void Albany::GenericSTKFieldContainer<Interleaved>::saveVectorHelperT(const Tpetra_Vector& solnT, ScalarFieldType* solution_field, const Teuchos::RCP<const Tpetra_Map>& node_mapT, const stk::mesh::Bucket& bucket, int offset) { // Fill the result vector // Create a multidimensional array view of the // solution field data for this bucket of nodes. // The array is two dimensional ( Cartesian X NumberNodes ) // and indexed by ( 0..2 , 0..NumberNodes-1 ) BucketArray<ScalarFieldType> solution_array(*solution_field, bucket); const int num_nodes_in_bucket = solution_array.dimension(0); stk::mesh::BulkData& mesh = solution_field->get_mesh(); //get const (read-only) view of solnT Teuchos::ArrayRCP<const ST> solnT_constView = solnT.get1dView(); for(std::size_t i = 0; i < num_nodes_in_bucket; i++) { const GO node_gid = mesh.identifier(bucket[i]) - 1; if(node_mapT->getLocalElement(node_gid) != Teuchos::OrdinalTraits<LO>::invalid()){ int node_lid = node_mapT->getLocalElement(node_gid); solution_array(i) = solnT_constView[getDOF(node_lid, offset)]; } } }
void Albany::SolutionMaxValueResponseFunction:: evaluateGradientT(const double current_time, const Tpetra_Vector* xdotT, const Tpetra_Vector* xdotdotT, const Tpetra_Vector& xT, const Teuchos::Array<ParamVec>& p, ParamVec* deriv_p, Tpetra_Vector* gT, Tpetra_MultiVector* dg_dxT, Tpetra_MultiVector* dg_dxdotT, Tpetra_MultiVector* dg_dxdotdotT, Tpetra_MultiVector* dg_dpT) { int global_index; double mxv; computeMaxValueT(xT, mxv, global_index); // Evaluate response g if (gT != NULL) { Teuchos::ArrayRCP<ST> gT_nonconstView = gT->get1dViewNonConst(); gT_nonconstView[0] = mxv; } Teuchos::ArrayRCP<const ST> xT_constView = xT.get1dView(); // Evaluate dg/dx if (dg_dxT != NULL) { Teuchos::ArrayRCP<ST> dg_dxT_nonconstView; int im = -1; for (int i=0; i<xT.getMap()->getNodeNumElements(); i++) { dg_dxT_nonconstView = dg_dxT->getDataNonConst(0); if (xT_constView[i] == mxv) { dg_dxT_nonconstView[i] = 1.0; im = i; } else dg_dxT_nonconstView[i] = 0.0; } } // Evaluate dg/dxdot if (dg_dxdotT != NULL) dg_dxdotT->putScalar(0.0); if (dg_dxdotdotT != NULL) dg_dxdotdotT->putScalar(0.0); // Evaluate dg/dp if (dg_dpT != NULL) dg_dpT->putScalar(0.0); }
void Albany::SolutionMaxValueResponseFunction:: computeMaxValueT(const Tpetra_Vector& xT, double& global_max, int& global_index) { //The following is needed b/c Epetra_MaxDouble comes from Trilinos Epetra package. double Tpetra_MaxDouble = 1.0E+100; double my_max = -Tpetra_MaxDouble; int my_index = -1, index; Teuchos::ArrayRCP<const ST> xT_constView = xT.get1dView(); // Loop over nodes to find max value for equation eq int num_my_nodes = xT.getLocalLength() / neq; for (int node=0; node<num_my_nodes; node++) { if (interleavedOrdering) index = node*neq+eq; else index = node + eq*num_my_nodes; if (xT_constView[index] > my_max) { my_max = xT_constView[index]; my_index = index; } } // Check remainder (AGS: NOT SURE HOW THIS CODE GETS CALLED?) if (num_my_nodes*neq+eq < xT.getLocalLength()) { if (interleavedOrdering) index = num_my_nodes*neq+eq; else index = num_my_nodes + eq*num_my_nodes; if (xT_constView[index] > my_max) { my_max = xT_constView[index]; my_index = index; } } Teuchos::RCP<const Teuchos::Comm<int> > commT = xT.getMap()->getComm(); // Get max value across all proc's Teuchos::reduceAll(*commT, Teuchos::REDUCE_MAX, my_max, Teuchos::ptr(&global_max)); // Compute min of all global indices equal to max value if (my_max == global_max) my_index = xT.getMap()->getGlobalElement(my_index); else my_index = xT.getGlobalLength(); Teuchos::reduceAll(*commT, Teuchos::REDUCE_MIN, my_index, Teuchos::ptr(&global_index)); }
void twoD_diffusion_problem<Scalar,MeshScalar,BasisScalar,LocalOrdinal,GlobalOrdinal, Node>:: computeA(const FuncT& func, const Tpetra_Vector& p, Tpetra_CrsMatrix& jac) { using Teuchos::ArrayView; using Teuchos::arrayView; jac.resumeFill(); jac.setAllToScalar(0.0); Teuchos::ArrayRCP<const Scalar> p_view = p.get1dView(); Teuchos::Array<Scalar> rv(p_view()); size_t NumMyElements = x_map->getNodeNumElements(); ArrayView<const GlobalOrdinal> MyGlobalElements = x_map->getNodeElementList (); MeshScalar h2 = h*h; Scalar val; for(size_t i=0 ; i<NumMyElements; ++i ) { // Center GlobalOrdinal global_idx = MyGlobalElements[i]; if (mesh[global_idx].boundary) { val = 1.0; jac.replaceGlobalValues(global_idx, arrayView(&global_idx,1), arrayView(&val,1)); } else { Scalar a_down = -func(mesh[global_idx].x, mesh[global_idx].y-h/2.0, rv)/h2; Scalar a_left = -func(mesh[global_idx].x-h/2.0, mesh[global_idx].y, rv)/h2; Scalar a_right = -func(mesh[global_idx].x+h/2.0, mesh[global_idx].y, rv)/h2; Scalar a_up = -func(mesh[global_idx].x, mesh[global_idx].y+h/2.0, rv)/h2; // Center val = -(a_down + a_left + a_right + a_up); jac.replaceGlobalValues(global_idx, arrayView(&global_idx,1), arrayView(&val,1)); // Down if (!(eliminate_bcs && mesh[mesh[global_idx].down].boundary)) jac.replaceGlobalValues(global_idx, arrayView(&mesh[global_idx].down,1), arrayView(&a_down,1)); // Left if (!(eliminate_bcs && mesh[mesh[global_idx].left].boundary)) jac.replaceGlobalValues(global_idx, arrayView(&mesh[global_idx].left,1), arrayView(&a_left,1)); // Right if (!(eliminate_bcs && mesh[mesh[global_idx].right].boundary)) jac.replaceGlobalValues(global_idx, arrayView(&mesh[global_idx].right,1), arrayView(&a_right,1)); // Up if (!(eliminate_bcs && mesh[mesh[global_idx].up].boundary)) jac.replaceGlobalValues(global_idx, arrayView(&mesh[global_idx].up,1), arrayView(&a_up,1)); } } jac.fillComplete(); }