Esempio n. 1
0
StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
  assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
  StructAlignment = 0;
  StructSize = 0;
  NumElements = ST->getNumElements();

  // Loop over each of the elements, placing them in memory.
  for (unsigned i = 0, e = NumElements; i != e; ++i) {
    const Type *Ty = ST->getElementType(i);
    unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);

    // Add padding if necessary to align the data element properly.
    if ((StructSize & (TyAlign-1)) != 0)
      StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);

    // Keep track of maximum alignment constraint.
    StructAlignment = std::max(TyAlign, StructAlignment);

    MemberOffsets[i] = StructSize;
    StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
  }

  // Empty structures have alignment of 1 byte.
  if (StructAlignment == 0) StructAlignment = 1;

  // Add padding to the end of the struct so that it could be put in an array
  // and all array elements would be aligned correctly.
  if ((StructSize & (StructAlignment-1)) != 0)
    StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
}
/// getPointeeAlignment - Compute the minimum alignment of the value pointed
/// to by the given pointer.
static unsigned getPointeeAlignment(Value *V, const TargetData &TD) {
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::BitCast ||
        (CE->getOpcode() == Instruction::GetElementPtr &&
         cast<GEPOperator>(CE)->hasAllZeroIndices()))
      return getPointeeAlignment(CE->getOperand(0), TD);

  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    if (!GV->isDeclaration())
      return TD.getPreferredAlignment(GV);

  if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
    return TD.getABITypeAlignment(PT->getElementType());

  return 0;
}
Esempio n. 3
0
/// processStore - When GVN is scanning forward over instructions, we look for
/// some other patterns to fold away.  In particular, this looks for stores to
/// neighboring locations of memory.  If it sees enough consequtive ones
/// (currently 4) it attempts to merge them together into a memcpy/memset.
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
  if (SI->isVolatile()) return false;
  
  LLVMContext &Context = SI->getContext();

  // There are two cases that are interesting for this code to handle: memcpy
  // and memset.  Right now we only handle memset.
  
  // Ensure that the value being stored is something that can be memset'able a
  // byte at a time like "0" or "-1" or any width, as well as things like
  // 0xA0A0A0A0 and 0.0.
  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
  if (!ByteVal)
    return false;

  TargetData *TD = getAnalysisIfAvailable<TargetData>();
  if (!TD) return false;
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
  Module *M = SI->getParent()->getParent()->getParent();

  // Okay, so we now have a single store that can be splatable.  Scan to find
  // all subsequent stores of the same value to offset from the same pointer.
  // Join these together into ranges, so we can decide whether contiguous blocks
  // are stored.
  MemsetRanges Ranges(*TD);
  
  Value *StartPtr = SI->getPointerOperand();
  
  BasicBlock::iterator BI = SI;
  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) { 
      // If the call is readnone, ignore it, otherwise bail out.  We don't even
      // allow readonly here because we don't want something like:
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
      if (AA.getModRefBehavior(CallSite::get(BI)) ==
            AliasAnalysis::DoesNotAccessMemory)
        continue;
      
      // TODO: If this is a memset, try to join it in.
      
      break;
    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
      break;

    // If this is a non-store instruction it is fine, ignore it.
    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
    if (NextStore == 0) continue;
    
    // If this is a store, see if we can merge it in.
    if (NextStore->isVolatile()) break;
    
    // Check to see if this stored value is of the same byte-splattable value.
    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
      break;

    // Check to see if this store is to a constant offset from the start ptr.
    int64_t Offset;
    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
      break;

    Ranges.addStore(Offset, NextStore);
  }

  // If we have no ranges, then we just had a single store with nothing that
  // could be merged in.  This is a very common case of course.
  if (Ranges.empty())
    return false;
  
  // If we had at least one store that could be merged in, add the starting
  // store as well.  We try to avoid this unless there is at least something
  // interesting as a small compile-time optimization.
  Ranges.addStore(0, SI);
  
  
  // Now that we have full information about ranges, loop over the ranges and
  // emit memset's for anything big enough to be worthwhile.
  bool MadeChange = false;
  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
       I != E; ++I) {
    const MemsetRange &Range = *I;

    if (Range.TheStores.size() == 1) continue;
    
    // If it is profitable to lower this range to memset, do so now.
    if (!Range.isProfitableToUseMemset(*TD))
      continue;
    
    // Otherwise, we do want to transform this!  Create a new memset.  We put
    // the memset right before the first instruction that isn't part of this
    // memset block.  This ensure that the memset is dominated by any addressing
    // instruction needed by the start of the block.
    BasicBlock::iterator InsertPt = BI;

    // Get the starting pointer of the block.
    StartPtr = Range.StartPtr;

    // Determine alignment
    unsigned Alignment = Range.Alignment;
    if (Alignment == 0) {
      const Type *EltType = 
         cast<PointerType>(StartPtr->getType())->getElementType();
      Alignment = TD->getABITypeAlignment(EltType);
    }

    // Cast the start ptr to be i8* as memset requires.
    const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
    const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
                                                  StartPTy->getAddressSpace());
    if (StartPTy!= i8Ptr)
      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
                                 InsertPt);

    Value *Ops[] = {
      StartPtr, ByteVal,   // Start, value
      // size
      ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
      // align
      ConstantInt::get(Type::getInt32Ty(Context), Alignment),
      // volatile
      ConstantInt::get(Type::getInt1Ty(Context), 0),
    };
    const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };

    Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);

    Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
    DEBUG(dbgs() << "Replace stores:\n";
          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
            dbgs() << *Range.TheStores[i];
          dbgs() << "With: " << *C); C=C;
  
    // Don't invalidate the iterator
    BBI = BI;
  
    // Zap all the stores.
    for (SmallVector<StoreInst*, 16>::const_iterator
         SI = Range.TheStores.begin(),
         SE = Range.TheStores.end(); SI != SE; ++SI)
      (*SI)->eraseFromParent();
    ++NumMemSetInfer;
    MadeChange = true;
  }
  
  return MadeChange;
}