int main (int argc, const char * argv[])
{
    TimeSeriesClassificationData trainingData;      //This will store our training data

    GestureRecognitionPipeline pipeline;               //This is a wrapper for our classifier and any pre/post processing modules

	string dirPath = "/home/vlad/AndroidStudioProjects/DataCapture/dataSetGenerator/build";


	if (!trainingData.loadDatasetFromFile(dirPath + "/acc-training-set-segmented.data")) {
		printf("Cannot open training set\n");
		return 0;
	}

	printf("Successfully opened training data set ...\n");

    HMM hmm;
    hmm.setHMMType( HMM_CONTINUOUS );
    hmm.setDownsampleFactor( 5 );
    hmm.setAutoEstimateSigma( true );
    hmm.setSigma( 20.0 );

    hmm.setModelType( HMM_LEFTRIGHT );
    hmm.setDelta( 1 );
//    LowPassFilter lpf(0.1, 1, 3);
//    pipeline.setPreProcessingModule(lpf);

    pipeline.setClassifier( hmm );

    pipeline.train(trainingData, 20);

    //You can then get then get the accuracy of how well the pipeline performed during the k-fold cross validation testing
    double accuracy = pipeline.getCrossValidationAccuracy();

    printf("Accuracy: %f\n", accuracy);

}
int main (int argc, const char * argv[])
{
    TimeSeriesClassificationData trainingData;      //This will store our training data

    GestureRecognitionPipeline pipeline;               //This is a wrapper for our classifier and any pre/post processing modules

	string dirPath = "/home/vlad/AndroidStudioProjects/DataCapture/dataSetGenerator/build";

	if (!trainingData.loadDatasetFromFile(dirPath + "/acc-training-set-segmented.data")) {
		printf("Cannot open training segmented set\n");
		return 0;
	}

	printf("Successfully opened training data set ...\n");

    DTW dtw;
//    LowPassFilter lpf(0.1, 1, 1);
//    pipeline.setPreProcessingModule(lpf);

//    DoubleMovingAverageFilter filter( 1000, 3 );
//    pipeline.setPreProcessingModule(filter);

    //dtw.enableNullRejection( true );

    //Set the null rejection coefficient to 3, this controls the thresholds for the automatic null rejection
	//You can increase this value if you find that your real-time gestures are not being recognized
	//If you are getting too many false positives then you should decrease this value
    //dtw.setNullRejectionCoeff( 5 );
    dtw.enableTrimTrainingData(true, 0.1, 90);
//    dtw.setOffsetTimeseriesUsingFirstSample(true);

    pipeline.setClassifier( dtw );

    UINT KFolds = 5;

    /* Separate input dataset using KFold */
    KfoldTimeSeriesData* kFoldTS  = new KfoldTimeSeriesData(trainingData);
	if( !kFoldTS->spiltDataIntoKFolds(KFolds) ) {
		printf("BaseTGTestModel: Failed to spiltDataIntoKFolds!");
		return 0;
	}

	UINT maxTrainigSetSize = trainingData.getNumSamples() * (KFolds - 1) / (KFolds * trainingData.getNumClasses());


	// KFolds


	ofstream myfile;
	  myfile.open ("example.txt");
	Float acc = 0;
	for (GRT::UINT k = 1 ; k < KFolds; k++) {

		printf("Running tests for: %d fold", k);
		//  maxTrainigSetSize
//		for (UINT trainingSetSize = 1; trainingSetSize <= maxTrainigSetSize; trainingSetSize ++) {

			/* Set up training datasets for current fold */
			TimeSeriesClassificationData trainingDataset = kFoldTS->getTrainingFoldData(k, maxTrainigSetSize);

			/* Set up validation datasets for current fold */
			TimeSeriesClassificationDataStream testDataset = kFoldTS->getTestFoldData(k);

			/* Log test dataset size */
			//printf("Data set size: training %d; testing %d",
//					trainingDataset.getNumSamples(), testDataset.getNumSamples());

			/* Run test for current fold */
			pipeline.train(trainingDataset);
			pipeline.test(testDataset);
			myfile << pipeline.getTestAccuracy() << "\n";
//		}
	}

	  myfile.close();

	printf("Accuracy = %f ; %d\n", acc, maxTrainigSetSize);

}
Esempio n. 3
0
int main(int argc, const char * argv[]){
    
    //Load the training data
    TimeSeriesClassificationData trainingData;
    
    if( !trainingData.loadDatasetFromFile("HMMTrainingData.grt") ){
        cout << "ERROR: Failed to load training data!\n";
        return false;
    }
    
    //Remove 20% of the training data to use as test data
    TimeSeriesClassificationData testData = trainingData.partition( 80 );
    
    //The input to the HMM must be a quantized discrete value
    //We therefore use a KMeansQuantizer to covert the N-dimensional continuous data into 1-dimensional discrete data
    const UINT NUM_SYMBOLS = 10;
    KMeansQuantizer quantizer( NUM_SYMBOLS );
    
    //Train the quantizer using the training data
    if( !quantizer.train( trainingData ) ){
        cout << "ERROR: Failed to train quantizer!\n";
        return false;
    }
    
    //Quantize the training data
    TimeSeriesClassificationData quantizedTrainingData( 1 );
    
    for(UINT i=0; i<trainingData.getNumSamples(); i++){
        
        UINT classLabel = trainingData[i].getClassLabel();
        MatrixDouble quantizedSample;
        
        for(UINT j=0; j<trainingData[i].getLength(); j++){
            quantizer.quantize( trainingData[i].getData().getRowVector(j) );
            
            quantizedSample.push_back( quantizer.getFeatureVector() );
        }
        
        if( !quantizedTrainingData.addSample(classLabel, quantizedSample) ){
            cout << "ERROR: Failed to quantize training data!\n";
            return false;
        }
        
    }
    
    //Create a new HMM instance
    HMM hmm;
    
    //Set the number of states in each model
    hmm.setNumStates( 4 );
    
    //Set the number of symbols in each model, this must match the number of symbols in the quantizer
    hmm.setNumSymbols( NUM_SYMBOLS );
    
    //Set the HMM model type to LEFTRIGHT with a delta of 1
    hmm.setModelType( HiddenMarkovModel::LEFTRIGHT );
    hmm.setDelta( 1 );
    
    //Set the training parameters
    hmm.setMinImprovement( 1.0e-5 );
    hmm.setMaxNumIterations( 100 );
    hmm.setNumRandomTrainingIterations( 20 );
    
    //Train the HMM model
    if( !hmm.train( quantizedTrainingData ) ){
        cout << "ERROR: Failed to train the HMM model!\n";
        return false;
    }
    
    //Save the HMM model to a file
    if( !hmm.save( "HMMModel.grt" ) ){
        cout << "ERROR: Failed to save the model to a file!\n";
        return false;
    }
    
    //Load the HMM model from a file
    if( !hmm.load( "HMMModel.grt" ) ){
        cout << "ERROR: Failed to load the model from a file!\n";
        return false;
    }
    
    //Quantize the test data
    TimeSeriesClassificationData quantizedTestData( 1 );
    
    for(UINT i=0; i<testData.getNumSamples(); i++){
        
        UINT classLabel = testData[i].getClassLabel();
        MatrixDouble quantizedSample;
        
        for(UINT j=0; j<testData[i].getLength(); j++){
            quantizer.quantize( testData[i].getData().getRowVector(j) );
            
            quantizedSample.push_back( quantizer.getFeatureVector() );
        }
        
        if( !quantizedTestData.addSample(classLabel, quantizedSample) ){
            cout << "ERROR: Failed to quantize training data!\n";
            return false;
        }
    }
    
    //Compute the accuracy of the HMM models using the test data
    double numCorrect = 0;
    double numTests = 0;
    for(UINT i=0; i<quantizedTestData.getNumSamples(); i++){
        
        UINT classLabel = quantizedTestData[i].getClassLabel();
        hmm.predict( quantizedTestData[i].getData() );
        
        if( classLabel == hmm.getPredictedClassLabel() ) numCorrect++;
        numTests++;
        
        VectorDouble classLikelihoods = hmm.getClassLikelihoods();
        VectorDouble classDistances = hmm.getClassDistances();
        
        cout << "ClassLabel: " << classLabel;
        cout << " PredictedClassLabel: " << hmm.getPredictedClassLabel();
        cout << " MaxLikelihood: " << hmm.getMaximumLikelihood();
        
        cout << "  ClassLikelihoods: ";
        for(UINT k=0; k<classLikelihoods.size(); k++){
            cout << classLikelihoods[k] << "\t";
        }
        
        cout << "ClassDistances: ";
        for(UINT k=0; k<classDistances.size(); k++){
            cout << classDistances[k] << "\t";
        }
        cout << endl;
    }
    
    cout << "Test Accuracy: " << numCorrect/numTests*100.0 << endl;
    
    return true;
}
int main (int argc, const char * argv[])
{
    //Create a new instance of the TimeSeriesClassificationData
    TimeSeriesClassificationData trainingData;
    
    //Set the dimensionality of the data (you need to do this before you can add any samples)
    trainingData.setNumDimensions( 3 );
    
    //You can also give the dataset a name (the name should have no spaces)
    trainingData.setDatasetName("DummyData");
    
    //You can also add some info text about the data
    trainingData.setInfoText("This data contains some dummy timeseries data");
    
    //Here you would record a time series, when you have finished recording the time series then add the training sample to the training data
    UINT gestureLabel = 1;
    MatrixDouble trainingSample;
    
    //For now we will just add 10 x 20 random walk data timeseries
    Random random;
    for(UINT k=0; k<10; k++){//For the number of classes
        gestureLabel = k+1;
        
        //Get the init random walk position for this gesture
        VectorDouble startPos( trainingData.getNumDimensions() );
        for(UINT j=0; j<startPos.size(); j++){
            startPos[j] = random.getRandomNumberUniform(-1.0,1.0);
        }
                
        //Generate the 20 time series
        for(UINT x=0; x<20; x++){
            
            //Clear any previous timeseries
            trainingSample.clear();
            
            //Generate the random walk
            UINT randomWalkLength = random.getRandomNumberInt(90, 110);
            VectorDouble sample = startPos;
            for(UINT i=0; i<randomWalkLength; i++){
                for(UINT j=0; j<startPos.size(); j++){
                    sample[j] += random.getRandomNumberUniform(-0.1,0.1);
                }
                
                //Add the sample to the training sample
                trainingSample.push_back( sample );
            }
            
            //Add the training sample to the dataset
            trainingData.addSample( gestureLabel, trainingSample );
            
        }
    }
    
    //After recording your training data you can then save it to a file
    if( !trainingData.saveDatasetToFile( "TrainingData.txt" ) ){
	    cout << "Failed to save dataset to file!\n";
	    return EXIT_FAILURE;
	}
    
    //This can then be loaded later
    if( !trainingData.loadDatasetFromFile( "TrainingData.txt" ) ){
		cout << "Failed to load dataset from file!\n";
		return EXIT_FAILURE;
	}
    
    //This is how you can get some stats from the training data
    string datasetName = trainingData.getDatasetName();
    string infoText = trainingData.getInfoText();
    UINT numSamples = trainingData.getNumSamples();
    UINT numDimensions = trainingData.getNumDimensions();
    UINT numClasses = trainingData.getNumClasses();
    
    cout << "Dataset Name: " << datasetName << endl;
    cout << "InfoText: " << infoText << endl;
    cout << "NumberOfSamples: " << numSamples << endl;
    cout << "NumberOfDimensions: " << numDimensions << endl;
    cout << "NumberOfClasses: " << numClasses << endl;
    
    //You can also get the minimum and maximum ranges of the data
    vector< MinMax > ranges = trainingData.getRanges();
    
    cout << "The ranges of the dataset are: \n";
    for(UINT j=0; j<ranges.size(); j++){
        cout << "Dimension: " << j << " Min: " << ranges[j].minValue << " Max: " << ranges[j].maxValue << endl;
    }
    
    //If you want to partition the dataset into a training dataset and a test dataset then you can use the partition function
    //A value of 80 means that 80% of the original data will remain in the training dataset and 20% will be returned as the test dataset
    TimeSeriesClassificationData testData = trainingData.partition( 80 );
    
    //If you have multiple datasets that you want to merge together then use the merge function
    if( !trainingData.merge( testData ) ){
		cout << "Failed to merge datasets!\n";
		return EXIT_FAILURE;
	}
    
    //If you want to run K-Fold cross validation using the dataset then you should first spilt the dataset into K-Folds
    //A value of 10 splits the dataset into 10 folds and the true parameter signals that stratified sampling should be used
    if( !trainingData.spiltDataIntoKFolds( 10, true ) ){
		cout << "Failed to spiltDataIntoKFolds!\n";
		return EXIT_FAILURE;
	}
    
    //After you have called the spilt function you can then get the training and test sets for each fold
    for(UINT foldIndex=0; foldIndex<10; foldIndex++){
        TimeSeriesClassificationData foldTrainingData = trainingData.getTrainingFoldData( foldIndex );
        TimeSeriesClassificationData foldTestingData = trainingData.getTestFoldData( foldIndex );
    }
    
    //If need you can clear any training data that you have recorded
    trainingData.clear();
    
    return EXIT_SUCCESS;
}