Esempio n. 1
0
AirspaceIntersectionVector
AirspaceCircle::Intersects(const GeoPoint &start, const GeoPoint &end,
                           const TaskProjection &projection) const
{
  const fixed f_radius = projection.ProjectRangeFloat(m_center, m_radius);
  const FlatPoint f_center = projection.ProjectFloat(m_center);
  const FlatPoint f_start = projection.ProjectFloat(start);
  const FlatPoint f_end = projection.ProjectFloat(end);
  const FlatLine line(f_start, f_end);

  FlatPoint f_p1, f_p2;
  if (!line.intersect_circle(f_radius, f_center, f_p1, f_p2))
    return AirspaceIntersectionVector();

  const fixed mag = line.dsq();
  if (!positive(mag))
    return AirspaceIntersectionVector();

  const fixed inv_mag = fixed(1) / mag;
  const fixed t1 = FlatLine(f_start, f_p1).dot(line);
  const fixed t2 = (f_p1 == f_p2) ?
    fixed(-1) : FlatLine(f_start, f_p2).dot(line);

  const bool in_range = (t1 < mag) || (t2 < mag);
  // if at least one point is within range, capture both points

  AirspaceIntersectSort sorter(start, *this);
  if ((t1 >= fixed(0)) && in_range)
    sorter.add(t1 * inv_mag, projection.Unproject(f_p1));

  if ((t2 >= fixed(0)) && in_range)
    sorter.add(t2 * inv_mag, projection.Unproject(f_p2));

  return sorter.all();
}
Esempio n. 2
0
void
AATPoint::SetTarget(const fixed range, const fixed radial,
                    const TaskProjection &proj)
{
  fixed oldrange = fixed_zero;
  fixed oldradial = fixed_zero;
  GetTargetRangeRadial(oldrange, oldradial);

  const FlatPoint fprev =
    proj.ProjectFloat(GetPrevious()->GetLocationRemaining());
  const FlatPoint floc = proj.ProjectFloat(GetLocation());
  const FlatLine flb (fprev,floc);
  const FlatLine fradius (floc,proj.ProjectFloat(GetLocationMin()));
  const fixed bearing = fixed_minus_one * flb.angle().Degrees();
  const fixed radius = fradius.d();

  fixed swapquadrants = fixed_zero;
  if (positive(range) != positive(oldrange))
    swapquadrants = fixed(180);
  const FlatPoint ftarget1 (fabs(range) * radius *
        cos((bearing + radial + swapquadrants)
            / fixed(360) * fixed_two_pi),
      fabs(range) * radius *
        sin( fixed_minus_one * (bearing + radial + swapquadrants)
            / fixed(360) * fixed_two_pi));

  const FlatPoint ftarget2 = floc + ftarget1;
  const GeoPoint targetG = proj.Unproject(ftarget2);

  SetTarget(targetG, true);
}
Esempio n. 3
0
void
AATPoint::SetTarget(RangeAndRadial rar, const TaskProjection &proj)
{
  const FlatPoint fprev =
    proj.ProjectFloat(GetPrevious()->GetLocationRemaining());
  const FlatPoint floc = proj.ProjectFloat(GetLocation());
  const FlatLine flb (fprev,floc);
  const FlatLine fradius(floc,
                         proj.ProjectFloat(negative(rar.range)
                                           ? GetLocationMin()
                                           : GetLocationMax()));
  const fixed radius = fradius.d() * fabs(rar.range);

  const Angle angle = rar.radial - flb.angle();

  const FlatPoint ftarget1(radius * angle.cos(),
                           radius * -(angle).sin());

  const FlatPoint ftarget2 = floc + ftarget1;
  const GeoPoint targetG = proj.Unproject(ftarget2);

  SetTarget(targetG, true);
}
Esempio n. 4
0
inline void
ThermalLocator::Point::Drift(fixed t, const TaskProjection& projection,
                             const GeoPoint& wind_drift)
{
  const fixed dt = t - t_0;

  // thermal decay function is located in GenerateSineTables.cpp
  recency_weight = thermal_recency_fn((unsigned)fabs(dt));
  lift_weight = w*recency_weight;

  GeoPoint p = location + wind_drift * dt;

  // convert to flat earth coordinates
  loc_drift = projection.ProjectFloat(p);
}