Esempio n. 1
0
TPZDXGraphMesh::TPZDXGraphMesh(TPZCompMesh *cmesh, int dimension, TPZAutoPointer<TPZMaterial> mat, const TPZVec<std::string> &scalarnames, const TPZVec<std::string> &vecnames) :
TPZGraphMesh(cmesh,dimension,mat) {
	SetNames(scalarnames,vecnames);
	fNextDataField = 1;
	fStyle = EDXStyle;
	//	int index = 0;
	TPZCompEl *ce = FindFirstInterpolatedElement(cmesh,dimension);
	fElementType = "noname";
	if(ce) {
		int type = ce->Type();
		if(type == EOned)               fElementType = "lines";
		if(type == ETriangle)           fElementType = "triangles";
		if(type == EQuadrilateral)      fElementType = "quads";
		if(type == ECube)               fElementType = "cubes";
		if(type == EPrisma)             fElementType = "cubes";
		TPZGeoEl *gel = ce->Reference();
		if( type == EDiscontinuous || (type == EAgglomerate && gel) ){
			int nnodes = gel->NNodes();
			if(nnodes==4 && dimension==2) fElementType = "quads";
			if(nnodes==3 && dimension==2) fElementType = "triangles";
			if(dimension==3)              fElementType = "cubes";
		}
	}
	fNumCases = 0;
	fNumConnectObjects[0] = 1;
	fNumConnectObjects[1] = 1;
	fNumConnectObjects[2] = 1;
	fNormalObject = 0;
	
	for(int i = 0; i < 8; i++) fElConnectivityObject[i] = -1;
	
}
Esempio n. 2
0
TPZCompEl *TPZGraphMesh::FindFirstInterpolatedElement(TPZCompMesh *mesh, int dim) {
	int64_t nel = mesh->NElements();
	TPZCompEl *cel;
	int64_t iel;
	for(iel=0; iel<nel; iel++) {
		cel = mesh->ElementVec()[iel];
		if(!cel) continue;
		int type = cel->Type();
		if(type == EAgglomerate){
#ifndef STATE_COMPLEX
			if(!cel->Reference()) continue;
			TPZAgglomerateElement *agg = dynamic_cast<TPZAgglomerateElement *>(cel);
			if(agg && agg->Dimension() == dim) return agg;
#else
			DebugStop();
#endif
		}
		if(type == EDiscontinuous){
			TPZCompElDisc *disc = dynamic_cast<TPZCompElDisc *>(cel);
			if(disc && disc->Reference()->Dimension() == dim) return disc;
		}
		TPZCompEl *intel = dynamic_cast<TPZInterpolatedElement *>(cel);
		if(intel && intel->Reference()->Dimension() == dim) return intel;
		TPZSubCompMesh *subcmesh = dynamic_cast<TPZSubCompMesh *> (cel);
		if(subcmesh) {
			intel = FindFirstInterpolatedElement(subcmesh,dim);
			if(intel) return intel;
		}
	}
	return 0;
}
Esempio n. 3
0
// Output as Mathematica format
void OutputMathematica(std::ofstream &outMath,int var,int pointsByElement,TPZCompMesh *cmesh) {
	int i, j, k, nnodes;
	int nelem = cmesh->ElementVec().NElements();
	int dim = cmesh->Dimension();   // Dimension of the model
	REAL w;
	if(var-1 < 0) var = 1;
	// Map to store the points and values 
	map<REAL,TPZVec<REAL> > Graph;
	TPZVec<REAL> tograph(4,0.);
	map<TPZVec<REAL>,REAL> Graphics;
	
	for(i=0;i<nelem;i++) {
		TPZCompEl *cel = cmesh->ElementVec()[i];
		TPZGeoEl *gel = cel->Reference();
		TPZInterpolationSpace * sp = dynamic_cast <TPZInterpolationSpace*>(cel);
		int nstates = cel->Material()->NStateVariables();
		// If var is higher than nstates of the element, go to next element
		if(var > nstates)
			continue;
		TPZVec<REAL> qsi(3,0.), sol(nstates,0.), outfem(3,0.);
		nnodes = gel->NNodes();
		if(pointsByElement < nnodes) pointsByElement = nnodes;
		for(j=0;j<gel->NNodes();j++) {
			// Get corners points to compute solution on
			gel->CenterPoint(j,qsi);
			sp->Solution(qsi,0,sol);
			cel->Reference()->X(qsi,outfem);
			// Jointed point coordinates and solution value on			
			for(k=0;k<3;k++) tograph[k] = outfem[k];
			tograph[k] = sol[var-1];
			Graph.insert(pair<REAL,TPZVec<REAL> >(outfem[0],tograph));
			Graphics.insert(pair<TPZVec<REAL>,REAL>(outfem,sol[var-1]));
			// If cel is point gets one point value
			if(cel->Type() == EPoint) {
				break;
			}
		}
		// If cel is point gets one point value
		if(cel->Type() == EPoint) continue;
		// Print another points using integration points
		TPZIntPoints *rule = NULL;
		int order = 1, npoints = 0;
		while(pointsByElement-(npoints+nnodes) > 0) {
			if(rule) delete rule;   // Cleaning unnecessary allocation
			int nsides = gel->NSides();
			// Get the integration rule to compute internal points to print, not to print
			rule = gel->CreateSideIntegrationRule(nsides-1,order);
			if(!rule) break;
			npoints = rule->NPoints();
			order += 2;
		}
		for(j=0;j<npoints;j++) {
			// Get integration points to get internal points
			rule->Point(j,qsi,w);
			sp->Solution(qsi,0,sol);
			cel->Reference()->X(qsi,outfem);
			// Jointed point coordinates and solution value on
			for(k=0;k<3;k++) tograph[k] = outfem[k];
			tograph[k] = sol[var-1];
			Graph.insert(pair<REAL,TPZVec<REAL> >(outfem[0],tograph));
			Graphics.insert(pair<TPZVec<REAL>,REAL>(outfem,sol[var-1]));
		}
	}
	
	// Printing the points and values into the Mathematica file
	outMath << "Saida = { ";
	// Formatting output
	outMath << fixed << setprecision(10);
	if(dim<2) {
		map<REAL,TPZVec<REAL> >::iterator it;
		for(it=Graph.begin();it!=Graph.end();it++) {
			if(it!=Graph.begin()) outMath << ",";
			outMath << "{";
			for(j=0;j<dim;j++)
				outMath << (*it).second[j] << ",";
			outMath << (*it).second[3] << "}";
		}
		outMath << "};" << std::endl;
		// Choose Mathematica command depending on model dimension
		outMath << "ListPlot[Saida,Joined->True]"<< endl;
	}
	else {
		map<TPZVec<REAL>,REAL>::iterator it;
		for(it=Graphics.begin();it!=Graphics.end();it++) {
			if(it!=Graphics.begin()) outMath << ",";
			outMath << "{";
			for(j=0;j<dim;j++)
				outMath << (*it).first[j] << ",";
			outMath << (*it).second << "}";
		}
		outMath << "};" << std::endl;
		outMath << "ListPlot3D[Saida]"<< endl;
	}
}