Esempio n. 1
0
	void end( const TWallVertexVector& vb, TIntVector& polygon, TIntVector& ib )
	{
		assert( polygonCount );
		if( polygonCount == 1 ) {
			
			// trivial case, just output input polygon
			polygon.resize( 0 );
			polygon.reserve( vertices.size() );
			int idx0 = *vertices.begin();
			int idx = idx0;
			do {
				polygon.push_back( idx );
				const TIntVector& vnext = vertexNexts[idx];
				assert( vnext.size() == 1 );
				idx = vnext[0];
			} while( idx != idx0 );


			triangulator::process( vb, polygon, ib );

		} else {
			
			// mark vertex types
			markVertexTypes();

			// trace and triangulate the polygon(s)
			traceBorder( vb, polygon, ib );
		}
	}
Esempio n. 2
0
void CWall3D::fracturePiecesInYRange( float t, float y1, float y2, TIntVector& pcs )
{
	if( !mPiecesInited )
		initPieces();

	// fetch the pieces
	pcs.resize( 0 );

	// TODO: optimize, right now linear search!
	float pieceRestoreTime = t + 1.0e6f;

	int n = mWall2D.getPieceCount();
	for( int i = 0; i < n; ++i ) {
		const CWallPiece2D& p = mWall2D.getPiece( i );
		SVector2 c = p.getAABB().getCenter();
		float y = c.y;
		if( mMatrix.getAxisY().y < 0.5f ) {
			SVector3 wc;
			D3DXVec3TransformCoord( &wc, &SVector3(c.x,c.y,0), &mMatrix );
			y = wc.y;
		}
		if( y >= y1 && y <= y2 ) {
			mPieceRestoreTimes[i] = pieceRestoreTime;
			if( mFracturedPieces[i] )
				continue;
			pcs.push_back( i );
			fractureOutPiece( i );
		}
	}
}
Esempio n. 3
0
	void	begin( int totalVerts )
	{
		polygonCount = 0;

		vertices.clear();
		borderVertices.clear();

		vertexNexts.clear();
		vertexPrevs.clear();
		vertexUseCount.resize( 0 );
		vertexUseCount.resize( totalVerts, 0 );

		vertexTraceID.resize( totalVerts, -1 );

		vertexTypes.resize( 0 );
		vertexTypes.resize( totalVerts, VTYPE_NONE );
	}
Esempio n. 4
0
void CWall3D::fracturePiecesInSphere( float t, const SVector3& pos, float radius, TIntVector& pcs,
		float restoreAfter, float restoreDuration, bool noRestore )
{
	if( !mPiecesInited )
		initPieces();

	pcs.resize( 0 );
	
	// to local space
	SVector3 locPos;
	D3DXVec3TransformCoord( &locPos, &pos, &mInvMatrix );

	if( locPos.z < -radius || locPos.z > radius )
		return;

	// remember restore times
	if( mResTimeGrid && !noRestore ) {
		float rad = radius*2.0f;
		float lx1 = (locPos.x - rad) / mWall2D.getSize().x * RESGRID_X;
		float lx2 = (locPos.x + rad) / mWall2D.getSize().x * RESGRID_X;
		float ly1 = (locPos.y - rad) / mWall2D.getSize().y * RESGRID_Y;
		float ly2 = (locPos.y + rad) / mWall2D.getSize().y * RESGRID_Y;
		int ix1 = (int)clamp( lx1, 0, RESGRID_X-1 );
		int ix2 = (int)clamp( lx2, 0, RESGRID_X-1 );
		int iy1 = (int)clamp( ly1, 0, RESGRID_Y-1 );
		int iy2 = (int)clamp( ly2, 0, RESGRID_Y-1 );
		float dx = mWall2D.getSize().x / RESGRID_X;
		float dy = mWall2D.getSize().y / RESGRID_Y;
		for( int iy = iy1; iy <= iy2; ++iy ) {
			float* resval = mResTimeGrid + RESGRID_X*iy + ix1;
			float fy = iy * dy;
			for( int ix = ix1; ix <= ix2; ++ix, ++resval ) {
				float fx = ix * dx;

				// don't touch restore grid outside the circle
				float diffX = fx-locPos.x;
				float diffY = fy-locPos.y;
				float diffR2 = diffX*diffX + diffY*diffY;
				if( diffR2 > rad*rad )
					continue;

				// restore time for this grid point - start at
				// t+restoreAfter at circle boundaries, later at circle
				// center
				float resTime = t + restoreAfter + (1.0f-diffR2/(rad*rad)) * restoreDuration;

				if( *resval < 0.0f )
					*resval = resTime;
				else
					*resval = max( (*resval), resTime );
			}
		}
	}

	// fetch the pieces

	float pieceRestoreTime;
	if( noRestore ) {
		pieceRestoreTime = t + 1.0e9f;
	} else {
		pieceRestoreTime = t + restoreAfter + restoreDuration;
	}

	// TODO: optimize, right now linear search!
	int n = mWall2D.getPieceCount();
	for( int i = 0; i < n; ++i ) {
		const CWallPiece2D& p = mWall2D.getPiece( i );
		SVector2 c = p.getAABB().getCenter();
		SVector3 tocenter = locPos - SVector3(c.x,c.y,0);
		if( tocenter.lengthSq() < radius*radius ) {
			mPieceRestoreTimes[i] = pieceRestoreTime;
			if( mFracturedPieces[i] )
				continue;
			pcs.push_back( i );
			fractureOutPiece( i );
		}
	}
}
Esempio n. 5
0
void CWallPieceCombined::initEnd( TWallQuadNode* quadtree )
{
	assert( mInitPiece == this );
	assert( mInitWall );

	// if we're root, just construct the full-wall quad
	if( mInitRoot ) {
		assert( mQuadNode == quadtree );
		mVB.resize( 4 );
		mIB.resize( 6 );
		const SVector2& bmin = mBounds.getMin();
		const SVector2& bmax = mBounds.getMax();

		// VB
		const SMatrix4x4& mat = mInitWall->getMatrix();
		{
			DWORD nrmCol = gVectorToColor( mat.getAxisZ() );

			SVertexXyzDiffuse vtx;
			vtx.p.set( bmin.x, bmin.y, 0 );
			D3DXVec3TransformCoord( &vtx.p, &vtx.p, &mat );
			vtx.diffuse = nrmCol;
			mVB[0] = vtx;
			vtx.p.set( bmin.x, bmax.y, 0 );
			D3DXVec3TransformCoord( &vtx.p, &vtx.p, &mat );
			vtx.diffuse = nrmCol;
			mVB[1] = vtx;
			vtx.p.set( bmax.x, bmin.y, 0 );
			D3DXVec3TransformCoord( &vtx.p, &vtx.p, &mat );
			vtx.diffuse = nrmCol;
			mVB[2] = vtx;
			vtx.p.set( bmax.x, bmax.y, 0 );
			D3DXVec3TransformCoord( &vtx.p, &vtx.p, &mat );
			vtx.diffuse = nrmCol;
			mVB[3] = vtx;
		}
		// IB
		{
			mIB[0] = 0;
			mIB[1] = 1;
			mIB[2] = 2;
			mIB[3] = 1;
			mIB[4] = 3;
			mIB[5] = 2;
		}

		mVBSizeNoCaps = mVB.size();
		mIBSizeNoCaps = mIB.size();

	} else {

		// for non-roots, construct proper polygon

		const TWallVertexVector& wallVerts = mInitWall->getWall2D().getVerts();

		// merge the polygons
		TIntVector polygon;
		TIntVector ibFront;
		polygon_merger::end( wallVerts, polygon, ibFront );


		static TIntVector	vertRemap;
		vertRemap.resize(0);
		vertRemap.resize( wallVerts.size(), -1 );

		int i;

		int nidx = ibFront.size();
		mIB.reserve( nidx + polygon.size()*6 );
		mVB.reserve( polygon.size()*3 );

		// construct the front side
		for( i = 0; i < nidx; ++i ) {
			int oldIdx = ibFront[i];
			int newIdx = vertRemap[oldIdx];
			if( newIdx < 0 ) {
				newIdx = mVB.size();
				vertRemap[oldIdx] = newIdx;

				SVector2 pos = wallVerts[oldIdx];
				SVector3 pos3( pos.x, pos.y, 0.0f );
				D3DXVec3TransformCoord( &pos3, &pos3, &mInitWall->getMatrix() );
				SVertexXyzDiffuse vtx;
				vtx.p = pos3;
				vtx.diffuse = gVectorToColor( mInitWall->getMatrix().getAxisZ() );
				mVB.push_back( vtx );
			}
			mIB.push_back( newIdx );
		}
		// reverse the ordering of triangles
		for( i = 0; i < nidx/3; ++i ) {
			int iii = mIB[i*3+1];
			mIB[i*3+1] = mIB[i*3+2];
			mIB[i*3+2] = iii;
		}

		mVBSizeNoCaps = mVB.size();
		mIBSizeNoCaps = mIB.size();

		// Don't construct the side caps for non-leaf pieces.
		// I think they never can be seen (not sure)
		if( !mQuadNode ) {
			
			int nverts = mVB.size();
			int npolygon = polygon.size();
			
			// Construct side caps. To conserve the geometry amount,
			// treat them as a single smoothing group.
			for( i = 0; i < nverts; ++i ) {
				int oldIdx0 = polygon[i];
				int oldIdx1 = polygon[(i+1)%npolygon];
				int oldIdx2 = polygon[(i+nverts-1)%npolygon];
				int idx0 = vertRemap[oldIdx0];
				int idx1 = vertRemap[oldIdx1];
				int idx2 = vertRemap[oldIdx2];
				assert( idx0 >= 0 && idx0 < nverts );
				assert( idx1 >= 0 && idx1 < nverts );
				assert( idx2 >= 0 && idx2 < nverts );
				SVertexXyzDiffuse v0 = mVB[idx0];
				SVertexXyzDiffuse v1 = v0;
				v1.p -= mInitWall->getMatrix().getAxisZ() * (HALF_THICK*2);

				const SVertexXyzDiffuse& vnear1 = mVB[idx1];
				const SVertexXyzDiffuse& vnear2 = mVB[idx2];

				SVector3 edge1 = vnear2.p - vnear1.p;
				SVector3 edge2 = v1.p - v0.p;
				SVector3 normal = edge1.cross( edge2 ).getNormalized();

				v0.diffuse = v1.diffuse = gVectorToColor( normal );
				
				mVB.push_back( v0 );
				mVB.push_back( v1 );

				int ibidx0 = i*2 + 0;
				int ibidx1 = i*2 + 1;
				int ibidx2 = ((i+1)%nverts)*2 + 0;
				int ibidx3 = ((i+1)%nverts)*2 + 1;
				mIB.push_back( ibidx0 );
				mIB.push_back( ibidx2 );
				mIB.push_back( ibidx1 );
				mIB.push_back( ibidx1 );
				mIB.push_back( ibidx2 );
				mIB.push_back( ibidx3 );
			}
		}

	}


	if( !mQuadNode ) {
		
		assert( mCombinedPieces.size()==1 );

		TWallQuadNode* node = quadtree->getNode( mBounds );
		assert( node );
		while( node ) {
			node->getData().leafs.push_back( this );
			node = node->getParent();
		}

	} else {

		// record ourselves in the quadtree
		assert( !mQuadNode->getData().combined );
		mQuadNode->getData().combined = this;
	}


	mInitPiece = NULL;
	mInitWall = NULL;
}
Esempio n. 6
0
void CWallPiece3D::init( const CWall3D& w, int idx )
{
	const CWallPiece2D& piece = w.getWall2D().getPiece(idx);

	// construct VB/IB for this piece, with positions centered
	SVector2 pcenter = piece.getAABB().getCenter();

	static TIntVector	vertRemap;
	vertRemap.resize(0);
	vertRemap.resize( w.getWall2D().getVerts().size(), -1 );

	int i;

	int nidx = piece.getTriCount()*3;
	mIB.reserve( nidx * 2 + piece.getVertexCount()*6 );
	mVB.reserve( piece.getVertexCount()*4 );

	// construct one side
	for( i = 0; i < nidx; ++i ) {
		int oldIdx = piece.getIB()[i];
		int newIdx = vertRemap[oldIdx];
		if( newIdx < 0 ) {
			newIdx = mVB.size();
			vertRemap[oldIdx] = newIdx;

			SVector2 pos = w.getWall2D().getVerts()[oldIdx];
			pos -= pcenter;
			SVertexXyzNormal vtx;
			vtx.p.set( pos.x, pos.y, HALF_THICK );
			vtx.n.set( 0, 0, 1 );
			mVB.push_back( vtx );
		}
		mIB.push_back( newIdx );
	}
	for( i = 0; i < nidx/3; ++i ) {
		int iii = mIB[i*3+1];
		mIB[i*3+1] = mIB[i*3+2];
		mIB[i*3+2] = iii;
	}
	// construct another side
	int nverts = mVB.size();
	//int npolygon = piece.getPolygon().size();
	for( i = 0; i < nverts; ++i ) {
		SVertexXyzNormal vtx = mVB[i];
		vtx.p.z = -vtx.p.z;
		vtx.n.set( 0,0, -1 );
		mVB.push_back( vtx );
	}
	for( i = 0; i < nidx/3; ++i ) {
		int idx0 = mIB[i*3+0];
		int idx1 = mIB[i*3+1];
		int idx2 = mIB[i*3+2];
		mIB.push_back( idx0 + nverts );
		mIB.push_back( idx2 + nverts );
		mIB.push_back( idx1 + nverts );
	}
	// construct side caps. To conserve the geometry amount,
	// treat them as a single smoothing group.
	assert( nverts == piece.getVertexCount() );
	for( i = 0; i < nverts; ++i ) {
		int oldIdx0 = piece.getPolygon()[i];
		int oldIdx1 = piece.getPolygon()[(i+1)%nverts];
		int oldIdx2 = piece.getPolygon()[(i+nverts-1)%nverts];
		int idx0 = vertRemap[oldIdx0];
		int idx1 = vertRemap[oldIdx1];
		int idx2 = vertRemap[oldIdx2];
		assert( idx0 >= 0 && idx0 < nverts );
		assert( idx1 >= 0 && idx1 < nverts );
		assert( idx2 >= 0 && idx2 < nverts );
		SVertexXyzNormal v0 = mVB[idx0];
		SVertexXyzNormal v1 = v0;
		v1.p.z = -v1.p.z;

		const SVertexXyzNormal& vnear1 = mVB[idx1];
		const SVertexXyzNormal& vnear2 = mVB[idx2];

		SVector3 edge1 = vnear2.p - vnear1.p;
		SVector3 edge2 = v1.p - v0.p;
		SVector3 normal = edge1.cross( edge2 ).getNormalized();
		v0.n = v1.n = normal;

		mVB.push_back( v0 );
		mVB.push_back( v1 );
		int ibidx0 = nverts*2 + i*2 + 0;
		int ibidx1 = nverts*2 + i*2 + 1;
		int ibidx2 = nverts*2 + ((i+1)%nverts)*2 + 0;
		int ibidx3 = nverts*2 + ((i+1)%nverts)*2 + 1;
		mIB.push_back( ibidx0 );
		mIB.push_back( ibidx2 );
		mIB.push_back( ibidx1 );
		mIB.push_back( ibidx1 );
		mIB.push_back( ibidx2 );
		mIB.push_back( ibidx3 );
	}

	// construct initial mMatrix
	mMatrix.identify();
	mMatrix = w.getMatrix();
	mMatrix.getOrigin() += mMatrix.getAxisX() * pcenter.x;
	mMatrix.getOrigin() += mMatrix.getAxisY() * pcenter.y;

	mSize.set( piece.getAABB().getSize().x, piece.getAABB().getSize().y, HALF_THICK*2 );
}
Esempio n. 7
0
	void	traceBorder( const TWallVertexVector& vb, TIntVector& polygon, TIntVector& ib )
	{
		static int traceID = 0;
		++traceID;

		int idx0 = getBorderIndex();
		assert( idx0 >= 0 && idx0 < vertexTypes.size() );
		
		ib.resize( 0 );
		polygon.resize( 0 );
		polygon.reserve( vertices.size()/2 );

		TIntVector localPolygon;
		localPolygon.reserve( 128 );
		TIntVector localIB;
		localIB.reserve( 128 );

		int idxPrev = idx0;
		int idx = idx0;
		int debugCounter = 0;

		int debugLoopCounter = 0;

		do {

			localIB.resize( 0 );

			bool willFormLoop;
			do{

				localPolygon.push_back( idx );
				borderVertices.erase( idx );
				vertexTraceID[idx] = traceID;
				assert( ++debugCounter <= vertices.size()*2 );

				// Next vertex is the neighbor of current, that is not interior
				// and that is not the previous one.
				// When there are many possible ones, trace based on angle.

				int idxNext = -1;

				SVector2 prevToCurr = vb[idx] - vb[idxPrev];
				if( prevToCurr.lengthSq() < 1.0e-6f )
					prevToCurr.set( -0.01f, -0.01f );

				TIntIntsMap::const_iterator it;
				it = vertexNexts.find( idx );
				assert( it != vertexNexts.end() );
				const TIntVector& vnext = it->second;
				int n = vnext.size();
				float bestAngle = 100.0f;
				for( int i = 0; i < n; ++i ) {
					int idx1 = vnext[i];
					if( idx1 != idxPrev && vertexTypes[idx1] != VTYPE_INTERIOR ) {
					//if( idx1 != idxPrev ) {
						SVector2 currToNext = vb[idx1] - vb[idx];
						float ang = signedAngle2D( prevToCurr, currToNext );
						if( ang < bestAngle ) {
							bestAngle = ang;
							idxNext = idx1;
						}
					}
				}
				assert( bestAngle > -4.0f && bestAngle < 4.0f );
				assert( idxNext >= 0 );

				willFormLoop = (vertexTraceID[idxNext] == traceID);

				// Optimization: if best angle is zero, then we're walking
				// in a straight line. Optimize out the current vertex.
				if( bestAngle == 0.0f && idx != idx0 && !willFormLoop ) {
					localPolygon.pop_back();
				}

				idxPrev = idx;
				idx = idxNext;

			} while( !willFormLoop );

			assert( localPolygon.size() >= 3 );
			//if( localPolygon.size() < 3 ) {
			//	return;
			//}

			assert( ++debugLoopCounter < vertices.size() );

			if( idx == idx0 ) {
				// The polygon is simple or we found the last loop.
				// Triangulate local and append to results.
				triangulator::process( vb, localPolygon, localIB );
				polygon.insert( polygon.end(), localPolygon.begin(), localPolygon.end() );
				ib.insert( ib.end(), localIB.begin(), localIB.end() );

				// We can have separated other loops. Try fetching them as well.
				idx0 = getBorderIndex();
				if( idx0 == -1 ) {
					return;
				} else {
					localPolygon.resize( 0 );
					idxPrev = idx0;
					idx = idx0;
				}
				
			} else {

				// The polygon must be complex, and we just found a closed loop.
				// Take only the loop, triangulate it, append to results, continue.
				TIntVector::const_iterator itLoopStart = 
					std::find( localPolygon.begin(), localPolygon.end(), idx );
				assert( itLoopStart != localPolygon.end() );

				// append to results
				TIntVector loopPolygon( itLoopStart, localPolygon.end() );
				triangulator::process( vb, loopPolygon, localIB );
				polygon.insert( polygon.end(), loopPolygon.begin(), loopPolygon.end() );
				ib.insert( ib.end(), localIB.begin(), localIB.end() );

				// continue - remove the looped polygon from local
				localPolygon.resize( itLoopStart - localPolygon.begin() );

			}

		} while( true );
	}