int plotting_output() { vector< int > x, y; vector< double > laplace; string mapping_tower_file = "./numerical_solution.txt"; /* Stream to read table from file */ ifstream istream_mapping; /* Open the datafile, if it won't open return an error */ if (!istream_mapping.is_open()) { istream_mapping.open( mapping_tower_file.c_str() ); if(!istream_mapping) { cerr << "CaloTowerGeomManager::ReadGeometryFromTable - ERROR Failed to open mapping file " << mapping_tower_file << endl; exit(1); } } string line_mapping; int x_i, y_i; double laplace_i; while ( getline( istream_mapping, line_mapping ) ) { istringstream iss(line_mapping); iss >> x_i >> y_i >> laplace_i; x.push_back( x_i ); y.push_back( y_i ); laplace.push_back( laplace_i ); } TCanvas *c1 = new TCanvas(); TGraph2D *gr = new TGraph2D(); for(int i = 0; i < x.size(); i++) { gr->SetPoint( gr->GetN(), x.at(i), y.at(i), laplace.at(i) ); } gr->Draw("surf1"); cout << "graph drawn " << endl; TCanvas *c1 = new TCanvas(); gr->Draw("P"); return 0; }
TCanvas* graph2dfit_test() { gStyle->SetOptStat(0); gStyle->SetOptFit(); TCanvas *c = new TCanvas("c", "Graph2D example", 0, 0, 600, 800); Double_t rnd, x, y, z; Double_t e = 0.3; Int_t nd = 400; Int_t np = 10000; TRandom r; Double_t fl = 6; TF2 *f2 = new TF2("f2", "1000*(([0]*sin(x)/x)*([1]*sin(y)/y))+200", -fl, fl, -fl, fl); f2->SetParameters(1, 1); TGraph2D *dt = new TGraph2D(); // Fill the 2D graph Double_t zmax = 0; for (Int_t N = 0; N<nd; N++) { f2->GetRandom2(x, y); // Generate a random number in [-e,e] rnd = 2 * r.Rndm()*e - e; z = f2->Eval(x, y)*(1 + rnd); if (z>zmax) zmax = z; dt->SetPoint(N, x, y, z); } f2->SetParameters(0.5, 1.5); dt->Fit(f2); TF2 *fit2 = (TF2*)dt->FindObject("f2"); f2->SetParameters(1, 1); for (Int_t N = 0; N<np; N++) { f2->GetRandom2(x, y); // Generate a random number in [-e,e] rnd = 2 * r.Rndm()*e - e; z = f2->Eval(x, y)*(1 + rnd); h1->Fill(f2->Eval(x, y) - z); z = dt->Interpolate(x, y); h2->Fill(f2->Eval(x, y) - z); z = fit2->Eval(x, y); h3->Fill(f2->Eval(x, y) - z); } gStyle->SetPalette(1); f2->SetTitle("Original function with Graph2D points on top"); f2->SetMaximum(zmax); gStyle->SetHistTopMargin(0); f2->Draw("surf1"); dt->Draw("same p0"); return c; }
bool PlotBundle::drawHistsAndGraphs(const PlotStyle &plot_style) const { if (hasDrawables()) { std::vector<DrawableDataObjectDrawOptionPair<TH1*> >::const_iterator hist_it; for (hist_it = histograms.begin(); hist_it != histograms.end(); hist_it++) { TH1* hist = hist_it->data_object; std::string draw_option(hist_it->draw_option); if (hist) { if (hist->GetDimension() > 1) { hist->GetZaxis()->SetLimits(plot_axis.z_axis_range.low, plot_axis.z_axis_range.high); hist->GetZaxis()->SetRangeUser(plot_axis.z_axis_range.low, plot_axis.z_axis_range.high); } draw_option.append("SAME"); hist->Draw(draw_option.c_str()); } } std::vector<DrawableDataObjectDrawOptionPair<TGraph*> >::const_iterator graph_it; for (graph_it = graphs.begin(); graph_it != graphs.end(); graph_it++) { TGraph* graph = graph_it->data_object; std::string draw_option(graph_it->draw_option); if (graph) { draw_option.append("SAME"); graph->Draw(draw_option.c_str()); } } std::vector<DrawableDataObjectDrawOptionPair<TGraph2D*> >::const_iterator graph2d_it; for (graph2d_it = graphs2d.begin(); graph2d_it != graphs2d.end(); graph2d_it++) { TGraph2D* graph = graph2d_it->data_object; std::string draw_option(graph2d_it->draw_option); if (graph) { draw_option.append("SAME"); graph->Draw(draw_option.c_str()); } } return true; } else { std::cout << "Dude, you forgot to add a histogram or graph in the plot bundle..." << " Please add at least one and make sure it points to an existing object!" << std::endl; return false; } }
//g++ allDataPrint.cpp `root-config --cflags --glibs` int main(int argc, char** argv) #endif { TCanvas c3("c3","Grafico",640,512); TCanvas c1("c1","Confronto",1280,512); c1.Divide(2,1); preparedraw myData (argv[1], // preparedraw::doMax | preparedraw::doFh | preparedraw::doSh | preparedraw::doErr); TGraph2D *g = myData.data(); TGraph *gb = myData.firsthalf();//before TGraph *ga = myData.secondhalf();//after TGraph *gerrs = myData.errs(); // TGraph *maxs = myData.maximum(); c3.cd(); g->GetXaxis()->SetTitle("X"); g->GetYaxis()->SetTitle("T"); //g->Draw("cont1"); g->Draw("pcol"); //g->Draw(); //grafo.Draw("surf1"); cout<<"Disegno i grafici\n"; TMultiGraph *mg = new TMultiGraph("integrali","Integrali prima e dopo la barriera"); ga->SetLineColor(2); mg->Add(gb); mg->Add(ga); c1.cd(1); mg->Draw("apl"); gerrs->SetTitle("Andamento degli errori"); c1.cd(2); gerrs->Draw("apl"); #ifndef __CINT__ theApp.Run(true); return 0; #endif }
//g++ allDataPrint.cpp `root-config --cflags --glibs` int main(int argv, char** argc) #endif { /* TCanvas c("c","Real",640,512); TGraph2D *grafo = new TGraph2D("out.txt"); grafo->Draw("pcol"); TCanvas c2("c2","Imaginary",640,512); TGraph2D *Cgrafo = new TGraph2D("iout.txt"); Cgrafo->Draw("pcol");*/ TCanvas c3("c3","Norm",640,512); TGraph2D *Ngrafo = new TGraph2D(argc[1]); Ngrafo->Draw("pcol"); //grafo.Draw("surf1"); #ifndef __CINT__ theApp.Run(true); return 0; #endif }
int w1() { TCanvas *c = new TCanvas("c1", "", 0, 0, 700, 600); TGraph2D *dt = new TGraph2D(); ifstream in("/opt/workspace-cpp/simulation/result_rand3.csv"); string buff; getline(in, buff); int meanResidenceTime; int products; float lastProductPrice; float shopIncome; int n = 0; while (getline(in, buff)) { for (unsigned int i = 0; i < buff.size(); i++) { if (buff[i] == ';') { buff[i] = ' '; } } stringstream ss(buff); ss >> meanResidenceTime; ss >> products; ss >> lastProductPrice; ss >> shopIncome; dt->SetPoint(n, products, meanResidenceTime, shopIncome); n++; } gStyle->SetPalette(1); dt->SetTitle("Zaleznosc zysku od liczby produktow oraz czasu przebywania w sklepie"); dt->GetXaxis()->SetTitle("Liczba produktow"); dt->GetYaxis()->SetTitle("Sredni czas przebywania w sklepie"); dt->GetZaxis()->SetTitle("Dochod"); dt->Draw("surf1"); }
TH2D grMu(TTree *tree, double quantileExpected){ TGraph2D *gr = new TGraph2D(); float X, Y, qE; double limit; std::string x = "trackedParam_proc_scaling_muV"; std::string y = "trackedParam_proc_scaling_muF"; tree->SetBranchAddress(Form("%s",x.c_str()),&X); tree->SetBranchAddress(Form("%s",y.c_str()),&Y); tree->SetBranchAddress("quantileExpected",&qE); tree->SetBranchAddress("limit",&limit); int pt = 0; for (int i=0;i<tree->GetEntries();i++){ tree->GetEntry(i); if (TMath::Abs(qE-quantileExpected)>0.001) continue; gr->SetPoint(pt,X,Y,limit); pt++; //std::cout << " Lim " << X << ", " << Y << ", " << limit << std::endl; } gr->Draw("colz"); TH2D * expected = (TH2D*) gr->GetHistogram(); expected->SetTitle(""); expected->GetZaxis()->SetTitleOffset(1.2); expected->GetYaxis()->SetTitle("#it{#mu}_{ggH}"); expected->GetXaxis()->SetTitle("#it{#mu}_{qqH,VH}"); expected->GetZaxis()->SetTitle("B(H #rightarrow inv.) - 95% CL upper limit"); expected->GetXaxis()->SetRangeUser(MUVMIN,MUVMAX); expected->GetYaxis()->SetRangeUser(MUFMIN,MUFMAX); //expected->GetXaxis()->SetLimits(MUVMIN,MUVMAX); //expected->GetYaxis()->SetLimits(MUFMIN,MUFMAX); expected->SetMaximum(0.6); expected->SetMinimum(0.05); return *expected; }
Int_t line3Dfit() { gStyle->SetOptStat(0); gStyle->SetOptFit(); //double e = 0.1; Int_t nd = 10000; // double xmin = 0; double ymin = 0; // double xmax = 10; double ymax = 10; TGraph2D * gr = new TGraph2D(); // Fill the 2D graph double p0[4] = {10,20,1,2}; // generate graph with the 3d points for (Int_t N=0; N<nd; N++) { double x,y,z = 0; // Generate a random number double t = gRandom->Uniform(0,10); line(t,p0,x,y,z); double err = 1; // do a gaussian smearing around the points in all coordinates x += gRandom->Gaus(0,err); y += gRandom->Gaus(0,err); z += gRandom->Gaus(0,err); gr->SetPoint(N,x,y,z); //dt->SetPointError(N,0,0,err); } // fit the graph now ROOT::Fit::Fitter fitter; // make the functor objet SumDistance2 sdist(gr); #ifdef __CINT__ ROOT::Math::Functor fcn(&sdist,4,"SumDistance2"); #else ROOT::Math::Functor fcn(sdist,4); #endif // set the function and the initial parameter values double pStart[4] = {1,1,1,1}; fitter.SetFCN(fcn,pStart); // set step sizes different than default ones (0.3 times parameter values) for (int i = 0; i < 4; ++i) fitter.Config().ParSettings(i).SetStepSize(0.01); bool ok = fitter.FitFCN(); if (!ok) { Error("line3Dfit","Line3D Fit failed"); return 1; } const ROOT::Fit::FitResult & result = fitter.Result(); std::cout << "Total final distance square " << result.MinFcnValue() << std::endl; result.Print(std::cout); gr->Draw("p0"); // get fit parameters const double * parFit = result.GetParams(); // draw the fitted line int n = 1000; double t0 = 0; double dt = 10; TPolyLine3D *l = new TPolyLine3D(n); for (int i = 0; i <n;++i) { double t = t0+ dt*i/n; double x,y,z; line(t,parFit,x,y,z); l->SetPoint(i,x,y,z); } l->SetLineColor(kRed); l->Draw("same"); // draw original line TPolyLine3D *l0 = new TPolyLine3D(n); for (int i = 0; i <n;++i) { double t = t0+ dt*i/n; double x,y,z; line(t,p0,x,y,z); l0->SetPoint(i,x,y,z); } l0->SetLineColor(kBlue); l0->Draw("same"); return 0; }
int numerical_laplace() { const int x_max = 49, y_max = 39; //set the dimensions of the area within your boundary conditions double v_top = 0.0, v_bottom = 0.0, v_left = 9.8, v_right = 0.0; //set the boundary conditions. additional points can be specified below, but this is useful if one row should be set to ground int iterations = 1000; //iterations of the calculation. Can take a while past 100,000 bool write_matrix_init = true; //Will output the initial matrix to stdout if true bool additional_constraints = true; //Will apply the additional constraints below if true bool write_matrix_final = false; //Will output the final matrix after iterating if true bool output = true; //Will generate output file if true. bool plot = true; //Will plot output if true //Create array filled with 0's in the size of the grid + 2 (add boundary conitions) double laplace[x_max+2][y_max+2]; for(int i = 0; i < x_max+2; i++) { for(int j = 0; j < y_max+2; j++) { laplace[i][j] = 0.0; if(i == 0) laplace[i][j] = v_left; if(j == 0 && i != 0) laplace[i][j] = v_bottom; if(i == x_max+1) laplace[i][j] = v_right; if(j == y_max+1 && i != 0) laplace[i][j] = v_top; } } cout << "Matrix Created." << endl; //These additional constraints are appplied to the matrix before iteration. EX) Only this point on the boundary is at 5V if(additional_constraints) { laplace[1][0] = v_left / 2; laplace[2][0] = v_left / 2; laplace[3][0] = v_left / 2; laplace[1][40] = v_left; laplace[2][40] = v_left / 2; laplace[3][40] = v_left / 2; laplace[4][40] = v_left / 4; cout << " (additional Constraints applied)" << endl; } //Write out the initial matrix if(write_matrix_init == true) { for(int i = 0; i < x_max+2; i++) { cout << " | "; for(int j = 0; j < y_max+2; j++) { cout << laplace[i][j] << " | "; } cout << endl; } cout << endl << endl; } //Iterate over the inner rows/columns of the matrix, averaging at each point. for ( int k = 0; k < iterations; k++) { //Loop over all iterations, averaging each point with those around them... skipping over boundary conditions for(int i = 1; i < x_max+1; i++) { for(int j = 1; j < y_max+1; j++) { laplace[i][j] = 0.25*( laplace[i-1][j] + laplace[i+1][j] + laplace[i][j-1] + laplace[i][j+1] ); // laplace[i][j] = 0.125*( laplace[i-1][j] + laplace[i+1][j] + laplace[i][j-1] + laplace[i][j+1] + laplace[i-1][j-1] + laplace[i-1][j+1] + laplace[i+1][j-1] + laplace [i+1][j+1] ); } } } cout << "Computations Completed. Plotting..." << endl; //Write out the final matrix if(write_matrix_final == true) { for(int i = 0; i < x_max+2; i++) { cout << " | "; for(int j = 0; j < y_max+2; j++) { cout << laplace[i][j] << " | "; } cout << endl; } cout << endl << endl; } //Write the output to a file if(output) { ofstream myfile; myfile.open("numerical_solution.txt"); for(int i = 1; i < x_max+1; i++) { for(int j = 1; j < y_max+1; j++) { myfile << i << " " << j << " " << laplace[i][j] << endl; // myfile << j << " " << i << " " << laplace[i][j] << endl; } } myfile.close(); cout << "Output file created." << endl; } //Plot the final output if(plot) { //Create the output graph TCanvas *c1 = new TCanvas(); TGraph2D *gr = new TGraph2D(); for(int i = 1; i < x_max+1; i++) { for(int j = 1; j < y_max+1; j++) { gr->SetPoint( gr->GetN(), i, j, laplace[i][j] ); } } //gr->Draw("surf1"); gr->Draw("COLZ"); TCanvas *c2 = new TCanvas(); gr->Draw("surf1"); // TH2 *h2 = gr->Project("xy"); // h2->Draw(); } return 0; }
void fillGraphsFromFilesDeltaNLL( const TString& par1name, const TString& par2name, const vector<TString>& fnames, vector<string>& keys, map<string,TGraph2D *>& m_graphs) { std::cout << "fillGraphsFromFilesDeltaNLL 1" << std::endl; keys.push_back("exp68"); keys.push_back("exp95"); keys.push_back("exp99"); // uncommented below to plot observed! keys.push_back("obs95"); TGraph2D *grobs = new TGraph2D(); TGraph2D *grexp = new TGraph2D(); m_graphs["obs95"] = grobs; m_graphs["exp95"] = grexp; grobs->SetName("graph2Dobs95"); grexp->SetName("graph2Dexp95"); Int_t nobs=0, nexp=0; for( size_t i=0; i<fnames.size(); i++) { TFile *f = new TFile(fnames[i]); TTree *t = (TTree *) f->Get("limit"); if (!t) { std::cerr<<"TFile "<<f->GetName()<<" does not contain the tree"<<std::endl; return; } cout << fnames[i] << " has limit tree with " << t->GetEntries() << " entries." << endl; Float_t deltaNLL, par1, par2; Int_t iToy; t->SetBranchAddress("iToy", &iToy); t->SetBranchAddress("deltaNLL", &deltaNLL); t->SetBranchAddress(par1name, &par1); t->SetBranchAddress(par2name, &par2); for (size_t j = 0, n = t->GetEntries(); j < n; ++j) { t->GetEntry(j); printf ("%d\r",j); if( !iToy){ // cout <<"!iToy" << endl; grobs->SetPoint(nobs++,par1,par2,2*deltaNLL); // cout <<"grobs->SetPoint("<<nobs++<<","<<par1<<","<< par2<< ","<< 2*deltaNLL << endl; } else if (iToy == -1) { // cout <<"iToy == -1" << endl; grexp->SetPoint(nexp++,par1,par2,2*deltaNLL); } else { cerr << "Unexpected value for iToy, = " << iToy << endl; exit(-1); } } // tree entry loop f->Close(); delete f; } // file loop cout << endl; m_graphs["exp68"] = (TGraph2D*)grexp->Clone("graph2Dexp68"); m_graphs["exp99"] = (TGraph2D*)grexp->Clone("graph2Dexp99"); #if 0 TCanvas *canv = new TCanvas("tester","tester",500,500); cout << grexp->GetN()<<" points. " <<endl; grexp->Draw("TRI"); // cont 5z list"); #endif } // fillGraphsFromFilesDeltaNLL
PadBoundaries PlotBundle::calculatePadBoundaries() const { PadBoundaries union_pad_boundaries; bool nothing_drawn(true); std::vector<DrawableDataObjectDrawOptionPair<TH1*> >::const_iterator hist_it; for (hist_it = histograms.begin(); hist_it != histograms.end(); hist_it++) { TH1* hist = hist_it->data_object; std::string draw_option(hist_it->draw_option); if (hist) { hist->Draw(draw_option.c_str()); if (plot_axis.x_axis_range.active) hist->GetXaxis()->SetRangeUser(plot_axis.x_axis_range.low, plot_axis.x_axis_range.high); PadBoundaries current_pad_boundaries(*hist); if (nothing_drawn) { union_pad_boundaries = current_pad_boundaries; nothing_drawn = false; } else { union_pad_boundaries = union_pad_boundaries.getUnionBoundaries( current_pad_boundaries); } } } std::vector<DrawableDataObjectDrawOptionPair<TGraph*> >::const_iterator graph_it; for (graph_it = graphs.begin(); graph_it != graphs.end(); graph_it++) { TGraph* graph = graph_it->data_object; std::string draw_option("A"); draw_option.append(graph_it->draw_option); if (graph) { graph->Draw(draw_option.c_str()); if (plot_axis.x_axis_range.active) graph->GetXaxis()->SetRangeUser(plot_axis.x_axis_range.low, plot_axis.x_axis_range.high); PadBoundaries current_pad_boundaries(*graph->GetHistogram()); if (nothing_drawn) { union_pad_boundaries = current_pad_boundaries; nothing_drawn = false; } else { union_pad_boundaries = union_pad_boundaries.getUnionBoundaries( current_pad_boundaries); } } } std::vector<DrawableDataObjectDrawOptionPair<TGraph2D*> >::const_iterator graph2d_it; for (graph2d_it = graphs2d.begin(); graph2d_it != graphs2d.end(); graph2d_it++) { TGraph2D* graph = graph2d_it->data_object; std::string draw_option("A"); draw_option.append(graph2d_it->draw_option); if (graph) { graph->Draw(draw_option.c_str()); PadBoundaries current_pad_boundaries(*(TH1*) graph->GetHistogram()); current_pad_boundaries.is_2d = true; current_pad_boundaries.z_min = graph->GetZmin(); current_pad_boundaries.z_max = graph->GetZmax(); if (nothing_drawn) { union_pad_boundaries = current_pad_boundaries; nothing_drawn = false; } else { union_pad_boundaries = union_pad_boundaries.getUnionBoundaries( current_pad_boundaries); } } } return union_pad_boundaries; }
void view_SMEvents_3D_from_Hits() { /*** Displays an 3D occupancy plot for each SM Event. (stop mode event) Can choose which SM event to start at. (find "CHOOSE THIS" in this script) Input file must be a Hits file (_interpreted_Hits.root file). ***/ gROOT->Reset(); // Setting up file, treereader, histogram TFile *f = new TFile("/home/pixel/pybar/tags/2.0.2_new/pyBAR-master/pybar/module_202_new/101_module_202_new_stop_mode_ext_trigger_scan_interpreted_Hits.root"); if (!f) { // if we cannot open the file, print an error message and return immediately cout << "Error: cannot open the root file!\n"; //return; } TTreeReader *reader = new TTreeReader("Table", f); TTreeReaderValue<UInt_t> h5_file_num(*reader, "h5_file_num"); TTreeReaderValue<Long64_t> event_number(*reader, "event_number"); TTreeReaderValue<UChar_t> tot(*reader, "tot"); TTreeReaderValue<UChar_t> relative_BCID(*reader, "relative_BCID"); TTreeReaderValue<Long64_t> SM_event_num(*reader, "SM_event_num"); TTreeReaderValue<Double_t> x(*reader, "x"); TTreeReaderValue<Double_t> y(*reader, "y"); TTreeReaderValue<Double_t> z(*reader, "z"); // Initialize the canvas and graph TCanvas *c1 = new TCanvas("c1","3D Occupancy for Specified SM Event", 1000, 10, 900, 550); c1->SetRightMargin(0.25); TGraph2D *graph = new TGraph2D(); // Variables used to loop the main loop bool endOfReader = false; // if reached end of the reader bool quit = false; // if pressed q int smEventNum = 1; // the current SM-event CHOOSE THIS to start at desired SM event number // Main Loop (loops for every smEventNum) while (!endOfReader && !quit) { // Variables used in this main loop int startEntryNum = 0; int endEntryNum = 0; string histTitle = "3D Occupancy for SM Event "; string inString = ""; bool fitFailed = false; // true if the 3D fit failed bool lastEvent = false; // Declaring some important output values for the current graph and/or line fit int numEntries = 0; double sumSquares = 0; // Get startEntryNum and endEntryNum startEntryNum = getEntryNumWithSMEventNum(reader, smEventNum); endEntryNum = getEntryNumWithSMEventNum(reader, smEventNum + 1); if (startEntryNum == -2) { // can't find the smEventNum cout << "Error: There should not be any SM event numbers that are missing." << "\n"; } else if (startEntryNum == -3) { endOfReader = true; break; } else if (endEntryNum == -3) { // assuming no SM event nums are skipped endEntryNum = reader->GetEntries(false); lastEvent = true; } // Fill TGraph with points and set title and axes graph = new TGraph2D(); // create a new TGraph to refresh reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { graph->SetPoint(i, (*x - 0.001), (*y + 0.001), (*z - 0.001)); endOfReader = !(reader->Next()); } histTitle.append(to_string(smEventNum)); graph->SetTitle(histTitle.c_str()); graph->GetXaxis()->SetTitle("x (mm)"); graph->GetYaxis()->SetTitle("y (mm)"); graph->GetZaxis()->SetTitle("z (mm)"); graph->GetXaxis()->SetLimits(0, 20); // ROOT is buggy, x and y use setlimits() graph->GetYaxis()->SetLimits(-16.8, 0); // but z uses setrangeuser() graph->GetZaxis()->SetRangeUser(0, 40.96); c1->SetTitle(histTitle.c_str()); // 3D Fit, display results, draw graph and line fit, only accept "good" events, get input if (!endOfReader || lastEvent) { // Display some results numEntries = graph->GetN(); cout << "Current SM Event Number: " << smEventNum << "\n"; cout << "Number of entries: " << numEntries << "\n"; // Starting the fit. First, get decent starting parameters for the fit - do two 2D fits (one for x vs z, one for y vs z) TGraph *graphZX = new TGraph(); TGraph *graphZY = new TGraph(); reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { graphZX->SetPoint(i, (*z - 0.001), (*x + 0.001)); graphZY->SetPoint(i, (*z - 0.001), (*y + 0.001)); reader->Next(); } TFitResultPtr fitZX = graphZX->Fit("pol1", "WQS"); // w for ignore error of each pt, q for quiet (suppress results output), s for return a tfitresultptr TFitResultPtr fitZY = graphZY->Fit("pol1", "WQS"); Double_t param0 = fitZX->GetParams()[0]; Double_t param1 = fitZX->GetParams()[1]; Double_t param2 = fitZY->GetParams()[0]; Double_t param3 = fitZY->GetParams()[1]; // // Draw the lines for the two 2D fits // int n = 2; // TPolyLine3D *lineZX = new TPolyLine3D(n); // TPolyLine3D *lineZY = new TPolyLine3D(n); // lineZX->SetPoint(0, param0, 0, 0); // lineZX->SetPoint(1, param0 + param1 * 40.96, 0, 40.96); // lineZX->SetLineColor(kBlue); // lineZX->Draw("same"); // lineZY->SetPoint(0, 0, param2, 0); // lineZY->SetPoint(1, 0, param2 + param3 * 40.96, 40.96); // lineZY->SetLineColor(kGreen); // lineZY->Draw("same"); // 3D FITTING CODE (based on line3Dfit.C), draw graph and line fit ROOT::Fit::Fitter fitter; SumDistance2 sdist(graph); #ifdef __CINT__ ROOT::Math::Functor fcn(&sdist,4,"SumDistance2"); #else ROOT::Math::Functor fcn(sdist,4); #endif // set the function and the initial parameter values double pStart[4] = {param0,param1,param2,param3}; fitter.SetFCN(fcn,pStart); // set step sizes different than default ones (0.3 times parameter values) for (int i = 0; i < 4; ++i) fitter.Config().ParSettings(i).SetStepSize(0.01); bool ok = fitter.FitFCN(); if (!ok) { Error("line3Dfit","Line3D Fit failed"); fitFailed = true; } else { const ROOT::Fit::FitResult & result = fitter.Result(); const double * fitParams = result.GetParams(); sumSquares = result.MinFcnValue(); std::cout << "Sum of distance squares: " << sumSquares << std::endl; std::cout << "Sum of distance squares divided by numEntries: " << sumSquares/numEntries << std::endl; std::cout << "Theta : " << TMath::ATan(sqrt(pow(fitParams[1], 2) + pow(fitParams[3], 2))) << std::endl; // result.Print(std::cout); // (un)suppress results output // Draw the graph graph->SetMarkerStyle(8); graph->SetMarkerSize(0.5); graph->Draw("pcol"); // Draw the fitted line int n = 1000; double t0 = 0; // t is the z coordinate double dt = 40.96; TPolyLine3D *l = new TPolyLine3D(n); for (int i = 0; i <n;++i) { double t = t0+ dt*i/n; double x,y,z; line(t,fitParams,x,y,z); l->SetPoint(i,x,y,z); } l->SetLineColor(kRed); l->Draw("same"); // Access fit params and minfcnvalue // cout << "FIT1: " << fitParams[1] << "\n"; // cout << "FIT2: " << result.MinFcnValue() << "\n"; } // Criteria to be a good event (if not good entry, then don't show) bool isGoodEvent = false; // the following block of code finds the mean X, Y ans Z values double meanX = 0; double meanY = 0; double meanZ = 0; reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { meanX += graph->GetX()[i]; meanY += graph->GetY()[i]; meanZ += graph->GetZ()[i]; reader->Next(); } meanX /= endEntryNum - startEntryNum; meanY /= endEntryNum - startEntryNum; meanZ /= endEntryNum - startEntryNum; // the following code block calculates the fraction of the hits in the smEvent that are inside a sphere, centered at the mean XYZ, of radius 'radius' (larger fraction means the track is less like a long streak and more like a dense blob) double radius = 1; // length in mm double fractionInsideSphere = 0; reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { double distanceFromMeanXYZ = sqrt(pow(graph->GetX()[i] - meanX, 2) + pow(graph->GetY()[i] - meanY, 2) + pow(graph->GetZ()[i] - meanZ, 2)); if (distanceFromMeanXYZ <= 2) { fractionInsideSphere += 1; } reader->Next(); } fractionInsideSphere /= endEntryNum - startEntryNum; cout << "fraction inside sphere: " << fractionInsideSphere << "\n"; // if (numEntries >= 50 // && sumSquares/numEntries < 2.0 // && fractionInsideSphere < 0.8) { // isGoodEvent = true; // } isGoodEvent = true; if (isGoodEvent) { // won't show drawings or ask for input unless its a good event c1->Update(); // show all the drawings // handle input bool inStringValid = false; do { cout << "<Enter>: next event; 'b': previous SM event; [number]: specific SM event number; 'q': quit.\n"; getline(cin, inString); // Handles behavior according to input if (inString.empty()) { // <Enter> // leave things be inStringValid = true; } else if (inString.compare("b") == 0) { smEventNum -= 2; // because it gets incremented once at the end of this do while loop inStringValid = true; } else if (inString.compare("q") == 0 || inString.compare(".q") == 0) { quit = true; inStringValid = true; } else if (canConvertStringToPosInt(inString)) { smEventNum = convertStringToPosInt(inString) - 1; // -1 because it gets incremented once at the end of this do while loop inStringValid = true; } // else, leave inStringValid as false, so that it asks for input again } while (!inStringValid); } else { cout << "\n"; } } smEventNum++; } cout << "Exiting program.\n"; }
void kdTreeBinning() { // ----------------------------------------------------------------------------------------------- // C r e a t e r a n d o m s a m p l e w i t h r e g u l a r b i n n i n g p l o t t i n g // ----------------------------------------------------------------------------------------------- const UInt_t DATASZ = 10000; const UInt_t DATADIM = 2; const UInt_t NBINS = 50; Double_t smp[DATASZ * DATADIM]; double mu[2] = {0,2}; double sig[2] = {2,3}; TRandom3 r; r.SetSeed(1); for (UInt_t i = 0; i < DATADIM; ++i) for (UInt_t j = 0; j < DATASZ; ++j) smp[DATASZ * i + j] = r.Gaus(mu[i], sig[i]); UInt_t h1bins = (UInt_t) sqrt(NBINS); TH2D* h1 = new TH2D("h1BinTest", "Regular binning", h1bins, -5., 5., h1bins, -5., 5.); for (UInt_t j = 0; j < DATASZ; ++j) h1->Fill(smp[j], smp[DATASZ + j]); // --------------------------------------------------------------------------------------------- // C r e a t e K D T r e e B i n n i n g o b j e c t w i t h T H 2 P o l y p l o t t i n g // --------------------------------------------------------------------------------------------- TKDTreeBinning* kdBins = new TKDTreeBinning(DATASZ, DATADIM, smp, NBINS); UInt_t nbins = kdBins->GetNBins(); UInt_t dim = kdBins->GetDim(); const Double_t* binsMinEdges = kdBins->GetBinsMinEdges(); const Double_t* binsMaxEdges = kdBins->GetBinsMaxEdges(); TH2Poly* h2pol = new TH2Poly("h2PolyBinTest", "KDTree binning", kdBins->GetDataMin(0), kdBins->GetDataMax(0), kdBins->GetDataMin(1), kdBins->GetDataMax(1)); for (UInt_t i = 0; i < nbins; ++i) { UInt_t edgeDim = i * dim; h2pol->AddBin(binsMinEdges[edgeDim], binsMinEdges[edgeDim + 1], binsMaxEdges[edgeDim], binsMaxEdges[edgeDim + 1]); } for (UInt_t i = 1; i <= kdBins->GetNBins(); ++i) h2pol->SetBinContent(i, kdBins->GetBinDensity(i - 1)); std::cout << "Bin with minimum density: " << kdBins->GetBinMinDensity() << std::endl; std::cout << "Bin with maximum density: " << kdBins->GetBinMaxDensity() << std::endl; TCanvas* c1 = new TCanvas("glc1", "TH2Poly from a kdTree",0,0,600,800); c1->Divide(1,3); c1->cd(1); h1->Draw("lego"); c1->cd(2); h2pol->Draw("COLZ L"); c1->Update(); /* Draw an equivalent plot showing the data points */ /*-------------------------------------------------*/ std::vector<Double_t> z = std::vector<Double_t>(DATASZ, 0.); for (UInt_t i = 0; i < DATASZ; ++i) z[i] = (Double_t) h2pol->GetBinContent(h2pol->FindBin(smp[i], smp[DATASZ + i])); TGraph2D *g = new TGraph2D(DATASZ, smp, &smp[DATASZ], &z[0]); gStyle->SetPalette(1); g->SetMarkerStyle(20); c1->cd(3); g->Draw("pcol"); c1->Update(); // --------------------------------------------------------- // make a new TH2Poly where bins are ordered by the density // --------------------------------------------------------- TH2Poly* h2polrebin = new TH2Poly("h2PolyBinTest", "KDTree binning", kdBins->GetDataMin(0), kdBins->GetDataMax(0), kdBins->GetDataMin(1), kdBins->GetDataMax(1)); h2polrebin->SetFloat(); /*---------------------------------*/ /* Sort the bins by their density */ /*---------------------------------*/ kdBins->SortBinsByDensity(); for (UInt_t i = 0; i < kdBins->GetNBins(); ++i) { const Double_t* binMinEdges = kdBins->GetBinMinEdges(i); const Double_t* binMaxEdges = kdBins->GetBinMaxEdges(i); h2polrebin->AddBin(binMinEdges[0], binMinEdges[1], binMaxEdges[0], binMaxEdges[1]); } for (UInt_t i = 1; i <= kdBins->GetNBins(); ++i){ h2polrebin->SetBinContent(i, kdBins->GetBinDensity(i - 1));} std::cout << "Bin with minimum density: " << kdBins->GetBinMinDensity() << std::endl; std::cout << "Bin with maximum density: " << kdBins->GetBinMaxDensity() << std::endl; // now make a vector with bin number vs position for (UInt_t i = 0; i < DATASZ; ++i) z[i] = (Double_t) h2polrebin->FindBin(smp[i], smp[DATASZ + i]); TGraph2D *g2 = new TGraph2D(DATASZ, smp, &smp[DATASZ], &z[0]); g2->SetMarkerStyle(20); // plot new TH2Poly (ordered one) and TGraph2D // The new TH2Poly has to be same as old one and the TGraph2D should be similar to // the previous one. It is now made using as z value the bin number TCanvas* c4 = new TCanvas("glc4", "TH2Poly from a kdTree (Ordered)",50,50,800,800); c4->Divide(2,2); c4->cd(1); h2polrebin->Draw("COLZ L"); // draw as scatter plot c4->cd(2); g2->Draw("pcol"); c4->Update(); // make also the 1D binned histograms TKDTreeBinning* kdX = new TKDTreeBinning(DATASZ, 1, &smp[0], 20); TKDTreeBinning* kdY = new TKDTreeBinning(DATASZ, 1, &smp[DATASZ], 40); kdX->SortOneDimBinEdges(); kdY->SortOneDimBinEdges(); TH1* hX=new TH1F("hX", "X projection", kdX->GetNBins(), kdX->GetOneDimBinEdges()); for(int i=0; i<kdX->GetNBins(); ++i){ hX->SetBinContent(i+1, kdX->GetBinDensity(i)); } TH1* hY=new TH1F("hY", "Y Projection", kdY->GetNBins(), kdY->GetOneDimBinEdges()); for(int i=0; i<kdY->GetNBins(); ++i){ hY->SetBinContent(i+1, kdY->GetBinDensity(i)); } c4->cd(3); hX->Draw(); c4->cd(4); hY->Draw(); }
void PlotSVMopt(){ // // TString FileData = "SVMoptData.dat"; // TFile *f = new TFile("SVMoptTree.root","RECREATE"); // TTree *T = new TTree("SVMoptTree","data from ascii file"); // Long64_t nlines = T->ReadFile("SVMoptData.dat","Gamma:C:ROCint:SigAt1Bkg_test:SigAt1Bkg_train"); // printf(" found %lld pointsn",nlines); // T->Write(); // TGraph2D *grROCint = new TGraph2D(); // for(int i=0;i<nlines;i++){ // grROCint->SetPoint(i,); // } TGraph2D *grROCint = new TGraph2D(); TGraph2D *grSigAt1Bkg_test = new TGraph2D(); TGraph2D *grOverTrain = new TGraph2D(); TString dir = gSystem->UnixPathName(__FILE__); dir.ReplaceAll("PlotSVMopt.C",""); dir.ReplaceAll("/./","/"); ifstream in; // in.open(Form("%sSVMoptData.dat",dir.Data())); in.open(Form("%sSVMoptData_NEW2.dat",dir.Data())); Float_t Gamma,C,ROCint, SigAt1Bkg_test, SigAt1Bkg_train; Int_t nlines = 0; while (1) { in >> Gamma >> C >> ROCint >> SigAt1Bkg_test >> SigAt1Bkg_train; if (!in.good()) break; // if (in.good()){ if (nlines < 5) printf("Gamma=%8f, C=%8f, ROCint=%8f\n",Gamma, C, ROCint); grROCint->SetPoint(nlines,Gamma,C,ROCint); grSigAt1Bkg_test->SetPoint(nlines,Gamma,C,SigAt1Bkg_test); grOverTrain->SetPoint(nlines,Gamma,C,fabs(SigAt1Bkg_train-SigAt1Bkg_test)); nlines++; // } } printf(" found %d points\n",nlines); in.close(); TCanvas *cSVMopt = new TCanvas("cSVMopt","SVM model choice",600,600); cSVMopt->Divide(2,2); cSVMopt->cd(1); cSVMopt_1->SetLogx(); cSVMopt_1->SetLogy(); grROCint->GetXaxis()->SetLabelSize(0.04); grROCint->GetYaxis()->SetLabelSize(0.04); grROCint->GetZaxis()->SetLabelSize(0.04); grROCint->GetXaxis()->SetTitle("#gamma"); grROCint->GetYaxis()->SetTitle("C"); grROCint->GetZaxis()->SetTitle("ROC integral"); grROCint->SetTitle("ROC integral"); grROCint->SetMaximum(1.0); grROCint->SetMinimum(0.9); grROCint->Draw("COLZ"); cSVMopt->cd(2); cSVMopt_2->SetLogx(); cSVMopt_2->SetLogy(); grSigAt1Bkg_test->SetTitle("Signal at 1% Bkg level (test)"); // grSigAt1Bkg_test->Draw("surf1"); grSigAt1Bkg_test->Draw("COLZ"); cSVMopt->cd(3); cSVMopt_3->SetLogx(); cSVMopt_3->SetLogy(); grOverTrain->SetTitle("Overtraining"); grOverTrain->Draw("COLZ"); //cSVMopt->SaveAs("SVMoptC1.root"); }
int main(int argc , char* argv[]){ //Program Options po::options_description desc("Allowed Options"); desc.add_options() ("help,h", "Produce this help message") ("startwl,s",po::value<double>(),"Set the start Wavelength for the Analysis") ("stopwl,p",po::value<double>(),"Set the stop Wavelength for the Analysis") ("non-interactive,n","Runs the program in Noninteractive mode. It quits when it's finished") ("version,v","Prints Version") ; po::variables_map vm; po::store(po::parse_command_line(argc,argv,desc),vm); po::notify(vm); if (vm.count("help")) { std::cout << desc<< std::endl; return 3; } if (vm.count("version")) { std::cout << "VCSEL Laser Analysis Version " << _VERSION << std::endl; std::cout << "Using ROOT version " << _ROOT_VERSION << " and Boost version " << _BOOST_VERSION << std::endl; return 0; } if (argc < 4) { std::cout << desc; return 2; } double startwl, stopwl; startwl = 842.; stopwl = 860.; bool run = true; if (vm.count("startwl")) { startwl = vm["startwl"].as<double>(); NUM_ARGS +=2; } if (vm.count("stopwl")) { double tmp = vm["stopwl"].as<double>(); stopwl =tmp; NUM_ARGS +=2; } if (vm.count("non-interactive")) { run = false; NUM_ARGS++; } //checking filetypes must be txt, csv or CSV if (!check_extensions(argc, argv)) { return 1; } std::cout <<"startwl: "<< startwl << '\t' << "stopwl: " << stopwl << std::endl; Double_t max = -210; Double_t maxwl = 0; int _argc = argc; TApplication *t = new TApplication("big",&_argc,argv); std::cout << "Running with boost and ROOT" <<std::endl; std::vector<double> _x,_y; Double_t x[LINES], y[LINES], _inta[LINES], _intb[LINES]; Double_t *cmp_int = new Double_t[argc]; Double_t *argc_ary = new Double_t[argc]; Double_t *cmp_int_root = new Double_t[argc]; Double_t *asymmety_ary = new Double_t[argc]; Double_t *width_ary = new Double_t [argc]; TGraph2D *gr = new TGraph2D(LINES*(argc-1)); //Setting up canvas for plot of all sectrums (is it called spectrums? ;) ) TCanvas *c1 = new TCanvas("All Plots","All Plots",10,10,3000,1500); TH1F *integral_hist = new TH1F("Asymmerty", "Asymmetry", 100,0, 100); if(!(argc % ROWS)){ c1->Divide(argc/ROWS,ROWS); }else{ c1->Divide(argc/ROWS+(argc %ROWS -1),ROWS); } for (Int_t i = NUM_ARGS +1; i < argc ; i++){ try{ max = -211; maxwl = 0; argc_ary[i] = i-NUM_ARGS; std::ifstream in; in.seekg(0, std::ios::beg); // voodoo keep this; char **arg1 = t->Argv() ; std::string tmp = arg1[i]; in.open(tmp.c_str()); std::cout<< "file: " << tmp << std::endl; std::string line; int cline = 0; std::vector<double> a,b, inta, intb; //reading file while(getline(in,line)){ read_file(line, a, b, inta, intb); cline++; } if (cline < LINES){ for(int i = cline ; i < LINES ; i++){ a.push_back(100); b.push_back(-70); } } std::cout<< "\n\ncline: " << cline<< std::endl; cline =(cline > LINES) ? LINES :cline; for(Int_t j = 0; j <LINES ;j++){ x[j] = a[j]; y[j] = b[j]; _inta[j] = inta[j]; _intb[j]= (intb[j] < 0)? 0:intb[j]; } double s_integral = 0; std::cout <<"size of int " << intb.size()<< std::endl; for (size_t it = 0; it < intb.size() - 1; it++){ double y_val = (intb[it]+intb[it+1])/2; assert (y_val >= 0); double area = 0.002*y_val; if(area > 0 ) s_integral += area; } std::cout << "Simpson integral: " <<s_integral <<std::endl; integral_hist->Fill(s_integral); cmp_int[i] = s_integral; Int_t lines = (Int_t)intb.size(); TGraph *r_integral = new TGraph(lines, _inta, _intb); std::cout << "ROOT integral: " << r_integral->Integral() << std::endl; cmp_int_root[i] = r_integral->Integral(); //expanding //expand(y, THRS_EXPAND, RATIO_EXPAND, LINES); //Filling TGraph2D for(Int_t j = 0; j <LINES ; j++){ if (y[j] > max){ max = y[j]; maxwl = x[j]; } gr->SetPoint(j+i*LINES, x[j],i,y[j]); } in.seekg(0, std::ios::beg); in.close(); //Plotting each spectrum TGraph *_gr = new TGraph(LINES,x,y); _gr->GetHistogram()->GetXaxis()->SetTitle("#lambda in nm"); _gr->GetHistogram()->GetYaxis()->SetTitle("Intensity in dB"); c1->cd(i-NUM_ARGS); _gr->Draw("AP"); _gr->GetYaxis()->SetRangeUser(-80.,-10.); _gr->GetXaxis()->SetRangeUser(startwl,stopwl); _gr->SetTitle(tmp.c_str()); c1->Update(); //Calculating asymmetry std::cout << "maximum: " << max << std::endl; double leftlimit, rightlimit = 1; leftlimit = findlower(x,y, max); rightlimit = findupper(x,y, max); if (leftlimit != 1 && rightlimit != 1){ width_ary[i] = (leftlimit +rightlimit)/2; }else{ width_ary[i] = maxwl; } double calced_asy = (maxwl-leftlimit)/(rightlimit-maxwl); asymmety_ary[i-NUM_ARGS] = calced_asy; std::cout << "Asymmetry: " << calced_asy << std::endl; }catch(std::exception e){ std::cout << e.what()<< std::endl; } } //Setting style for 3D Plot TCanvas *d = new TCanvas("big","big",10,10,1500,800); d->Divide(2,2); d->cd(1); TGraph *the_ints = new TGraph(argc-1,argc_ary,cmp_int); the_ints->Draw("A*"); the_ints->SetTitle("My Ints"); d->Update(); d->cd(2); std::cout << "Fitting\n\n"; integral_hist->SetFillColor(kBlue); //settig everything to print fitresuts gStyle->SetOptStat(1211); gStyle->SetOptFit(1111); integral_hist->Draw(); integral_hist->Fit("gaus","W","" ,10,100); //integral_hist->Draw("SAME"); d->Update(); d->cd(3); TGraph *roots_int = new TGraph(argc-1, argc_ary, cmp_int_root); roots_int->SetTitle("ROOTS Int"); roots_int->Draw("A*"); d->Update(); d->cd(4); d->Update(); //gROOT->SetStyle("modern"); gr->SetTitle("big"); gr->GetHistogram("empty")->GetXaxis()->SetTitle("#lambda in nm"); gr->GetHistogram("empty")->GetXaxis()->SetLimits(startwl,stopwl); gr->GetHistogram("empty")->GetYaxis()->SetTitle("Messurement"); gr->GetHistogram("empty")->GetZaxis()->SetTitle("Intensity in dB"); gr->GetHistogram("empty")->GetXaxis()->SetTitleOffset(1.5); gr->GetHistogram("empty")->GetYaxis()->SetTitleOffset(1.5); gr->GetHistogram("empty")->GetZaxis()->SetTitleOffset(1.5); gr->GetHistogram("empty")->GetZaxis()->SetRangeUser(-70.,max); gr->GetHistogram("empty")->GetXaxis()->CenterTitle(); gr->GetHistogram("empty")->GetYaxis()->CenterTitle(); gr->GetHistogram("empty")->GetZaxis()->CenterTitle(); gr->Draw("PCOL"); d->SetFillColor(16); #ifdef RENDER //Render 3D animation const Int_t kUPDATE = 1; TSlider *slider = 0; for (Int_t i = 1; i <= 125; i++){ TView3D *v = new TView3D(); v->RotateView(5+i,45+i,d); //d->Update(); if(i && (i%kUPDATE)== 0){ if (i == kUPDATE){ gr->Draw("PCOL"); d->Update(); slider = new TSlider("slider","test",850,-70,856,max); } if (slider) slider->SetRange(0,Float_t(i)/10000.); d->Modified(); d->Update(); d->Print("3d.gif+"); } } d->Update(); d->Print("3d.gif++"); #endif //Saving image TImage *img = TImage::Create(); boost::filesystem::path p(t->Argv(3)); std::string file = p.parent_path().string(); file += "_big.png"; img->FromPad(d); img->WriteImage(file.c_str()); //cleaning TCanvas *e = new TCanvas("Asymmetry","Asymmetry",10,10,1500,800); e->Divide(2,1); TGraph *asy_plot = new TGraph(argc-1, argc_ary, asymmety_ary); e->cd(1); asy_plot->SetTitle("Asymmetry"); asy_plot->GetHistogram()->GetXaxis()->SetTitle("# Meassurement"); asy_plot->GetHistogram()->GetYaxis()->SetTitle("Asymmetry"); asy_plot->GetHistogram()->GetXaxis()->SetRange(1, argc); asy_plot->Draw("A*"); e->Update(); e->cd(2); TGraph *center_plot = new TGraph(argc-1 , argc_ary, width_ary); center_plot->GetHistogram()->GetXaxis()->SetTitle("# Meassurement"); center_plot->GetHistogram()->GetYaxis()->SetTitle("Center in nm"); center_plot->GetHistogram()->GetYaxis()->SetRangeUser(startwl, stopwl); center_plot->SetTitle("Center"); center_plot->Draw("A*"); e->Update(); //Saving Images TImage *secimg = TImage::Create(); boost::filesystem::path p2(t->Argv(3)); file = p2.parent_path().string(); file += "_asy_cent.png"; secimg->FromPad(e); secimg->WriteImage(file.c_str()); TImage *thrdimg = TImage::Create(); boost::filesystem::path p3(t->Argv(3)); file = p3.parent_path().string(); file += "_allplots.png"; thrdimg->FromPad(c1); thrdimg->WriteImage(file.c_str()); //detecting Gradients gradient(asymmety_ary, width_ary,cmp_int, argc-1,c1); std::cout << "\n\n\nDone !!\nYou can quit now using CTRL+C \n" ; if (run == true){ t->Run(); } std::cout << "With \n" ; delete[] cmp_int; delete[] argc_ary; delete[] cmp_int_root; delete[] asymmety_ary; delete[] width_ary; return 0; }
void FitXS (int nminx = 0, int nmaxx = 1509, int nmintest = 0, int nmaxtest = 1509) { //////////////////////////////////////////////////// // ftp://root.cern.ch/root/doc/ROOTUsersGuideHTML/ch09s05.html TStyle *defaultStyle = new TStyle("defaultStyle","Default Style"); //gStyle->SetOptStat(0); // defaultStyle->SetOptStat(0000); // defaultStyle->SetOptFit(000); // defaultStyle->SetPalette(1); //////////////////////// defaultStyle->SetOptStat(0); // remove info box /////// pad //////////// defaultStyle->SetPadBorderMode(0); defaultStyle->SetPadBorderSize(3); defaultStyle->SetPadColor(0); defaultStyle->SetPadTopMargin(0.1); defaultStyle->SetPadBottomMargin(0.16); defaultStyle->SetPadRightMargin(5.5); defaultStyle->SetPadLeftMargin(0.18); /////// canvas ///////// defaultStyle->SetCanvasBorderMode(1); defaultStyle->SetCanvasColor(0); // defaultStyle->SetCanvasDefH(600); // defaultStyle->SetCanvasDefW(600); /////// frame ////////// //defaultStyle->SetFrameBorderMode(1); //defaultStyle->SetFrameBorderSize(1); defaultStyle->SetFrameFillColor(0); defaultStyle->SetFrameLineColor(1); /////// label ////////// // defaultStyle->SetLabelOffset(0.005,"XY"); // defaultStyle->SetLabelSize(0.05,"XY"); //defaultStyle->SetLabelFont(46,"XY"); /////// title ////////// //defaultStyle->SetTitleW(0.6); defaultStyle->SetTitleSize(0.08, "XYZ"); defaultStyle->SetTitleBorderSize(0); defaultStyle->SetTitleX(0.2); // defaultStyle->SetTitleOffset(1.1,"X"); // defaultStyle->SetTitleSize(0.01,"X"); // defaultStyle->SetTitleOffset(1.25,"Y"); // defaultStyle->SetTitleSize(0.05,"Y"); //defaultStyle->SetTitleFont(42, "XYZ"); /////// various //////// defaultStyle->SetNdivisions(303,"Y"); defaultStyle->SetTitleFillColor(0);//SetTitleFillStyle(0, "Z"); //defaultStyle->SetTitleX(0.2); //defaultStyle->SetTitleY(0.1); //defaultStyle->SetTitleBorderSize(-0.1); // For the axis titles: // defaultStyle->SetTitleColor(1, "XYZ"); // defaultStyle->SetTitleFont(42, "XYZ"); // defaultStyle->SetTitleYSize(0.08); //defaultStyle->SetTitleXOffset(0.9); //defaultStyle->SetTitleYOffset(1.05); defaultStyle->SetTitleOffset(1.3, "Y"); // Another way to set the Offset //defaultStyle->SetTitleOffset(1.0, "X"); // Another way to set the Offset // For the axis labels: defaultStyle->SetLabelColor(1, "XYZ"); //defaultStyle->SetLabelFont(46, "XYZ"); defaultStyle->SetLabelOffset(0.03, "XYZ"); defaultStyle->SetLabelSize(0.07, "XYZ"); //defaultStyle->SetLabelY(0.06); // For the axis: // defaultStyle->SetAxisColor(1, "XYZ"); defaultStyle->SetStripDecimals(kTRUE); defaultStyle->SetTickLength(0.03, "XYZ"); defaultStyle->SetNdivisions(7, "XYZ"); // defaultStyle->SetPadTickX(1); // To get tick marks on the opposite side of the frame // defaultStyle->SetPadTickY(1); defaultStyle->cd(); /////////////////////////////////////////// nmin=nminx; nmax=nmaxx; if (nmin<0) nmin=0; if (nmax>Npoints) nmax=Npoints; // Read in the cross section values and the parameters space points ifstream XSvals; XSvals.open("list_all_translation_CX.txt");//"14TeV_CX_5k_opositecgw.ascii");// "8TeV_CX_5k_opositecgw.ascii");// for (int i=nmin; i<nmax; i++) { XSvals >> par0[i] >> par1[i] >> par2[i] >> par3[i] >> par4[i] >> cross_section[i] >> cross_sectionerr[i]; cout << "For point i = " << i << "pars are " << par0[i] << " " << par1[i] << " " << par2[i] << " " << par3[i] << " " << par4[i] << " and xs is " << cross_section[i] << endl; } cout << "**********************************************" << endl; // Likelihood maximization // ----------------------- // Minuit routine TMinuit rmin(2); rmin.SetFCN(Likelihood); // Main initialization member function for MINUIT rmin.mninit(5,6,7); // Parameters needed to be unambiguous with MINOS int iflag=0; // You can use this for selection double arglis[4]; //arglis[0]=2; arglis[0]=1; // Sets the strategy to be used in calculating first and second derivatives // and in certain minimization methods. 1 is default rmin.mnexcm("SET STR", arglis, 1, iflag); // Set fit parameters double Start[15];// ={ 0.030642286182762914, 0.1502216514258229, 0.004287943879883482, 0.0016389029559123376, 0.01930407853512356, -0.12540818099961384, -0.02048425705808435, 0.04246248185144494, 0.02590360491719489, -0.05255851386689693, -0.010393610828707423, 0.02770339496466713, 0.005468667874225809, -0.011297300064522649, -0.02261561923548796}; // cx in pb // double Start[15] = {2.2646, 1.102, 0.316898, 16, 192, -3, -1, 1, 7, 15, -8, -23, 4, 9, 200}; // normalized to SM double Step[15];// ={ 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01 }; //={0.01}; double Min[15]; // ={-3.1415926}; double Max[15]; // = {3.1415926}; for (int i=0; i<15; i++) { Start[i]=1.; Step[i]=1; Min[i]=-100000; Max[i]=+100000; } TString parnamEj[15]={"A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","A12","A13","A14","A15"}; for (int i=0; i<15; i++) { rmin.mnparm(i, parnamEj[i], Start[i], Step[i], Min[i], Max[i], iflag); } // Instructs Minuit to call subroutine FCN with the value of IFLAG rmin.mnexcm("call fcn", arglis, 1, iflag); // command executed normally // Causes minimization of the function by the method of Migrad rmin.mnexcm("mini", arglis, 0, iflag); // Read results double a[15], err[15], pmin, pmax; int ivar; for (int i=0; i<15; i++) { rmin.mnpout (i, parnamEj[i], a[i], err[i], pmin, pmax, ivar); } // End of program // -------------- gROOT->Time(); cout<<endl<<" Making plots "<<endl; cout<<"$A_1$ = "<<a[0]<<" $\\pm$ "<<err[0]<<" & $A_4$ = "<<a[3]<<" $\\pm$ "<<err[3]<<" & $A_7$ = "<<a[6]<<" $\\pm$ "<<err[6]<<" & $A_{10}$ = "<<a[9]<<" $\\pm$ "<<err[9]<<" & $A_{13}$ = "<<a[12]<<" $\\pm$ "<<err[12]<< " \\\ "<<endl; cout<<"$A_2$ = "<<a[1]<<" $\\pm$ "<<err[1]<<" & $A_5$ = "<<a[4]<<" $\\pm$ "<<err[4]<<" & $A_8$ = "<<a[7]<<" $\\pm$ "<<err[7]<<" & $A_{11}$ = "<<a[10]<<" $\\pm$ "<<err[10]<<" & $A_{14}$ = "<<a[13]<<" $\\pm$ "<<err[13]<< " \\\ "<<endl; cout<<"$A_3$ = "<<a[2]<<" $\\pm$ "<<err[2]<<" & $A_6$ = "<<a[5]<<" $\\pm$ "<<err[5]<<" & $A_9$ = "<<a[8]<<" $\\pm$ "<<err[8]<<" & $A_{12}$ = "<<a[11]<<" $\\pm$ "<<err[11]<<" & $A_{15}$ = "<<a[14]<<" $\\pm$ "<<err[14]<< " \\\ "<<endl; cout<<endl<<" To mathematica: "<<endl; cout<<"{"<<a[0]<<","<<a[1]<<","<<a[2]<<","<<a[3]<<","<<a[4]<<","<<a[5]<<","<<a[6]<<","<<a[7]<<","<<a[8]<<","<<a[9]<<","<<a[10]<<","<<a[11]<<","<<a[12]<<","<<a[13]<<","<<a[14]<<"}"<<endl; cout<<endl<<" To mathematica (errors): "<<endl; cout<<"{"<<err[0]<<","<<err[1]<<","<<err[2]<<","<<err[3]<<","<<err[4]<<","<<err[5]<<","<<err[6]<<","<<err[7]<<","<<err[8]<<","<<err[9]<<","<<err[10]<<","<<err[11]<<","<<err[12]<<","<<err[13]<<","<<err[14]<<"}"<<endl; ///////////////// // plot the CX //////////////// // plane b double norm = 1; //0.013531;// 0.0041758;//1;// 8tev 13 tev 1;// double kt5d=1.0; double kl5d=1.0; double c25d=0.0; double mincg = -2.99, maxcg=2.99; // cg ===> x // c2g ===> y TF2 *fg2 = new TF2("fg2","(([0]*[15]**4 + [1]*[17]**2 + [2]*[15]**2*[16]**2 + [3]*x**2*[16]**2 + [4]*y**2 + [5]*[17]*[15]**2 + [6]*[15]*[16]*[15]**2 + [7]*[15]*[16]*[17] + [8]*x*[16]*[17] + [9]*[17]*y + [10]*x*[16]*[15]**2 + [11]*y*[15]**2 + [12]*[16]*x*[15]*[16] + [13]*y*[15]*[16] + [14]*x*y*[16])/[18])",mincg,maxcg,mincg,maxcg); fg2->SetParameter(0,a[0]); fg2->SetParameter(1,a[1]); fg2->SetParameter(2,a[2]); fg2->SetParameter(3,a[3]); fg2->SetParameter(4,a[4]); fg2->SetParameter(5,a[5]); fg2->SetParameter(6,a[6]); fg2->SetParameter(7,a[7]); fg2->SetParameter(8,a[8]); fg2->SetParameter(9,a[9]); fg2->SetParameter(10,a[10]); fg2->SetParameter(11,a[11]); fg2->SetParameter(12,a[12]); fg2->SetParameter(13,a[13]); fg2->SetParameter(14,a[14]); fg2->SetTitle("kt = #kappa_{#lambda} = 1 , c_{2} = 0 ; c_{g} ; c_{2g}"); fg2->SetParameter(15,kt5d); fg2->SetParameter(16,kl5d); fg2->SetParameter(17,c25d); fg2->SetParameter(18,norm); //0.013531 //fg2->SetMinimum(0); fg2->SetContour(100); // //////////////////////////////// kt5d=1.0; kl5d=10.0; c25d=0.0; // cg ===> x // c2g ===> y TF2 *fg10 = new TF2("fg10","([0]*[15]**4 + [1]*[17]**2 + [2]*[15]**2*[16]**2 + [3]*x**2*[16]**2 + [4]*y**2 + [5]*[17]*[15]**2 + [6]*[15]*[16]*[15]**2 + [7]*[15]*[16]*[17] + [8]*x*[16]*[17] + [9]*[17]*y + [10]*x*[16]*[15]**2 + [11]*y*[15]**2 + [12]*[16]*x*[15]*[16] + [13]*y*[15]*[16] + [14]*x*y*[16])/[18]",mincg,maxcg,mincg,maxcg); fg10->SetParameter(0,a[0]); fg10->SetParameter(1,a[1]); fg10->SetParameter(2,a[2]); fg10->SetParameter(3,a[3]); fg10->SetParameter(4,a[4]); fg10->SetParameter(5,a[5]); fg10->SetParameter(6,a[6]); fg10->SetParameter(7,a[7]); fg10->SetParameter(8,a[8]); fg10->SetParameter(9,a[9]); fg10->SetParameter(10,a[10]); fg10->SetParameter(11,a[11]); fg10->SetParameter(12,a[12]); fg10->SetParameter(13,a[13]); fg10->SetParameter(14,a[14]); fg10->SetTitle(""); fg10->SetParameter(15,kt5d); fg10->SetParameter(16,kl5d); fg10->SetParameter(17,c25d); fg10->SetParameter(18,norm);// 0.013531 fg10->SetMinimum(0); //////////////////////////////// kt5d=1.0; kl5d=-10.0; c25d=0.0; // cg ===> x // c2g ===> y TF2 *fgm10 = new TF2("fgm10","([0]*[15]**4 + [1]*[17]**2 + [2]*[15]**2*[16]**2 + [3]*x**2*[16]**2 + [4]*y**2 + [5]*[17]*[15]**2 + [6]*[15]*[16]*[15]**2 + [7]*[15]*[16]*[17] + [8]*x*[16]*[17] + [9]*[17]*y + [10]*x*[16]*[15]**2 + [11]*y*[15]**2 + [12]*[16]*x*[15]*[16] + [13]*y*[15]*[16] + [14]*x*y*[16])/[18]",mincg,maxcg,mincg,maxcg); fgm10->SetParameter(0,a[0]); fgm10->SetParameter(1,a[1]); fgm10->SetParameter(2,a[2]); fgm10->SetParameter(3,a[3]); fgm10->SetParameter(4,a[4]); fgm10->SetParameter(5,a[5]); fgm10->SetParameter(6,a[6]); fgm10->SetParameter(7,a[7]); fgm10->SetParameter(8,a[8]); fgm10->SetParameter(9,a[9]); fgm10->SetParameter(10,a[10]); fgm10->SetParameter(11,a[11]); fgm10->SetParameter(12,a[12]); fgm10->SetParameter(13,a[13]); fgm10->SetParameter(14,a[14]); fgm10->SetTitle(""); fgm10->SetParameter(15,kt5d); fgm10->SetParameter(16,kl5d); fgm10->SetParameter(17,c25d); fgm10->SetParameter(18,norm);//0.013531 fgm10->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< fg2->Eval(0,0)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< fg2->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< fg2->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////////////////////////// double cg=0.0; double c2g=0.0; c25d=0.0; // cg ===> x ===> kl // c2g ===> y ===> kt TF2 *SM0 = new TF2("SM0","(([0]*y**4 + [1]*[17]**2 + [2]*y**2*x**2 + [3]*[15]**2*x**2 + [4]*[15]**2 + [5]*[17]*y**2 + [6]*y*x*y**2 + [7]*[15]*x*[17] + [8]*[16]*x*[17] + [9]*[17]*y + [10]*[16]*x*[15]**2 + [11]*[16]*y**2 + [12]*x*[16]*[15]*x + [13]*[15]*[15]*x + [14]*[16]*[15])/[18])+[19]",-15,15,0.5,2.5); SM0->SetParameter(0,a[0]); SM0->SetParameter(1,a[1]); SM0->SetParameter(2,a[2]); SM0->SetParameter(3,a[3]); SM0->SetParameter(4,a[4]); SM0->SetParameter(5,a[5]); SM0->SetParameter(6,a[6]); SM0->SetParameter(7,a[7]); SM0->SetParameter(8,a[8]); SM0->SetParameter(9,a[9]); SM0->SetParameter(10,a[10]); SM0->SetParameter(11,a[11]); SM0->SetParameter(12,a[12]); SM0->SetParameter(13,a[13]); SM0->SetParameter(14,a[14]); SM0->SetParameter(15,cg); //==>y SM0->SetParameter(16,c2g);//==>x SM0->SetParameter(17,c25d); SM0->SetParameter(18,norm);// 0.013531 SM0->SetParameter(19,0.0001);// 0.013531 SM0->SetTitle("c_{2} = c_{2g} = c_{g} = 0 ; #kappa_{#lambda} ; #kappa_{t}"); //SM0->SetMinimum(0); SM0->SetContour(200); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb "<<endl; cout<<"teste funcao kl , kt : 1,1 "<< SM0->Eval(1,1)<<endl; cout<<"teste funcao kl , kt : -10, 1 "<< SM0->Eval(-10,1)<<endl; cout<<"teste funcao kl , kt : 10, 1 "<< SM0->Eval(10,1)<<endl; //////////////////////////////// kt5d=1.0; kl5d=1.0; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *l1 = new TF2("l1","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-4,4,0.5,2.5); l1->SetParameter(0,a[0]); l1->SetParameter(1,a[1]); l1->SetParameter(2,a[2]); l1->SetParameter(3,a[3]); l1->SetParameter(4,a[4]); l1->SetParameter(5,a[5]); l1->SetParameter(6,a[6]); l1->SetParameter(7,a[7]); l1->SetParameter(8,a[8]); l1->SetParameter(9,a[9]); l1->SetParameter(10,a[10]); l1->SetParameter(11,a[11]); l1->SetParameter(12,a[12]); l1->SetParameter(13,a[13]); l1->SetParameter(14,a[14]); l1->SetTitle("#kappa_{#lambda} =1 , c_{2g} = c_{g} = 0 ; c_{2} ; #kappa_{t}"); l1->SetParameter(15,c2g); //==> c2g l1->SetParameter(16,kl5d); l1->SetParameter(17,cg); //==> cg l1->SetParameter(18,norm);//0.013531 //l1->->SetRange(1e1,0.1,1e3,1); //l1->SetMaximum(4e2); //l1->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< l1->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< l1->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< l1->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////// kt5d=1.0; kl5d=0.0; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *l0 = new TF2("l0","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-4,4,0.5,2.5); l0->SetParameter(0,a[0]); l0->SetParameter(1,a[1]); l0->SetParameter(2,a[2]); l0->SetParameter(3,a[3]); l0->SetParameter(4,a[4]); l0->SetParameter(5,a[5]); l0->SetParameter(6,a[6]); l0->SetParameter(7,a[7]); l0->SetParameter(8,a[8]); l0->SetParameter(9,a[9]); l0->SetParameter(10,a[10]); l0->SetParameter(11,a[11]); l0->SetParameter(12,a[12]); l0->SetParameter(13,a[13]); l0->SetParameter(14,a[14]); l0->SetTitle(""); l0->SetParameter(15,c2g); //==> c2g l0->SetParameter(16,kl5d); l0->SetParameter(17,cg); //==> cg l0->SetParameter(18,norm);//0.013531 l0->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< l0->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< l0->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< l0->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////// kt5d=1.0; kl5d=2.4; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *l24 = new TF2("l24","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-4,4,0.5,2.5); l24->SetParameter(0,a[0]); l24->SetParameter(1,a[1]); l24->SetParameter(2,a[2]); l24->SetParameter(3,a[3]); l24->SetParameter(4,a[4]); l24->SetParameter(5,a[5]); l24->SetParameter(6,a[6]); l24->SetParameter(7,a[7]); l24->SetParameter(8,a[8]); l24->SetParameter(9,a[9]); l24->SetParameter(10,a[10]); l24->SetParameter(11,a[11]); l24->SetParameter(12,a[12]); l24->SetParameter(13,a[13]); l24->SetParameter(14,a[14]); l24->SetTitle(""); l24->SetParameter(15,c2g); //==> c2g l24->SetParameter(16,kl5d); l24->SetParameter(17,cg); //==> cg l24->SetParameter(18,norm);//0.013531 l24->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< l24->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< l24->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< l24->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////// kt5d=1.0; kl5d=5.0; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *l5 = new TF2("l5","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-4,4,0.5,2.5); l5->SetParameter(0,a[0]); l5->SetParameter(1,a[1]); l5->SetParameter(2,a[2]); l5->SetParameter(3,a[3]); l5->SetParameter(4,a[4]); l5->SetParameter(5,a[5]); l5->SetParameter(6,a[6]); l5->SetParameter(7,a[7]); l5->SetParameter(8,a[8]); l5->SetParameter(9,a[9]); l5->SetParameter(10,a[10]); l5->SetParameter(11,a[11]); l5->SetParameter(12,a[12]); l5->SetParameter(13,a[13]); l5->SetParameter(14,a[14]); l5->SetTitle(""); l5->SetParameter(15,c2g); //==> c2g l5->SetParameter(16,kl5d); l5->SetParameter(17,cg); //==> cg l5->SetParameter(18,norm);//0.013531 l5->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< l5->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< l5->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< l5->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////// kt5d=1.0; kl5d=10.0; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *l10 = new TF2("l10","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-4,4,0.5,2.5); l10->SetParameter(0,a[0]); l10->SetParameter(1,a[1]); l10->SetParameter(2,a[2]); l10->SetParameter(3,a[3]); l10->SetParameter(4,a[4]); l10->SetParameter(5,a[5]); l10->SetParameter(6,a[6]); l10->SetParameter(7,a[7]); l10->SetParameter(8,a[8]); l10->SetParameter(9,a[9]); l10->SetParameter(10,a[10]); l10->SetParameter(11,a[11]); l10->SetParameter(12,a[12]); l10->SetParameter(13,a[13]); l10->SetParameter(14,a[14]); l10->SetTitle(""); l10->SetParameter(15,c2g); //==> c2g l10->SetParameter(16,kl5d); l10->SetParameter(17,cg); //==> cg l10->SetParameter(18,norm);//0.013531 l10->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< l10->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< l10->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< l10->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////// kt5d=1.0; kl5d=-2.4; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *lm24 = new TF2("lm24","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-17,17,0.5,2.5); lm24->SetParameter(0,a[0]); lm24->SetParameter(1,a[1]); lm24->SetParameter(2,a[2]); lm24->SetParameter(3,a[3]); lm24->SetParameter(4,a[4]); lm24->SetParameter(5,a[5]); lm24->SetParameter(6,a[6]); lm24->SetParameter(7,a[7]); lm24->SetParameter(8,a[8]); lm24->SetParameter(9,a[9]); lm24->SetParameter(10,a[10]); lm24->SetParameter(11,a[11]); lm24->SetParameter(12,a[12]); lm24->SetParameter(13,a[13]); lm24->SetParameter(14,a[14]); lm24->SetTitle(""); lm24->SetParameter(15,c2g); //==> c2g lm24->SetParameter(16,kl5d); lm24->SetParameter(17,cg); //==> cg lm24->SetParameter(18,norm);//0.013531 lm24->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< lm24->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< lm24->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< lm24->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////// kt5d=1.0; kl5d=-5.0; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *lm5 = new TF2("lm5","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-4,4,0.5,2.5); lm5->SetParameter(0,a[0]); lm5->SetParameter(1,a[1]); lm5->SetParameter(2,a[2]); lm5->SetParameter(3,a[3]); lm5->SetParameter(4,a[4]); lm5->SetParameter(5,a[5]); lm5->SetParameter(6,a[6]); lm5->SetParameter(7,a[7]); lm5->SetParameter(8,a[8]); lm5->SetParameter(9,a[9]); lm5->SetParameter(10,a[10]); lm5->SetParameter(11,a[11]); lm5->SetParameter(12,a[12]); lm5->SetParameter(13,a[13]); lm5->SetParameter(14,a[14]); lm5->SetTitle(""); lm5->SetParameter(15,c2g); //==> c2g lm5->SetParameter(16,kl5d); lm5->SetParameter(17,cg); //==> cg lm5->SetParameter(18,norm);//0.013531 lm5->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< lm5->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< lm5->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< lm5->Eval(-1,1)<<endl; cout<<" "<<endl; //////////////////////////////// kt5d=1.0; kl5d=-10.0; c25d=0.0; // cg ===> x ==> c2 // c2g ===> y ==> kt TF2 *lm10 = new TF2("lm10","([0]*y**4 + [1]*x**2 + [2]*y**2*[16]**2 + [3]*[17]**2*[16]**2 + [4]*[15]**2 + [5]*x*y**2 + [6]*y*[16]*y**2 + [7]*y*[16]*x + [8]*[17]*[16]*x + [9]*x*[15] + [10]*[17]*[16]*y**2 + [11]*[15]*y**2 + [12]*[16]*[17]*y*[16] + [13]*[15]*y*[16] + [14]*[17]*[15]*[16])/[18]",-4,4,0.5,2.5); lm10->SetParameter(0,a[0]); lm10->SetParameter(1,a[1]); lm10->SetParameter(2,a[2]); lm10->SetParameter(3,a[3]); lm10->SetParameter(4,a[4]); lm10->SetParameter(5,a[5]); lm10->SetParameter(6,a[6]); lm10->SetParameter(7,a[7]); lm10->SetParameter(8,a[8]); lm10->SetParameter(9,a[9]); lm10->SetParameter(10,a[10]); lm10->SetParameter(11,a[11]); lm10->SetParameter(12,a[12]); lm10->SetParameter(13,a[13]); lm10->SetParameter(14,a[14]); lm10->SetTitle(""); lm10->SetParameter(15,c2g); //==> c2g lm10->SetParameter(16,kl5d); lm10->SetParameter(17,cg); //==> cg lm10->SetParameter(18,norm);//0.013531 lm10->SetMinimum(0); // cout<<endl<<"Value of the formula in SM point: 0.013531 pb"<<a[0]<<endl; cout<<"teste funcao cg , c2g : 0,0 "<< lm10->Eval(0,1)<<endl; cout<<"teste funcao cg , c2g : -1,1 "<< lm10->Eval(-1,1)<<endl; cout<<"teste funcao cg , c2g : 1,-1 "<< lm10->Eval(-1,1)<<endl; cout<<" "<<endl; /////////////////////////////////////////////////////////////// // Draw this function in pad1 with Gouraud shading option TCanvas *c1 = new TCanvas("c1","Surfaces Drawing Options",1500,2500); const int Number = 3; Double_t Red[Number] = { 1.00, 0.00, 0.00}; Double_t Green[Number] = { 0.00, 1.00, 0.00}; Double_t Blue[Number] = { 1.00, 0.00, 1.00}; Double_t Length[Number] = { 0.00, 0.50, 1.00 }; Int_t nb=30; TColor::CreateGradientColorTable(Number,Length,Red,Green,Blue,nb); //////////////////////////// TLatex* text = new TLatex(); text->SetTextSize(0.09); c1->SetLogz(0); ////////////////////////////////////// /* c1->Divide(3,4); c1->cd(1); //c1_1->SetLogz(); //c1->SetTicks(0,0); //c1->SetRightMargin(0.15); //c1->SetLeftMargin(0.15); //c1->SetBottomMargin(0.02); fg2->Draw("colz1"); text->DrawLatex(-0.85,-0.8,"#kappa_{#lambda} = 1, #kappa_{t} = 1, c_{2} = 0"); //----------------- c1->cd(2); //c1_1->SetLogz(); //c1_2->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); fg10->Draw("colz1"); text->DrawLatex(-0.85,-0.8,"#kappa_{#lambda} = 10, #kappa_{t} = 1, c_{2} = 0"); //----------------- c1->cd(3); //c1_1->SetLogz(); //c1_2->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); fgm10->Draw("colz1"); text->DrawLatex(-0.85,-0.8,"#kappa_{#lambda} = -10, #kappa_{t} = 1, c_{2} = 0"); //text->SetTextSize(0.08); //text->SetTextColor(0); //text->DrawLatex(-0.85.,-0.8,"#kappa_{#lambda} = 2.4, #kappa_{t} = 1, c_{2} = 0"); c1->cd(4); //c1_1->SetLogz(); //c1_2->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); SM0->Draw("colz1"); text->DrawLatex(-3.,0.7,"c_{2} = c_{g} = c_{2} = 0"); //text->SetTextSize(0.08); //text->SetTextColor(0); //text->DrawLatex(-0.85.,-0.8,"#kappa_{#lambda} = 2.4, #kappa_{t} = 1, c_{2} = 0"); c1->cd(5); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); l1->Draw("colz1"); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = 1, c_{g} = c_{2} = 0"); c1->cd(6); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); l0->Draw("colz1"); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = c_{g} = c_{2} = 0"); //text->SetTextSize(0.08); //text->SetTextColor(0); //text->DrawLatex(-0.85.,-0.8,"#kappa_{#lambda} = 2.4, #kappa_{t} = 1, c_{2} = 0"); c1->cd(7); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); l24->Draw("colz"); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = 2.4, c_{g} = c_{2} = 0"); //text->SetTextSize(0.08); //text->SetTextColor(0); //text->DrawLatex(-0.85.,-0.8,"#kappa_{#lambda} = 2.4, #kappa_{t} = 1, c_{2} = 0"); c1->cd(8); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); l5->Draw("colz1"); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = 5, c_{g} = c_{2} = 0"); //text->SetTextSize(0.08); //text->SetTextColor(0); //text->DrawLatex(-0.85.,-0.8,"#kappa_{#lambda} = 2.4, #kappa_{t} = 1, c_{2} = 0"); c1->cd(9); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); l10->Draw("colz1"); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = 10, c_{g} = c_{2} = 0"); //text->DrawLatex(-3,1,"SM plane in log scale"); //text->SetTextSize(0.08); //text->SetTextColor(0); //text->DrawLatex(-0.85.,-0.8,"#kappa_{#lambda} = 2.4, #kappa_{t} = 1, c_{2} = 0"); c1->cd(10); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); lm24->Draw("colz1"); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = -2.4, c_{g} = c_{2} = 0"); c1->cd(11); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); lm5->Draw("colz1"); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = -5, c_{g} = c_{2} = 0"); c1->cd(12); //c1_5->SetTicks(0,0); //c1_2->SetRightMargin(0.15); //c1_2->SetLeftMargin(0.15); //c1_2->SetBottomMargin(0.02); lm10->Draw("colz1"); //text->DrawLatex(-3,1,"SM plane in log scale"); //text->SetTextSize(0.08); //text->SetTextColor(0); text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = -10, c_{g} = c_{2} = 0"); c1->SaveAs("C2Fit.pdf"); c1->Close(); */ ////////////////////////////////////////////////// // // do histrograms with errors // // plot (point - fit)/fit between int nmintest, int nmaxtest // do by the planes ////////////////////////////////////////////////// // take the fit // need to be done by planes //c1->Clear(); // a double SMxs = 0.013531; // 1 0.017278;// 14 0.0041758;// 8tev 0.013531; // 13 tev 0.017278;// 0.0041758; TGraph2D *g2 = new TGraph2D(117);//(118); g2->SetMarkerStyle(20); g2->SetMarkerSize(2); g2->SetTitle("0"); g2->SetTitle("#kappa_{t} = #kappa_{#lambda} = 1 , c_{2} = 0 ; c_{g} ; c_{2g}"); int j=0; for (unsigned int ij = 0; ij < nmaxx ; ij++) if( par1[ij] ==1 && par0[ij] ==1 && par2[ij]==0 && cross_section[ij] >0.0001) if(ij!=301) { double fit = SMxs*(fg2->Eval(par3[ij], par4[ij])); cout<<j<<" "<< par3[ij]<<" "<< par4[ij]<<" "<<fit <<" "<< cross_section[ij]<<" diff: " <<(fit - cross_section[ij])/fit<< endl; g2->SetPoint(j, par3[ij], par4[ij], 100*(fit - cross_section[ij])/fit); j++; //Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit); } // b //////////////////////////////// int ktb=1.0; int klb=1.0; // cg ===> x ==> c2 // c2g ===> y ==> kt ==> cg = c2g TF2 *pb = new TF2("pb","([0]*[15]**4 + [1]*x**2 + [2]*[15]**2*[16]**2 + [3]*y**2*[16]**2 + [4]*y**2 + [5]*x*[15]**2 + [6]*[15]*[16]*[15]**2 + [7]*[15]*[16]*x + [8]*y*[16]*x - [9]*x*y + [10]*y*[16]*[15]**2 - [11]*y*[15]**2 + [12]*[16]*y*[15]*[16] - [13]*y*[15]*[16] - [14]*y*y*[16])/[17]",-3,3,-1,1); pb->SetParameter(0,a[0]); pb->SetParameter(1,a[1]); pb->SetParameter(2,a[2]); pb->SetParameter(3,a[3]); pb->SetParameter(4,a[4]); pb->SetParameter(5,a[5]); pb->SetParameter(6,a[6]); pb->SetParameter(7,a[7]); pb->SetParameter(8,a[8]); pb->SetParameter(9,a[9]); pb->SetParameter(10,a[10]); pb->SetParameter(11,a[11]); pb->SetParameter(12,a[12]); pb->SetParameter(13,a[13]); pb->SetParameter(14,a[14]); pb->SetTitle("#kappa_{t} = #kappa_{#lambda} = 1 , c_{2g} = - c_{g} ; c_{2} ; c_{g}"); pb->SetParameter(15,ktb); //==> c2g ==>kt pb->SetParameter(16,klb); pb->SetContour(200); //l5->SetParameter(17,cg); //==> cg pb->SetParameter(17,norm);//0.013531 //pb->SetMinimum(0); TGraph2D *gb = new TGraph2D(132);//(118); gb->SetMarkerStyle(20); gb->SetMarkerSize(2); //gb->SetTitle("0"); gb->SetTitle("#kappa_{t} = #kappa_{#lambda} = 1 , c_{2g} = - c_{g} ; c_{2} ; c_{g}"); int jb=0; for (unsigned int ijb = 0; ijb < nmaxx ; ijb++) if( par1[ijb] ==1 && par0[ijb] ==1 && par3[ijb] == -par4[ijb] && cross_section[ijb] >0.0001) { double fitb = SMxs*(pb->Eval(par2[ijb], par3[ijb])); cout<<jb<<" "<<ijb<<" "<< par2[ijb]<<" "<< par4[ijb]<<" "<<fitb <<" "<< cross_section[ijb]<<" diff: " <<(fitb - cross_section[ijb])/fitb<< endl; if (abs((fitb - cross_section[ijb])/fitb) > 0.1) cout<<"here"<<endl; gb->SetPoint(jb, par2[ijb], par4[ijb], 100*((fitb - cross_section[ijb])/fitb)); jb++; //Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit); } ////////////////////////////////////////////// // c //////////////////////////////// int ktc=1.0; int c2c=0.0;//==>c2 // cg ===> x ==> c2 =//=>kl // c2g ===> y ==> kt ==> c2g = -cg TF2 *pc = new TF2("pb","([0]*[15]**4 + [1]*[16]**2 + [2]*[15]**2*x**2 + [3]*y**2*x**2 + [4]*y**2 + [5]*[16]*[15]**2 + [6]*[15]*x*[15]**2 + [7]*[15]*x*[16] + [8]*y*x*[16] - [9]*[16]*y + [10]*y*x*[15]**2 - [11]*y*[15]**2 + [12]*x*y*[15]*x - [13]*y*[15]*x - [14]*y*y*x)/[17]",-17,17,-1,1); pc->SetParameter(0,a[0]); pc->SetParameter(1,a[1]); pc->SetParameter(2,a[2]); pc->SetParameter(3,a[3]); pc->SetParameter(4,a[4]); pc->SetParameter(5,a[5]); pc->SetParameter(6,a[6]); pc->SetParameter(7,a[7]); pc->SetParameter(8,a[8]); pc->SetParameter(9,a[9]); pc->SetParameter(10,a[10]); pc->SetParameter(11,a[11]); pc->SetParameter(12,a[12]); pc->SetParameter(13,a[13]); pc->SetParameter(14,a[14]); pc->SetTitle("#kappa_{t} = 1 , c2 = 0 , c_{2g} = - c_{g} ; #kappa_{#lambda} ; c_{g}"); pc->SetParameter(15,ktc); //==> c2g ==>kt pc->SetParameter(16,c2c);// ==>c2 //l5->SetParameter(17,cg); //==> cg pc->SetParameter(17,norm);//0.013531 //pc->SetMinimum(0); pc->SetContour(200); TGraph2D *gc = new TGraph2D(125);//(118); gc->SetMarkerStyle(20); gc->SetMarkerSize(2); gc->SetTitle("#kappa_{t} = 1 , c2 = 0 , c_{2g} = - c_{g} ; #kappa_{#lambda} ; c_{g}"); // gc->GetYaxis()->SetTitle("c_{g}"); // gc->GetXaxis()->SetTitle("#kappa_{#lambda}"); int jc=0; for (unsigned int ijb = 0; ijb < nmaxx ; ijb++) if( par1[ijb] ==1 && par2[ijb] ==0 && par3[ijb] == -par4[ijb] && cross_section[ijb] >0.0001 && par3[ijb] >-1.5) { //&& abs(par0[ijb]) <6 double fitc = SMxs*(pc->Eval(par0[ijb], par3[ijb])); //cout<<jb<<" "<<ijb<<" "<< par0[ijb]<<" "<< par4[ijb]<<" "<<fitc <<" "<< cross_section[ijb]<<" diff: " <<(fitc - cross_section[ijb])/fitc<< endl; if (abs((fitc - cross_section[ijb])/fitc) > 0.1) cout<<"here"<<endl; gc->SetPoint(jc, par0[ijb], par3[ijb], 100*((fitc - cross_section[ijb])/fitc)); jc++; //Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit); } ////////////////////////////////// // d -- SM plane //SM0->Eval(1,1) // cg ===> x ===> kl // c2g ===> y ===> kt TGraph2D *gSM = new TGraph2D(112);//(118); gSM->SetMarkerStyle(20); gSM->SetMarkerSize(2); gSM->SetTitle("0"); gSM->SetTitle("c_{2} = c_{2g} = c_{g} = 0 ; #kappa_{#lambda} ; #kappa_{t}"); int jSM=0; for (unsigned int ii = 0; ii < nmaxx ; ii++) if( par2[ii] ==0 && par3[ii] ==0 && par4[ii]==0 && cross_section[ii] >0.00001 && cross_section[ii] <10000 && par1[ii] >0.3 && ii!=301) { double fitSM = SMxs*(SM0->Eval(par0[ii], par1[ii])); //{ //cout<<" SM plane"<<jSM<<" "<<ii<<" " << par0[ii]<<" "<< par1[ii]<<" "<<fitSM <<" "<< cross_section[ii]<<" diff: " <<(fitSM - cross_section[ii])/fitSM<< endl; if (abs((fitSM - cross_section[ii])/fitSM) > 0.1) cout<<"here"<<endl; gSM->SetPoint(jSM, par0[ii], par1[ii], 100*(fitSM - cross_section[ii])/fitSM); jSM++; //} //Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit); } ////////////////////////////////// // e -- SM plane //SM0->Eval(1,1) // cg ===> x ===> c2 // c2g ===> y ===> kt TGraph2D *gSMc2 = new TGraph2D(62);//(118);//57 13 tev gSMc2->SetMarkerStyle(20); gSMc2->SetMarkerSize(2); //gSMc2->SetTitle("0"); gSMc2->SetTitle("#kappa_{#lambda} =1 , c_{2g} = c_{g} = 0 ; c_{2} ; #kappa_{t}"); int jSMc2=0; for (unsigned int ii = 0; ii < nmaxx ; ii++) if( par0[ii] ==1 && par3[ii] ==0 && par4[ii]==0 && cross_section[ii] >0.00001 && cross_section[ii] <10000 && par1[ii] >0.25 ) if(ii!=301){ double fitSM = SMxs*(l1->Eval(par2[ii], par1[ii])); //{ cout<<jSMc2<<" "<<ii<<" " << par2[ii]<<" "<< par1[ii]<<" "<<fitSM <<" "<< cross_section[ii]<<" diff: " <<(fitSM - cross_section[ii])/fitSM<< endl; if (abs((fitSM - cross_section[ii])/fitSM) > 0.1) cout<<"here"<<endl; gSMc2->SetPoint(jSMc2, par2[ii], par1[ii], 100*(fitSM - cross_section[ii])/fitSM); jSMc2++; //} //Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit); } //////////////////////////////// // f = cg =0 int ktf=1.0; int klf=1.0; // cg ===> x ==> c2 // c2g ===> y ==> kt ==> cg = c2g TF2 *pf = new TF2("pf","([0]*[15]**4 + [1]*x**2 + [2]*[15]**2*[16]**2 + [4]*y**2 + [5]*x*[15]**2 + [6]*[15]*[16]*[15]**2 + [7]*[15]*[16]*x + [9]*x*y + [11]*y*[15]**2 + [13]*y*[15]*[16])/[17]",-3,3,-1,1); pf->SetParameter(0,a[0]); pf->SetParameter(1,a[1]); pf->SetParameter(2,a[2]); pf->SetParameter(3,a[3]); pf->SetParameter(4,a[4]); pf->SetParameter(5,a[5]); pf->SetParameter(6,a[6]); pf->SetParameter(7,a[7]); pf->SetParameter(8,a[8]); pf->SetParameter(9,a[9]); pf->SetParameter(10,a[10]); pf->SetParameter(11,a[11]); pf->SetParameter(12,a[12]); pf->SetParameter(13,a[13]); pf->SetParameter(14,a[14]); pf->SetTitle("#kappa_{t} = #kappa_{#lambda} = 1 , c_{g} = 0 ; c_{2} ; c_{2g}"); //pf->SetTitleSize(0.3); pf->SetParameter(15,ktf); //==> c2g ==>kt pf->SetParameter(16,klf); pf->SetContour(200); //l5->SetParameter(17,cg); //==> cg pf->SetParameter(17,norm);//0.013531 //pb->SetMinimum(0); TGraph2D *gf = new TGraph2D(132);//(118); gf->SetMarkerStyle(20); gf->SetMarkerSize(2); //gb->SetTitle("0"); gf->SetTitle("#kappa_{t} = #kappa_{#lambda} = 1 , c_{g} = 0 ; c_{2} ; c_{2g}"); int jf=0; for (unsigned int ijb = 0; ijb < nmaxx ; ijb++) if( par1[ijb] ==1 && par0[ijb] ==1 && par3[ijb] == 0 && cross_section[ijb] >0.0001) { double fitb = SMxs*(pf->Eval(par2[ijb], par4[ijb])); cout<<jf<<" "<<ijb<<" "<< par2[ijb]<<" "<< par4[ijb]<<" "<<fitb <<" "<< cross_section[ijb]<<" diff: " <<(fitb - cross_section[ijb])/fitb<< endl; if (abs((fitb - cross_section[ijb])/fitb) > 0.1) cout<<"here"<<endl; gf->SetPoint(jf, par2[ijb], par4[ijb], 100*((fitb - cross_section[ijb])/fitb)); jf++; //Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit); } ////////////////////////////////////////////// // rest square TCanvas *c2 = new TCanvas("c2","Surfaces Drawing Options",700,2200); c2->Divide(2,3); c2->cd(1); c2_1->SetRightMargin(0.17); c2_1->SetLeftMargin(0.21); //c2->cd(); c2_1->SetTheta(90.0-0.001); c2_1->SetPhi(0.0+0.001); gSM->Draw("Pcolz"); //fg2->Draw("cont3SAME"); c2->cd(2); c2_2->SetRightMargin(0.2); c2_2->SetLeftMargin(0.21); c2_2->SetTheta(90.0-0.001); c2_2->SetPhi(0.0+0.001); gSMc2->Draw("Pcolz"); //SM0->Draw("cont3SAME"); c2->cd(3); c2_3->SetRightMargin(0.2); c2_3->SetLeftMargin(0.21); c2_3->SetTheta(90.0-0.001); c2_3->SetPhi(0.0+0.001); gb->Draw("Pcolz"); //pb->Draw("cont3SAME"); c2->cd(4); c2_4->SetRightMargin(0.2); c2_4->SetLeftMargin(0.21); c2_4->SetTheta(90.0-0.001); c2_4->SetPhi(0.0+0.001); gc->Draw("Pcolz"); //pc->Draw("cont3SAME"); c2->cd(5); c2_5->SetRightMargin(0.2); c2_5->SetLeftMargin(0.21); c2_5->SetTheta(90.0-0.001); c2_5->SetPhi(0.0+0.001); g2->Draw("Pcolz"); // c2->cd(6); c2_6->SetRightMargin(0.2); c2_6->SetLeftMargin(0.21); c2_6->SetTheta(90.0-0.001); c2_6->SetPhi(0.0+0.001); gf->Draw("Pcolz"); c2->SaveAs("DiffSMplane_all_orthogonal_13tev.pdf"); ////////////////////////////////////////////// // rest square TCanvas *c3 = new TCanvas("c3","Surfaces Drawing Options",2200,700); c3->Divide(3,2); c3->cd(1); c3_1->SetLogz(1); c3_1->SetLeftMargin(0.19); c3_1->SetBottomMargin(0.19); c3_1->SetRightMargin(0.2); //c2->cd(); //g2->Draw("Pcolz"); SM0->Draw("colz"); c3->cd(2); c3_2->SetLogz(1); c3_2->SetRightMargin(0.19); c3_2->SetBottomMargin(0.19); c3_2->SetLeftMargin(0.21); //gSM->Draw("Pcolz"); l1->Draw("colz"); //c3_2->SetRightMargin(0.2); c3->cd(3); c3_3->SetLogz(1); c3_3->SetRightMargin(0.17); c3_3->SetBottomMargin(0.19); c3_3->SetLeftMargin(0.21); //gb->Draw("Pcolz"); pb->Draw("colz"); c3->cd(4); c3_4->SetLogz(1); c3_4->SetRightMargin(0.16); c3_4->SetBottomMargin(0.19); c3_4->SetLeftMargin(0.21); //gc->Draw("Pcolz"); pc->Draw("colz"); c3->cd(5); c3_5->SetLogz(1); c3_5->SetRightMargin(0.19); c3_5->SetBottomMargin(0.19); c3_5->SetLeftMargin(0.21); //gSMc2->Draw("Pcolz"); fg2->Draw("colz"); c3->cd(6); c3_6->SetLogz(1); c3_6->SetRightMargin(0.19); c3_6->SetBottomMargin(0.19); c3_6->SetLeftMargin(0.21); //gSMc2->Draw("Pcolz"); pf->Draw("colz"); c3->SaveAs("CX_all_orthogonal_13tev.pdf"); ////////////////////////////////////////////// /* TGraph *gall = new TGraph(nmaxx - nminx); gall->SetMarkerStyle(20); gall->SetMarkerSize(2); gall->SetTitle("0"); for (unsigned int i = 0; i < nmaxx - nminx; i++) if( par1[i] ==1 && par0[i] ==1 && par2[i]==0 ) { double fit = fg2->Eval(par3[i], par4[i]); cout<< par3[i]<<" "<< par4[i]<<" "<< (fit - cross_section[i])/fit<< endl; g2->SetPoint(i, par3[i], par4[i], (fit - cross_section[i])/fit); //Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit); }*/ }
TCanvas* graph2dfit() { gStyle->SetOptStat(0); gStyle->SetOptFit(); TCanvas *c = new TCanvas("c","Graph2D example",0,0,600,800); c->Divide(2,3); Double_t rnd, x, y, z; Double_t e = 0.3; Int_t nd = 400; Int_t np = 10000; TRandom r; Double_t fl = 6; TF2 *f2 = new TF2("f2","1000*(([0]*sin(x)/x)*([1]*sin(y)/y))+200", -fl,fl,-fl,fl); f2->SetParameters(1,1); TGraph2D *dt = new TGraph2D(); // Fill the 2D graph Double_t zmax = 0; for (Int_t N=0; N<nd; N++) { f2->GetRandom2(x,y); // Generate a random number in [-e,e] rnd = 2*r.Rndm()*e-e; z = f2->Eval(x,y)*(1+rnd); if (z>zmax) zmax = z; dt->SetPoint(N,x,y,z); } Double_t hr = 350; TH1D *h1 = new TH1D("h1", "#splitline{Difference between Original}{#splitline{function and Function}{with noise}}", 100, -hr, hr); TH1D *h2 = new TH1D("h2", "#splitline{Difference between Original}{#splitline{function and Delaunay triangles}{interpolation}}", 100, -hr, hr); TH1D *h3 = new TH1D("h3", "#splitline{Difference between Original}{function and Minuit fit}", 500, -hr, hr); f2->SetParameters(0.5,1.5); dt->Fit(f2); TF2 *fit2 = (TF2*)dt->FindObject("f2"); f2->SetParameters(1,1); for (Int_t N=0; N<np; N++) { f2->GetRandom2(x,y); // Generate a random number in [-e,e] rnd = 2*r.Rndm()*e-e; z = f2->Eval(x,y)*(1+rnd); h1->Fill(f2->Eval(x,y)-z); z = dt->Interpolate(x,y); h2->Fill(f2->Eval(x,y)-z); z = fit2->Eval(x,y); h3->Fill(f2->Eval(x,y)-z); } c->cd(1); f2->SetTitle("Original function with Graph2D points on top"); f2->SetMaximum(zmax); gStyle->SetHistTopMargin(0); f2->Draw("surf1"); dt->Draw("same p0"); c->cd(3); dt->SetMargin(0.1); dt->SetFillColor(36); dt->SetTitle("Histogram produced with Delaunay interpolation"); dt->Draw("surf4"); c->cd(5); fit2->SetTitle("Minuit fit result on the Graph2D points"); fit2->Draw("surf1"); h1->SetFillColor(47); h2->SetFillColor(38); h3->SetFillColor(29); c->cd(2); h1->Fit("gaus","Q") ; h1->Draw(); c->cd(4); h2->Fit("gaus","Q") ; h2->Draw(); c->cd(6); h3->Fit("gaus","Q") ; h3->Draw(); c->cd(); return c; }
void rs101_limitexample() { // -------------------------------------- // An example of setting a limit in a number counting experiment with uncertainty on background and signal // to time the macro TStopwatch t; t.Start(); // -------------------------------------- // The Model building stage // -------------------------------------- RooWorkspace* wspace = new RooWorkspace(); wspace->factory("Poisson::countingModel(obs[150,0,300], sum(s[50,0,120]*ratioSigEff[1.,0,3.],b[100]*ratioBkgEff[1.,0.,3.]))"); // counting model // wspace->factory("Gaussian::sigConstraint(ratioSigEff,1,0.05)"); // 5% signal efficiency uncertainty // wspace->factory("Gaussian::bkgConstraint(ratioBkgEff,1,0.1)"); // 10% background efficiency uncertainty wspace->factory("Gaussian::sigConstraint(gSigEff[1,0,3],ratioSigEff,0.05)"); // 5% signal efficiency uncertainty wspace->factory("Gaussian::bkgConstraint(gSigBkg[1,0,3],ratioBkgEff,0.2)"); // 10% background efficiency uncertainty wspace->factory("PROD::modelWithConstraints(countingModel,sigConstraint,bkgConstraint)"); // product of terms wspace->Print(); RooAbsPdf* modelWithConstraints = wspace->pdf("modelWithConstraints"); // get the model RooRealVar* obs = wspace->var("obs"); // get the observable RooRealVar* s = wspace->var("s"); // get the signal we care about RooRealVar* b = wspace->var("b"); // get the background and set it to a constant. Uncertainty included in ratioBkgEff b->setConstant(); RooRealVar* ratioSigEff = wspace->var("ratioSigEff"); // get uncertain parameter to constrain RooRealVar* ratioBkgEff = wspace->var("ratioBkgEff"); // get uncertain parameter to constrain RooArgSet constrainedParams(*ratioSigEff, *ratioBkgEff); // need to constrain these in the fit (should change default behavior) RooRealVar * gSigEff = wspace->var("gSigEff"); // global observables for signal efficiency RooRealVar * gSigBkg = wspace->var("gSigBkg"); // global obs for background efficiency gSigEff->setConstant(); gSigBkg->setConstant(); // Create an example dataset with 160 observed events obs->setVal(160.); RooDataSet* data = new RooDataSet("exampleData", "exampleData", RooArgSet(*obs)); data->add(*obs); RooArgSet all(*s, *ratioBkgEff, *ratioSigEff); // not necessary modelWithConstraints->fitTo(*data, RooFit::Constrain(RooArgSet(*ratioSigEff, *ratioBkgEff))); // Now let's make some confidence intervals for s, our parameter of interest RooArgSet paramOfInterest(*s); ModelConfig modelConfig(wspace); modelConfig.SetPdf(*modelWithConstraints); modelConfig.SetParametersOfInterest(paramOfInterest); modelConfig.SetNuisanceParameters(constrainedParams); modelConfig.SetObservables(*obs); modelConfig.SetGlobalObservables( RooArgSet(*gSigEff,*gSigBkg)); modelConfig.SetName("ModelConfig"); wspace->import(modelConfig); wspace->import(*data); wspace->SetName("w"); wspace->writeToFile("rs101_ws.root"); // First, let's use a Calculator based on the Profile Likelihood Ratio //ProfileLikelihoodCalculator plc(*data, *modelWithConstraints, paramOfInterest); ProfileLikelihoodCalculator plc(*data, modelConfig); plc.SetTestSize(.05); ConfInterval* lrinterval = plc.GetInterval(); // that was easy. // Let's make a plot TCanvas* dataCanvas = new TCanvas("dataCanvas"); dataCanvas->Divide(2,1); dataCanvas->cd(1); LikelihoodIntervalPlot plotInt((LikelihoodInterval*)lrinterval); plotInt.SetTitle("Profile Likelihood Ratio and Posterior for S"); plotInt.Draw(); // Second, use a Calculator based on the Feldman Cousins technique FeldmanCousins fc(*data, modelConfig); fc.UseAdaptiveSampling(true); fc.FluctuateNumDataEntries(false); // number counting analysis: dataset always has 1 entry with N events observed fc.SetNBins(100); // number of points to test per parameter fc.SetTestSize(.05); // fc.SaveBeltToFile(true); // optional ConfInterval* fcint = NULL; fcint = fc.GetInterval(); // that was easy. RooFitResult* fit = modelWithConstraints->fitTo(*data, Save(true)); // Third, use a Calculator based on Markov Chain monte carlo // Before configuring the calculator, let's make a ProposalFunction // that will achieve a high acceptance rate ProposalHelper ph; ph.SetVariables((RooArgSet&)fit->floatParsFinal()); ph.SetCovMatrix(fit->covarianceMatrix()); ph.SetUpdateProposalParameters(true); ph.SetCacheSize(100); ProposalFunction* pdfProp = ph.GetProposalFunction(); // that was easy MCMCCalculator mc(*data, modelConfig); mc.SetNumIters(20000); // steps to propose in the chain mc.SetTestSize(.05); // 95% CL mc.SetNumBurnInSteps(40); // ignore first N steps in chain as "burn in" mc.SetProposalFunction(*pdfProp); mc.SetLeftSideTailFraction(0.5); // find a "central" interval MCMCInterval* mcInt = (MCMCInterval*)mc.GetInterval(); // that was easy // Get Lower and Upper limits from Profile Calculator cout << "Profile lower limit on s = " << ((LikelihoodInterval*) lrinterval)->LowerLimit(*s) << endl; cout << "Profile upper limit on s = " << ((LikelihoodInterval*) lrinterval)->UpperLimit(*s) << endl; // Get Lower and Upper limits from FeldmanCousins with profile construction if (fcint != NULL) { double fcul = ((PointSetInterval*) fcint)->UpperLimit(*s); double fcll = ((PointSetInterval*) fcint)->LowerLimit(*s); cout << "FC lower limit on s = " << fcll << endl; cout << "FC upper limit on s = " << fcul << endl; TLine* fcllLine = new TLine(fcll, 0, fcll, 1); TLine* fculLine = new TLine(fcul, 0, fcul, 1); fcllLine->SetLineColor(kRed); fculLine->SetLineColor(kRed); fcllLine->Draw("same"); fculLine->Draw("same"); dataCanvas->Update(); } // Plot MCMC interval and print some statistics MCMCIntervalPlot mcPlot(*mcInt); mcPlot.SetLineColor(kMagenta); mcPlot.SetLineWidth(2); mcPlot.Draw("same"); double mcul = mcInt->UpperLimit(*s); double mcll = mcInt->LowerLimit(*s); cout << "MCMC lower limit on s = " << mcll << endl; cout << "MCMC upper limit on s = " << mcul << endl; cout << "MCMC Actual confidence level: " << mcInt->GetActualConfidenceLevel() << endl; // 3-d plot of the parameter points dataCanvas->cd(2); // also plot the points in the markov chain RooDataSet * chainData = mcInt->GetChainAsDataSet(); assert(chainData); std::cout << "plotting the chain data - nentries = " << chainData->numEntries() << std::endl; TTree* chain = RooStats::GetAsTTree("chainTreeData","chainTreeData",*chainData); assert(chain); chain->SetMarkerStyle(6); chain->SetMarkerColor(kRed); chain->Draw("s:ratioSigEff:ratioBkgEff","nll_MarkovChain_local_","box"); // 3-d box proportional to posterior // the points used in the profile construction RooDataSet * parScanData = (RooDataSet*) fc.GetPointsToScan(); assert(parScanData); std::cout << "plotting the scanned points used in the frequentist construction - npoints = " << parScanData->numEntries() << std::endl; // getting the tree and drawing it -crashes (very strange....); // TTree* parameterScan = RooStats::GetAsTTree("parScanTreeData","parScanTreeData",*parScanData); // assert(parameterScan); // parameterScan->Draw("s:ratioSigEff:ratioBkgEff","","goff"); TGraph2D *gr = new TGraph2D(parScanData->numEntries()); for (int ievt = 0; ievt < parScanData->numEntries(); ++ievt) { const RooArgSet * evt = parScanData->get(ievt); double x = evt->getRealValue("ratioBkgEff"); double y = evt->getRealValue("ratioSigEff"); double z = evt->getRealValue("s"); gr->SetPoint(ievt, x,y,z); // std::cout << ievt << " " << x << " " << y << " " << z << std::endl; } gr->SetMarkerStyle(24); gr->Draw("P SAME"); delete wspace; delete lrinterval; delete mcInt; delete fcint; delete data; // print timing info t.Stop(); t.Print(); }