Esempio n. 1
0
	actionlib::SimpleClientGoalState getArmState()
	{
		return traj_client_elbow_flex_->getState();
	}
Esempio n. 2
0
 //! Returns the current state of the action
 actionlib::SimpleClientGoalState getState()
 {
  return traj_client_->getState();
 }	  
Esempio n. 3
0
//send a desired joint trajectory to the joint trajectory action
  //and wait for it to finish
  bool execute_joint_trajectory(std::vector<double *> joint_trajectory)
  {
    int i, j; 
    int trajectorylength = joint_trajectory.size();

    //get the current joint angles
    double current_angles[6];    
    get_current_joint_angles(current_angles);

    //fill the goal message with the desired joint trajectory
    goal.trajectory.points.resize(trajectorylength+1);

    //set the first trajectory point to the current position
    goal.trajectory.points[0].positions.resize(6);
    goal.trajectory.points[0].velocities.resize(6);
    for(j=0; j<6; j++)
    {
      goal.trajectory.points[0].positions[j] = current_angles[j];
      goal.trajectory.points[0].velocities[j] = 0.0; 
    }

   //make the first trajectory point start 0.25 seconds from when we run
    goal.trajectory.points[0].time_from_start = ros::Duration(0.25);     

    //fill in the rest of the trajectory
    double time_from_start = 0.25;
    for(i=0; i<trajectorylength; i++)
    {
      goal.trajectory.points[i+1].positions.resize(6);
      goal.trajectory.points[i+1].velocities.resize(6);

      //fill in the joint positions (velocities of 0 mean that the arm
      //will try to stop briefly at each waypoint)
      for(j=0; j<6; j++)
      {
        goal.trajectory.points[i+1].positions[j] = joint_trajectory[i][j];
        goal.trajectory.points[i+1].velocities[j] = 0.0;
      }

      //compute a desired time for this trajectory point using a max 
      //joint velocity
      double max_joint_move = 0;
      for(j=0; j<6; j++)
      {
        double joint_move = fabs(goal.trajectory.points[i+1].positions[j] 
                                 - goal.trajectory.points[i].positions[j]);
        if(joint_move > max_joint_move) max_joint_move = joint_move;
      }
      double seconds = max_joint_move/MAX_JOINT_VEL;
      ROS_INFO("max_joint_move: %0.3f, seconds: %0.3f", max_joint_move, seconds);
      time_from_start += seconds;
      goal.trajectory.points[i+1].time_from_start = 
        ros::Duration(time_from_start);
    }

    //when to start the trajectory
    goal.trajectory.header.stamp = ros::Time::now() + ros::Duration(0.25);

    ROS_INFO("Sending goal to joint_trajectory_action");
    action_client->sendGoal(goal);

    action_client->waitForResult();

    //get the current joint angles for debugging
    get_current_joint_angles(current_angles);
//    ROS_INFO("joint angles after trajectory: %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f\n",current_angles[0],current_angles[1],current_angles[2],current_angles[3],current_angles[4],current_angles[5]);

    if(action_client->getState() == actionlib::SimpleClientGoalState::SUCCEEDED){
      ROS_INFO("Hooray, the arm finished the trajectory!");
      return 1;
    }
    ROS_INFO("The arm failed to execute the trajectory.");
    return 0;
  }