"; geoFileName = geoFileName + geoTag + ".geo.root"; // -------------------------------------------------------------------------- // ----------------- Get and create the required media ----------------- FairGeoMedia* geoMedia = geoFace->getMedia(); FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder(); FairGeoMedium* mAir = geoMedia->getMedium("Air"); if ( ! mAir ) Fatal("Main", "FairMedium Air not found"); geoBuild->createMedium(mAir); TGeoMedium* pMed2 = gGeoMan->GetMedium("Air"); if ( ! pMed2 ) Fatal("Main", "Medium Air not found"); FairGeoMedium* mAl = geoMedia->getMedium("aluminium"); if ( ! mAl ) Fatal("Main", "FairMedium aluminium not found"); geoBuild->createMedium(mAl); TGeoMedium* pMed21 = gGeoMan->GetMedium("aluminium"); if ( ! pMed21 ) Fatal("Main", "Medium aluminium not found"); FairGeoMedium* mMylar = geoMedia->getMedium("mylar"); if ( ! mMylar ) Fatal("Main", "FairMedium mylar not found"); geoBuild->createMedium(mMylar); TGeoMedium* pMed15 = gGeoMan->GetMedium("mylar"); if ( ! pMed15 ) Fatal("Main", "Medium mylar not found"); FairGeoMedium* mHe = geoMedia->getMedium("helium"); if ( ! mHe ) Fatal("Main", "FairMedium helium not found"); geoBuild->createMedium(mHe); TGeoMedium* pMed4 = gGeoMan->GetMedium("helium"); if ( ! pMed4 ) Fatal("Main", "Medium helium not found"); FairGeoMedium* mDCH = geoMedia->getMedium("DCHgas"); if ( ! mDCH ) Fatal("Main", "FairMedium DCHgas not found"); geoBuild->createMedium(mDCH); TGeoMedium* pMed33 = gGeoMan->GetMedium("DCHgas"); if ( ! pMed33 ) Fatal("Main", "Medium DCHgas not found"); // -------------------------------------------------------------------------- // -------------- Create geometry and top volume ------------------------- gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom"); gGeoMan->SetName("DCHgeom"); TGeoVolume* top = new TGeoVolumeAssembly("TOP"); gGeoMan->SetTopVolume(top); // -------------------------------------------------------------------------- Double_t dx,dy,dz; Double_t theta, phi; Double_t thx, phx, thy, phy, thz, phz; Double_t alpha; // Define DCH Geometry TGeoVolume* topDCH = new TGeoVolumeAssembly("DCH"); //Active volume (envelope box enclosing the sense wires) Double_t actGasDx = 99.07/2.; // [cm] //99.07326 Double_t actGasDy = 77.60/2.; // [cm] //77.59584 Double_t actGasDz = 5.20/2.; // [cm] //distance of x and y planes centres is 4 cm. Distance between the first x halfplane and the second y halfplane is 4cm + 2*0.69*cos30 cm. TGeoShape* pActGasBox = new TGeoBBox("ActGasBox", actGasDx, actGasDy, actGasDz); TGeoVolume* pActGasDchLog = new TGeoVolume("ActGASBoxLog",pActGasBox, pMed33); pActGasDchLog->SetVisLeaves(kTRUE); pActGasDchLog->SetVisContainers(kTRUE); // Gas box Double_t gasDx = 106.4/2.; // [cm] Double_t gasDy = 83.4/2.; // [cm] Double_t gasDz = 7.50; // [cm] TGeoShape* pGasBox = new TGeoBBox("GasBox", gasDx, gasDy, gasDz); TGeoVolume* pGasDchLog = new TGeoVolume("GASBoxLog",pGasBox, pMed33); pGasDchLog->SetVisLeaves(kTRUE); pGasDchLog->SetVisContainers(kTRUE); // Al Frame Double_t alDx = 125.8/2.; // [cm] Double_t alDy = 103.4/2.; // [cm] //Double_t alDz = 4.06; // [cm] Double_t alDz = 7.50; // [cm] //modified TGeoShape* pAlBox = new TGeoBBox("AlBox", alDx, alDy, alDz); TGeoVolume* pAlDchLog = new TGeoVolume("ALBoxLog",pAlBox, pMed21); pAlDchLog->SetVisLeaves(kTRUE); // Mylar Entrance exit windows Double_t mylDx= gasDx; //[cm] Double_t mylDy= gasDy; //[cm] Double_t mylDz= 0.0006; //[cm] TGeoShape* pMylarBox = new TGeoBBox("MylarBox", mylDx, mylDy, mylDz); TGeoVolume* pMylDchLog = new TGeoVolume("MYLBoxLog",pMylarBox, pMed15); pMylDchLog->SetVisLeaves(kTRUE); // First assembly TGeoVolume *dch1 = new TGeoVolumeAssembly("DCH1"); TGeoRotation *rot = new TGeoRotation(); rot->RotateX(0.); rot->RotateY(0.); rot->RotateZ(0.); //Double_t tx = -3.5; //correct values? active-area vs Al frame offsets? //Double_t ty = -5.; Double_t tx = +3.5; //corrected values, active-area vs Al frame offsets. F.Wamers. Double_t ty = -3.5; Double_t tz = 0.; TGeoCombiTrans* pTransfo1 = new TGeoCombiTrans("", 0.,0.,0.,rot); TGeoCombiTrans* pTransfo2 = new TGeoCombiTrans("", tx,ty,tz,rot); TGeoCombiTrans* pTransfo3 = new TGeoCombiTrans("", -tx,-ty,-tz,rot); //new, in order to compensate Al vs Gas dch1->AddNode(pAlDchLog,0,pTransfo3); //1->3 pAlDchLog->AddNode(pGasDchLog,0,pTransfo2); //place gas in aluminum, shifted pGasDchLog->AddNode(pActGasDchLog, 0,pTransfo1); //place active in gas, centrally // Mylar Windows front+back //dch1->AddNode(pMylDchLog,0,new TGeoCombiTrans("", tx,ty,-alDz-mylDz,rot)); //dch1->AddNode(pMylDchLog,1,new TGeoCombiTrans("", tx,ty, alDz+mylDz,rot)); dch1->AddNode(pMylDchLog,0,new TGeoCombiTrans("", 0.,0.,-alDz-mylDz,rot)); dch1->AddNode(pMylDchLog,1,new TGeoCombiTrans("", 0.,0., alDz+mylDz,rot)); // Global Positioning //in agreement with the s318 tracker, those are supposed to be the centres of the active volumes!!! //Double_t pDch1x = -123.22 ; //Justyna //Double_t pDch1y = 3.6 ; //Justyna //Double_t pDch1z = 444.13 ; //Justyna //Double_t pDch2x = -167.0 ; //Justyna //Double_t pDch2y = 1.02 ; //Justyna //Double_t pDch2z = 535.1 ; //Justyna //use identical values as for the tracker config and the digitizer. F. Wamers. Double_t pDch1x = -123.219446 ; //Felix Double_t pDch1y = 3.597104 ; //Felix Double_t pDch1z = 444.126271 ; //Felix Double_t pDch2x = -167.015888 ; //Felix Double_t pDch2y = 1.016917 ; //Felix Double_t pDch2z = 535.093884 ; //Felix // Double_t pDch1x = -132.233355 ; //Christoph // Double_t pDch1y = 1.037475 ; //Christoph // Double_t pDch1z = 438.710168 ; //Christoph // Double_t pDch2x = -170.8653 ; //Christoph // Double_t pDch2y = 2.075139 ; //Christoph // Double_t pDch2z = 538.614091 ; //Christoph //The order of rotation matters!!! Rotate first z, and then y! Felix Double_t aDch1 = -31.0 ; Double_t aDch2 = -31.0 ; TGeoRotation *gRot1 = new TGeoRotation(); gRot1->RotateX(0.); gRot1->RotateZ(-8.880000); //Justyna //gRot1->RotateZ(+8.880000); //Felix // gRot1->RotateZ(-2.5); //Christoph gRot1->RotateY(aDch1); TGeoRotation *gRot2 = new TGeoRotation(); gRot2->RotateX(0.); gRot2->RotateZ(9.350000); //Justyna //gRot2->RotateZ(-9.350000); //Felix // gRot2->RotateZ(8.4); //Christoph gRot2->RotateY(aDch2); // Helium Bag definition Double_t heDx= alDx ; //[cm] Double_t heDy= alDy ; //[cm] Double_t heDz=(pDch2z-pDch1z)*0.953874/2.; //[cm] alpha=0.; //[degre] Double_t beta =0.; //[degre] phi =15.20; //[degre] TGeoShape* pHePara = new TGeoPara("HePara", heDx, heDy, heDz, alpha,beta,phi); TGeoVolume* pHeDchLog = new TGeoVolume("HeParaLog",pHePara, pMed4); pHeDchLog->SetVisLeaves(kTRUE); topDCH->AddNode(dch1,0,new TGeoCombiTrans("",pDch1x,pDch1y,pDch1z,gRot1) ); topDCH->AddNode(dch1,1,new TGeoCombiTrans("",pDch2x,pDch2y,pDch2z,gRot2) ); topDCH->AddNode(pHeDchLog,0,new TGeoCombiTrans("",(pDch1x+pDch2x)/2., pDch2y, (pDch1z+pDch2z)/2., gRot1) ); TGeoCombiTrans *temp1 = new TGeoCombiTrans(); top->AddNode(topDCH, 0, GetGlobalPosition(temp1)); // --------------- Finish ----------------------------------------------- gGeoMan->CloseGeometry(); gGeoMan->CheckOverlaps(0.001); gGeoMan->PrintOverlaps(); gGeoMan->Test(); TFile* geoFile = new TFile(geoFileName, "RECREATE"); top->Write(); geoFile->Close(); // -------------------------------------------------------------------------- }
void create_tof_geo(const char* geoTag) { fGlobalTrans->SetTranslation(0.0,0.0,0.0); // ------- Load media from media file ----------------------------------- FairGeoLoader* geoLoad = new FairGeoLoader("TGeo","FairGeoLoader"); FairGeoInterface* geoFace = geoLoad->getGeoInterface(); TString geoPath = gSystem->Getenv("VMCWORKDIR"); TString medFile = geoPath + "/geometry/media_r3b.geo"; geoFace->setMediaFile(medFile); geoFace->readMedia(); gGeoMan = gGeoManager; // -------------------------------------------------------------------------- // ------- Geometry file name (output) ---------------------------------- TString geoFileName = geoPath + "/geometry/tof_"; geoFileName = geoFileName + geoTag + ".geo.root"; // -------------------------------------------------------------------------- // ----------------- Get and create the required media ----------------- FairGeoMedia* geoMedia = geoFace->getMedia(); FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder(); FairGeoMedium* mAir = geoMedia->getMedium("Air"); if ( ! mAir ) Fatal("Main", "FairMedium Air not found"); geoBuild->createMedium(mAir); TGeoMedium* pMed2 = gGeoMan->GetMedium("Air"); if ( ! pMed2 ) Fatal("Main", "Medium Air not found"); FairGeoMedium* mTof = geoMedia->getMedium("plasticForTOF"); if ( ! mTof ) Fatal("Main", "FairMedium plasticForTOF not found"); geoBuild->createMedium(mTof); TGeoMedium* pMed34 = gGeoMan->GetMedium("plasticForTOF"); if ( ! pMed34 ) Fatal("Main", "Medium plasticForTOF not found"); // -------------------------------------------------------------------------- // -------------- Create geometry and top volume ------------------------- gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom"); gGeoMan->SetName("TOFgeom"); TGeoVolume* top = new TGeoVolumeAssembly("TOP"); gGeoMan->SetTopVolume(top); // -------------------------------------------------------------------------- // out-of-file geometry definition Double_t dx,dy,dz; Double_t a; // Double_t thx, phx, thy, phy, thz, phz; Double_t z, density, w; Int_t nel, numed; // TRANSFORMATION MATRICES // Combi transformation: dx = -417.359574; //Justyna dy = 2.400000; //Justyna dz = 960.777114; //Justyna // dx = -421.33683; //Christoph // dy = 2.12; //Christoph // dz = 958.387337; //Christoph /* dx = -171.1; //position directrly (15cm) after DCH2 dy = 2.400000; dz = 548.95;*/ // dz = 0.; /* // Rotation: thx = -121.000000; phx = 0.000000; thy = 90.000000; phy = 90.000000; thz = -31.000000; phz = 0.000000;*/ //this // TGeoRotation *pMatrix3 = new TGeoRotation("",thx,phx,thy,phy,thz,phz); //this TGeoRotation *gRot = new TGeoRotation(); gRot->RotateX(0.); gRot->RotateY(-31.000000); gRot->RotateZ(0.); TGeoCombiTrans* // pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,pMatrix3); //this pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,gRot); //this /* PREVIOUS!!! // TRANSFORMATION MATRICES // Combi transformation: dx = 419.700000; dy = 0.000000; dz = 952.400000; // dz = 0.; // Rotation: thx = 121.000000; phx = 0.000000; thy = 90.000000; phy = 90.000000; thz = 31.000000; phz = 0.000000; TGeoRotation *pMatrix3 = new TGeoRotation("",thx,phx,thy,phy,thz,phz); TGeoCombiTrans* pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,pMatrix3); */ //Top Volume TGeoVolume* pWorld = gGeoManager->GetTopVolume(); pWorld->SetVisLeaves(kTRUE); TGeoVolumeAssembly *ptof = new TGeoVolumeAssembly("TOF"); // SHAPES, VOLUMES AND GEOMETRICAL HIERARCHY // Shape: TOFBox type: TGeoBBox dx = 94.450000; dy = 73.450000; dz = 0.500000; TGeoShape *pTOFBox = new TGeoBBox("TOFBox", dx,dy,dz); // Volume: TOFLog TGeoVolume* pTOFLog = new TGeoVolume("TOFLog",pTOFBox, pMed34); pTOFLog->SetVisLeaves(kTRUE); TGeoCombiTrans *t0 = new TGeoCombiTrans("t0"); ptof->AddNode(pTOFLog, 0, t0); TGeoCombiTrans *pGlobal = GetGlobalPosition(pMatrix2); if (pGlobal) { pWorld->AddNode(ptof, 0, pGlobal); } else { pWorld->AddNode(ptof, 0, pMatrix2); } // AddSensitiveVolume(pTOFLog); // fNbOfSensitiveVol+=1; // --------------- Finish ----------------------------------------------- gGeoMan->CloseGeometry(); gGeoMan->CheckOverlaps(0.001); gGeoMan->PrintOverlaps(); gGeoMan->Test(); TFile* geoFile = new TFile(geoFileName, "RECREATE"); top->Write(); geoFile->Close(); // -------------------------------------------------------------------------- }
void EUTelGeometryTelescopeGeoDescription::translateSiPlane2TGeo(TGeoVolume* pvolumeWorld, int SensorId ) { double xc, yc, zc; // volume center position double alpha, beta, gamma; double rotRef1, rotRef2, rotRef3, rotRef4; std::stringstream strId; strId << SensorId; // Get sensor center position xc = siPlaneXPosition( SensorId ); yc = siPlaneYPosition( SensorId ); zc = siPlaneZPosition( SensorId ); // Get sensor orientation alpha = siPlaneXRotation( SensorId ); // in degrees ! beta = siPlaneYRotation( SensorId ); // gamma = siPlaneZRotation( SensorId ); // rotRef1 = siPlaneRotation1( SensorId ); rotRef2 = siPlaneRotation2( SensorId ); rotRef3 = siPlaneRotation3( SensorId ); rotRef4 = siPlaneRotation4( SensorId ); //We must check that the input is correct. Since this is a combination of initial rotations and reflections the determinate must be 1 or -1 float determinant = rotRef1*rotRef4 - rotRef2*rotRef3 ; if(determinant==1 or determinant==-1) { streamlog_out(DEBUG5) << "SensorID: " << SensorId << ". Determinant = " <<determinant <<" This is the correct determinate for this transformation." << std::endl; } else { streamlog_out(ERROR5) << "SensorID: " << SensorId << ". Determinant = " <<determinant << std::endl; throw(lcio::Exception("The initial rotation and reflection matrix does not have determinant of 1 or -1. Gear file input must be wrong.")); } //Create spatial TGeoTranslation object. std::string stTranslationName = "matrixTranslationSensor"; stTranslationName.append( strId.str() ); TGeoTranslation* pMatrixTrans = new TGeoTranslation( stTranslationName.c_str(), xc, yc, zc ); //ALL clsses deriving from TGeoMatrix are not owned by the ROOT geometry manager, invoking RegisterYourself() transfers //ownership and thus ROOT will clean up pMatrixTrans->RegisterYourself(); //Create TGeoRotation object. //Translations are of course just positional changes in the global frame. //Note that each subsequent rotation is using the new coordinate system of the last transformation all the way back to the global frame. //The way to think about this is that each rotation is the multiplication of the last rotation matrix by a new one. //The order is: //Integer Z rotation and reflections. //Z rotations specified by in degrees. //X rotations //Y rotations TGeoRotation* pMatrixRotRefCombined = new TGeoRotation(); //We have to ensure that we retain a right handed coordinate system, i.e. if we only flip the x or y axis, we have to also flip the z-axis. If we flip both we have to flip twice. double integerRotationsAndReflections[9]={rotRef1,rotRef2,0,rotRef3,rotRef4,0,0,0, determinant}; pMatrixRotRefCombined->SetMatrix(integerRotationsAndReflections); std::cout << "Rotating plane " << SensorId << " to gamma: " << gamma << std::endl; pMatrixRotRefCombined->RotateZ(gamma);//Z Rotation (degrees)//This will again rotate a vector around z axis usign the right hand rule. pMatrixRotRefCombined->RotateX(alpha);//X Rotations (degrees)//This will rotate a vector usign the right hand rule round the x-axis pMatrixRotRefCombined->RotateY(beta);//Y Rotations (degrees)//Same again for Y axis pMatrixRotRefCombined->RegisterYourself();//We must allow the matrix to be used by the TGeo manager. // Combined translation and orientation TGeoCombiTrans* combi = new TGeoCombiTrans( *pMatrixTrans, *pMatrixRotRefCombined ); //This is to print to screen the rotation and translation matrices used to transform from local to global frame. streamlog_out(MESSAGE9) << "THESE MATRICES ARE USED TO TAKE A POINT IN THE LOCAL FRAME AND MOVE IT TO THE GLOBAL FRAME." << std::endl; streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Rotation/Reflection matrix for this object." << std::endl; const double* rotationMatrix = combi->GetRotationMatrix(); streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0]<<" "<<rotationMatrix[1]<<" "<<rotationMatrix[2]<< std::endl; streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3]<<" "<<rotationMatrix[4]<<" "<<rotationMatrix[5]<< std::endl; streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6]<<" "<<rotationMatrix[7]<<" "<<rotationMatrix[8]<< std::endl; //streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0] << std::setw(10) <<rotationMatrix[1]<< std::setw(10) <<rotationMatrix[2]<< std::setw(10)<< std::endl<< std::endl; //streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3] << std::setw(10) <<rotationMatrix[4]<< std::setw(10) <<rotationMatrix[5]<< std::setw(10)<< std::endl<< std::endl; //streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6] << std::setw(10) <<rotationMatrix[7]<< std::setw(10) <<rotationMatrix[8]<< std::setw(10)<< std::endl<< std::endl; const double* translationMatrix = combi->GetTranslation(); streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Translation vector for this object." << std::endl; streamlog_out(MESSAGE9) << std::setw(10) <<translationMatrix[0] << std::setw(10) <<translationMatrix[1]<< std::setw(10) <<translationMatrix[2]<< std::setw(10)<< std::endl; combi->RegisterYourself(); // Construct object medium. Required for radiation length determination // assume SILICON, though all information except of radiation length is ignored double a = 28.085500; double z = 14.000000; double density = 2.330000; double radl = siPlaneRadLength( SensorId ); double absl = 45.753206; std::string stMatName = "materialSensor"; stMatName.append( strId.str() ); TGeoMaterial* pMat = new TGeoMaterial( stMatName.c_str(), a, z, density, -radl, absl ); pMat->SetIndex( 1 ); // Medium: medium_Sensor_SILICON int numed = 0; // medium number double par[8]; par[0] = 0.000000; // isvol par[1] = 0.000000; // ifield par[2] = 0.000000; // fieldm par[3] = 0.000000; // tmaxfd par[4] = 0.000000; // stemax par[5] = 0.000000; // deemax par[6] = 0.000000; // epsil par[7] = 0.000000; // stmin std::string stMedName = "mediumSensor"; stMedName.append( strId.str() ); TGeoMedium* pMed = new TGeoMedium( stMedName.c_str(), numed, pMat, par ); // Construct object shape // Shape: Box type: TGeoBBox // TGeo requires half-width of box side Double_t dx = siPlaneXSize( SensorId ) / 2.; Double_t dy = siPlaneYSize( SensorId ) / 2.; Double_t dz = siPlaneZSize( SensorId ) / 2.; TGeoShape *pBoxSensor = new TGeoBBox( "BoxSensor", dx, dy, dz ); std::cout << "Box for sensor: " << SensorId << " is: " << dx << "|" << dy << "|" << dz << '\n'; // Geometry navigation package requires following names for objects that have an ID name:ID std::string stVolName = "volume_SensorID:"; stVolName.append( strId.str() ); _planePath.insert( std::make_pair(SensorId, "/volume_World_1/"+stVolName+"_1") ); TGeoVolume* pvolumeSensor = new TGeoVolume( stVolName.c_str(), pBoxSensor, pMed ); pvolumeSensor->SetVisLeaves( kTRUE ); pvolumeWorld->AddNode(pvolumeSensor, 1/*(SensorId)*/, combi); //this line tells the pixel geometry manager to load the pixel geometry into the plane streamlog_out(DEBUG1) << " sensorID: " << SensorId << " " << stVolName << std::endl; std::string name = geoLibName(SensorId); if( name == "CAST" ) { _pixGeoMgr->addCastedPlane( SensorId, siPlaneXNpixels(SensorId), siPlaneYNpixels(SensorId), siPlaneXSize(SensorId), siPlaneYSize(SensorId), siPlaneZSize(SensorId), siPlaneRadLength(SensorId), stVolName); } else { _pixGeoMgr->addPlane( SensorId, name, stVolName); updatePlaneInfo(SensorId); } }