Esempio n. 1
0
vector<UIntSet> getHDRStacks(const PanoramaData & pano, UIntSet allImgs, PanoramaOptions opts)
{
    vector<UIntSet> result;

    // if no images are available, return empty result vector
    if ( allImgs.empty() )
    {
        return result;
    }

    UIntSet stack;

    CalculateImageOverlap overlap(&pano);
    overlap.calculate(10);  // we are testing 10*10=100 points
    do {
        unsigned srcImg = *(allImgs.begin());
        stack.insert(srcImg);
        allImgs.erase(srcImg);

        // find all images that have a suitable overlap.
        for (UIntSet::iterator it = allImgs.begin(); it !=  allImgs.end(); ) {
            unsigned srcImg2 = *it;
            ++it;
            if(overlap.getOverlap(srcImg,srcImg2)>opts.outputStacksMinOverlap)
            {
                stack.insert(srcImg2);
                allImgs.erase(srcImg2);
            }
        }
        result.push_back(stack);
        stack.clear();
    } while (allImgs.size() > 0);

    return result;
}
void OptimizePhotometricPanel::OnOptimizeButton(wxCommandEvent & e)
{
    DEBUG_TRACE("");
    // run optimizer
    // take the OptimizeVector from somewhere.

    //OptimizeVector optvars = getOptimizeVector();
    //m_pano->setOptimizeVector(optvars);


    UIntSet imgs;
    if (m_only_active_images_cb->IsChecked()) {
        // use only selected images.
        imgs = m_pano->getActiveImages();
        if (imgs.size() == 0) {
            //FIXME: Pop-up a dialog stating no images have been selected for optimization.
            return;
        } 
    } else {
        for (unsigned int i = 0 ; i < m_pano->getNrOfImages(); i++) {
                imgs.insert(i);
        }
    }
    runOptimizer(imgs);
}
Esempio n. 3
0
vector<UIntSet> getExposureLayers(const PanoramaData & pano, UIntSet allImgs, PanoramaOptions opts)
{
    vector<UIntSet> result;

    // if no images are available, return empty result vector
    if ( allImgs.empty() )
    {
        return result;
    }

    UIntSet stack;

    do {
        unsigned srcImg = *(allImgs.begin());
        stack.insert(srcImg);
        allImgs.erase(srcImg);

        // find all images that have a suitable overlap.
        SrcPanoImage simg = pano.getSrcImage(srcImg);
        double maxEVDiff = opts.outputLayersExposureDiff;
        for (UIntSet::iterator it = allImgs.begin(); it !=  allImgs.end(); ) {
            unsigned srcImg2 = *it;
            ++it;
            SrcPanoImage simg2 = pano.getSrcImage(srcImg2);
            if ( fabs(simg.getExposureValue() - simg2.getExposureValue()) < maxEVDiff )
            {
                stack.insert(srcImg2);
                allImgs.erase(srcImg2);
            }
        }
        result.push_back(stack);
        stack.clear();
    } while (allImgs.size() > 0);

    return result;
}
Esempio n. 4
0
int main(int argc, char *argv[])
{
    // parse arguments
    const char * optstring = "o:hn:pws";

    int c;
    string output;
    bool onlyPair = false;
    bool wholePano = false;
    bool skipOptimisation = false;
    double n = 2.0;
    while ((c = getopt (argc, argv, optstring)) != -1)
    {
        switch (c) {
        case 'o':
            output = optarg;
            break;
        case 'h':
            usage(argv[0]);
            return 0;
        case 'n':
            n = atof(optarg);
            if(n==0)
            {
                cerr <<"Invalid parameter: " << optarg << " is not valid real number" << endl;
                return 1;
            };
	        if (n<1.0) 
            {
		        cerr << "Invalid parameter: n must be at least 1" << endl;
		        return 1;
            };
            break;
        case 'p':
            onlyPair= true;
            break;
        case 'w':
            wholePano = true;
            break;
        case 's':
            skipOptimisation = true;
            break;
        case ':':
            cerr <<"Option -n requires a number" << endl;
            return 1;
            break;
        case '?':
            break;
        default:
            abort ();
        }
    }

    if (argc - optind != 1) 
    {
        usage(argv[0]);
        return 1;
    };
    
    if (onlyPair && wholePano)
    {
        cerr << "Options -p and -w can't used together" << endl;
        return 1;
    };

    string input=argv[optind];

    Panorama pano;
    ifstream prjfile(input.c_str());
    if (!prjfile.good()) {
        cerr << "could not open script : " << input << endl;
        return 1;
    }
    pano.setFilePrefix(hugin_utils::getPathPrefix(input));
    DocumentData::ReadWriteError err = pano.readData(prjfile);
    if (err != DocumentData::SUCCESSFUL) {
        cerr << "error while parsing panos tool script: " << input << endl;
        cerr << "DocumentData::ReadWriteError code: " << err << endl;
        return 1;
    }

    size_t nrImg=pano.getNrOfImages();
    if (nrImg < 2) 
    {
        cerr << "Panorama should consist of at least two images" << endl;
        return 1;
    }

    if (pano.getNrOfCtrlPoints() < 3)
    {
        cerr << "Panorama should contain at least 3 control point" << endl;
    };
    
    size_t cpremoved1=0;
    UIntSet CPtoRemove;
    // step 1 with pairwise optimisation
    if(!wholePano)
    {
        CPtoRemove=getCPoutsideLimit_pair(pano,n);
        if (CPtoRemove.size()>0)
            for(UIntSet::reverse_iterator it = CPtoRemove.rbegin(); it != CPtoRemove.rend(); ++it)
                pano.removeCtrlPoint(*it);
        cpremoved1=CPtoRemove.size();
    };

    // step 2 with optimisation of whole panorama
    bool unconnected=false;
    if(!onlyPair)
    {
        //check for unconnected images
        CPGraph graph;
        createCPGraph(pano, graph);
        CPComponents comps;
        int parts=findCPComponents(graph, comps);
        if (parts > 1) 
        {
            unconnected=true;
        }
        else
        {
            CPtoRemove.clear();
            if(skipOptimisation)
            {
                std::cout << endl << "Skipping optimisation, current image positions will be used." << endl;
            };
            CPtoRemove=getCPoutsideLimit(pano,n,skipOptimisation);
            if (CPtoRemove.size()>0)
                for(UIntSet::reverse_iterator it = CPtoRemove.rbegin(); it != CPtoRemove.rend(); ++it)
                    pano.removeCtrlPoint(*it);
        };
    };

    cout << endl;
    if(!wholePano)
        cout << "Removed " << cpremoved1 << " control points in step 1" << endl;
    if(!onlyPair)
        if(unconnected)
            cout <<"Skipped step 2 because of unconnected image pairs" << endl;
        else
            cout << "Removed " << CPtoRemove.size() << " control points in step 2" << endl;

    //write output
    OptimizeVector optvec = pano.getOptimizeVector();
    UIntSet imgs;
    fill_set(imgs,0, pano.getNrOfImages()-1);
 	// Set output .pto filename if not given
	if (output=="")
    {
        output=input.substr(0,input.length()-4).append("_clean.pto");
	}
    ofstream of(output.c_str());
    pano.printPanoramaScript(of, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(input));
    
    cout << endl << "Written output to " << output << endl;
    return 0;
}
int main(int argc, char* argv[])
{
    // parse arguments
    const char* optstring = "o:i:l:h";

    static struct option longOptions[] =
    {
        {"output", required_argument, NULL, 'o' },
        {"image", required_argument, NULL, 'i' },
        {"lines", required_argument, NULL, 'l' },
        {"help", no_argument, NULL, 'h' },
        0
    };

    UIntSet cmdlineImages;
    int c;
    int optionIndex = 0;
    int nrLines = 5;
    string output;
    while ((c = getopt_long (argc, argv, optstring, longOptions,&optionIndex)) != -1)
    {
        switch (c)
        {
            case 'o':
                output = optarg;
                break;
            case 'h':
                usage(argv[0]);
                return 0;
            case 'i':
                {
                    int imgNr=atoi(optarg);
                    if((imgNr==0) && (strcmp(optarg,"0")!=0))
                    {
                        cerr << "Could not parse image number.";
                        return 1;
                    };
                    cmdlineImages.insert(imgNr);
                };
                break;
            case 'l':
                nrLines=atoi(optarg);
                if(nrLines<1)
                {
                    cerr << "Could not parse number of lines.";
                    return 1;
                };
                break;
            case ':':
                cerr <<"Option " << longOptions[optionIndex].name << " requires a number" << endl;
                return 1;
                break;
            case '?':
                break;
            default:
                abort ();
        }
    }

    if (argc - optind != 1)
    {
        cout << "Warning: " << argv[0] << " can only work on one project file at one time" << endl << endl;
        usage(argv[0]);
        return 1;
    };

    string input=argv[optind];
    // read panorama
    Panorama pano;
    ifstream prjfile(input.c_str());
    if (!prjfile.good())
    {
        cerr << "could not open script : " << input << endl;
        return 1;
    }
    pano.setFilePrefix(hugin_utils::getPathPrefix(input));
    DocumentData::ReadWriteError err = pano.readData(prjfile);
    if (err != DocumentData::SUCCESSFUL)
    {
        cerr << "error while parsing panos tool script: " << input << endl;
        cerr << "DocumentData::ReadWriteError code: " << err << endl;
        return 1;
    }

    if(pano.getNrOfImages()==0)
    {
        cerr << "error: project file does not contains any image" << endl;
        cerr << "aborting processing" << endl;
        return 1;
    };

    std::vector<size_t> imagesToProcess;
    if(cmdlineImages.size()==0)
    {
        //no image given, process all
        for(size_t i=0;i<pano.getNrOfImages();i++)
        {
            imagesToProcess.push_back(i);
        };
    }
    else
    {
        //check, if given image numbers are valid
        for(UIntSet::const_iterator it=cmdlineImages.begin();it!=cmdlineImages.end();it++)
        {
            if((*it)>=0 && (*it)<pano.getNrOfImages())
            {
                imagesToProcess.push_back(*it);
            };
        };
    };

    if(imagesToProcess.size()==0)
    {
        cerr << "No image to process found" << endl << "Stopping processing" << endl;
        return 1;
    };

    PT_setProgressFcn(ptProgress);
    PT_setInfoDlgFcn(ptinfoDlg);

    cout << argv[0] << " is searching for vertical lines" << endl;
#if _WINDOWS
    //multi threading of image loading results sometime in a race condition
    //try to prevent this by initialisation of codecManager before
    //running multi threading part
    std::string s=vigra::impexListExtensions();
#endif
#ifdef HAS_PPL
    size_t nrCPS=pano.getNrOfCtrlPoints();
    Concurrency::parallel_for<size_t>(0,imagesToProcess.size(),[&pano,imagesToProcess,nrLines](size_t i)
#else
    for(size_t i=0;i<imagesToProcess.size();i++)
#endif
    {
        unsigned int imgNr=imagesToProcess[i];
        cout << "Working on image " << pano.getImage(imgNr).getFilename() << endl;
        // now load and process all images
        vigra::ImageImportInfo info(pano.getImage(imgNr).getFilename().c_str());
        HuginBase::CPVector foundLines;
        if(info.isGrayscale())
        {
            foundLines=LoadGrayImageAndFindLines(info, pano, imgNr, nrLines);
        }
        else
        {
            if(info.isColor())
            {
                //colour images
                foundLines=LoadImageAndFindLines(info, pano, imgNr, nrLines);
            }
            else
            {
                std::cerr << "Image " << pano.getImage(imgNr).getFilename().c_str() << " has " 
                    << info.numBands() << " channels." << std::endl
                    << "Linefind works only with grayscale or color images." << std::endl
                    << "Skipping image." << std::endl;
            };
        };
#ifndef HAS_PPL
        cout << "Found " << foundLines.size() << " vertical lines" << endl;
#endif
        if(foundLines.size()>0)
        {
            for(CPVector::const_iterator cpIt=foundLines.begin(); cpIt!=foundLines.end(); cpIt++)
            {
                pano.addCtrlPoint(*cpIt);
            };
        };
    }
#ifdef HAS_PPL
    );
CPVector AutoPanoSiftMultiRow::automatch(CPDetectorSetting &setting, Panorama & pano, const UIntSet & imgs,
                                     int nFeatures, int & ret_value, wxWindow *parent)
{
    CPVector cps;
    if (imgs.size() < 2) 
    {
        return cps;
    };
    std::vector<wxString> keyFiles(pano.getNrOfImages());
    //generate cp for every consecutive image pair
    unsigned int counter=0;
    for(UIntSet::const_iterator it = imgs.begin(); it != imgs.end(); )
    {
        if(counter==imgs.size()-1)
            break;
        counter++;
        UIntSet ImagePair;
        ImagePair.clear();
        ImagePair.insert(*it);
        it++;
        ImagePair.insert(*it);
        AutoPanoSift matcher;
        CPVector new_cps;
        new_cps.clear();
        if(setting.IsTwoStepDetector())
            new_cps=matcher.automatch(setting, pano, ImagePair, nFeatures, keyFiles, ret_value, parent);
        else
            new_cps=matcher.automatch(setting, pano, ImagePair, nFeatures, ret_value, parent);
        if(new_cps.size()>0)
            AddControlPointsWithCheck(cps,new_cps);
        if(ret_value!=0)
        {
            Cleanup(setting, pano, imgs, keyFiles, parent);
            return cps;
        };
    };
    // now connect all image groups
    // generate temporary panorama to add all found cps
    UIntSet allImgs;
    fill_set(allImgs, 0, pano.getNrOfImages()-1);
    Panorama optPano=pano.getSubset(allImgs);
    for (CPVector::const_iterator it=cps.begin();it!=cps.end();++it)
        optPano.addCtrlPoint(*it);

    CPGraph graph;
    createCPGraph(optPano, graph);
    CPComponents comps;
    int n = findCPComponents(graph, comps);
    if(n>1)
    {
        UIntSet ImagesGroups;
        for(unsigned int i=0;i<n;i++)
        {
            ImagesGroups.insert(*(comps[i].begin()));
            if(comps[i].size()>1)
                ImagesGroups.insert(*(comps[i].rbegin()));
        };
        AutoPanoSift matcher;
        CPVector new_cps;
        if(setting.IsTwoStepDetector())
            new_cps=matcher.automatch(setting, optPano, ImagesGroups, nFeatures, keyFiles, ret_value, parent);
        else
            new_cps=matcher.automatch(setting, optPano, ImagesGroups, nFeatures, ret_value, parent);
        if(new_cps.size()>0)
            AddControlPointsWithCheck(cps,new_cps,&optPano);
        if(ret_value!=0)
        {
            Cleanup(setting, pano, imgs, keyFiles, parent);
            return cps;
        };
        createCPGraph(optPano,graph);
        n=findCPComponents(graph, comps);
    };
    if(n==1 && setting.GetOption())
    {
        //next steps happens only when all images are connected;
        //now optimize panorama
        PanoramaOptions opts = pano.getOptions();
        opts.setProjection(PanoramaOptions::EQUIRECTANGULAR);
        // calculate proper scaling, 1:1 resolution.
        // Otherwise optimizer distances are meaningless.
        opts.setWidth(30000, false);
        opts.setHeight(15000);

        optPano.setOptions(opts);
        int w = optPano.calcOptimalWidth();
        opts.setWidth(w);
        opts.setHeight(w/2);
        optPano.setOptions(opts);

        //generate optimize vector, optimize only yaw and pitch
        OptimizeVector optvars;
        const SrcPanoImage & anchorImage = optPano.getImage(opts.optimizeReferenceImage);
        for (unsigned i=0; i < optPano.getNrOfImages(); i++) 
        {
            std::set<std::string> imgopt;
            if(i==opts.optimizeReferenceImage)
            {
                //optimize only anchors pitch, not yaw
                imgopt.insert("p");
            }
            else
            {
                // do not optimize anchor image's stack for position.
                if(!optPano.getImage(i).YawisLinkedWith(anchorImage))
                {
                    imgopt.insert("p");
                    imgopt.insert("y");
                };
            };
            optvars.push_back(imgopt);
        }
        optPano.setOptimizeVector(optvars);

        // remove vertical and horizontal control points
        CPVector backupOldCPS = optPano.getCtrlPoints();
        CPVector backupNewCPS;
        for (CPVector::const_iterator it = backupOldCPS.begin(); it != backupOldCPS.end(); it++) {
            if (it->mode == ControlPoint::X_Y)
            {
                backupNewCPS.push_back(*it);
            }
        }
        optPano.setCtrlPoints(backupNewCPS);
        // do a first pairwise optimisation step
        HuginBase::AutoOptimise::autoOptimise(optPano,false);
        HuginBase::PTools::optimize(optPano);
        optPano.setCtrlPoints(backupOldCPS);
        //and find cp on overlapping images
        //work only on image pairs, which are not yet connected
        AutoPanoSiftPreAlign matcher;
        CPDetectorSetting newSetting;
        newSetting.SetProg(setting.GetProg());
        newSetting.SetArgs(setting.GetArgs());
        if(setting.IsTwoStepDetector())
        {
            newSetting.SetProgMatcher(setting.GetProgMatcher());
            newSetting.SetArgsMatcher(setting.GetArgsMatcher());
        };
        newSetting.SetOption(true);
        CPVector new_cps;
        if(setting.IsTwoStepDetector())
            new_cps=matcher.automatch(newSetting, optPano, imgs, nFeatures, keyFiles, ret_value, parent);
        else
            new_cps=matcher.automatch(newSetting, optPano, imgs, nFeatures, ret_value, parent);
        if(new_cps.size()>0)
            AddControlPointsWithCheck(cps,new_cps);
    };
    Cleanup(setting, pano, imgs, keyFiles, parent);
    return cps;
};
CPVector AutoPanoSiftStack::automatch(CPDetectorSetting &setting, Panorama & pano, const UIntSet & imgs,
                                     int nFeatures, int & ret_value, wxWindow *parent)
{
    CPVector cps;
    if (imgs.size() == 0) {
        return cps;
    };
    std::vector<stack_img> stack_images;
    HuginBase::StandardImageVariableGroups* variable_groups = new HuginBase::StandardImageVariableGroups(pano);
    for(UIntSet::const_iterator it = imgs.begin(); it != imgs.end(); it++)
    {
        unsigned int stack_nr=variable_groups->getStacks().getPartNumber(*it);
        //check, if this stack is already in list
        bool found=false;
        unsigned int index=0;
        for(index=0;index<stack_images.size();index++)
        {
            found=(stack_images[index].layer_nr==stack_nr);
            if(found)
                break;
        };
        if(!found)
        {
            //new stack
            stack_images.resize(stack_images.size()+1);
            index=stack_images.size()-1;
            //add new stack
            stack_images[index].layer_nr=stack_nr;
        };
        //add new image
        unsigned int new_image_index=stack_images[index].images.size();
        stack_images[index].images.resize(new_image_index+1);
        stack_images[index].images[new_image_index].img_nr=*it;
        stack_images[index].images[new_image_index].ev=pano.getImage(*it).getExposure();
    };
    delete variable_groups;
    //get image with median exposure for search with cp generator
    UIntSet images_layer;
    for(unsigned int i=0;i<stack_images.size();i++)
    {
        std::sort(stack_images[i].images.begin(),stack_images[i].images.end(),sort_img_ev);
        unsigned int index=0;
        if(stack_images[i].images[0].ev!=stack_images[i].images[stack_images[i].images.size()-1].ev)
        {
            index=stack_images[i].images.size() / 2;
        };
        images_layer.insert(stack_images[i].images[index].img_nr);
    };
    //generate cp for median exposure
    ret_value=0;
    if(images_layer.size()>1)
    {
        AutoPanoSift matcher;
        cps=matcher.automatch(setting, pano, images_layer, nFeatures, ret_value, parent);
        if(ret_value!=0)
            return cps;
    };
    //now work on all stacks
    if(!setting.GetProgStack().IsEmpty())
    {
        CPDetectorSetting stack_setting;
        stack_setting.SetType(CPDetector_AutoPanoSift);
        stack_setting.SetProg(setting.GetProgStack());
        stack_setting.SetArgs(setting.GetArgsStack());

        for(unsigned int i=0;i<stack_images.size();i++)
        {
            UIntSet images_stack;
            images_stack.clear();
            for(unsigned int j=0;j<stack_images[i].images.size();j++)
                images_stack.insert(stack_images[i].images[j].img_nr);
            if(images_stack.size()>1)
            {
                AutoPanoSift matcher;
                CPVector new_cps=matcher.automatch(stack_setting, pano, images_stack, nFeatures, ret_value, parent);
                if(new_cps.size()>0)
                    AddControlPointsWithCheck(cps,new_cps);
                if(ret_value!=0)
                    return cps;
            };
        };
    }
    return cps;
};
CPVector AutoPanoSift::automatch(CPDetectorSetting &setting, Panorama & pano, const UIntSet & imgs,
                                     int nFeatures, int & ret_value, wxWindow *parent)
{
    CPVector cps;
    if (imgs.size() == 0) {
        return cps;
    }
    // create suitable command line..
    wxString autopanoExe = GetProgPath(setting.GetProg());
    if(setting.IsTwoStepDetector())
    {
        std::vector<wxString> keyFiles(pano.getNrOfImages());
        cps=automatch(setting, pano, imgs, nFeatures, keyFiles, ret_value, parent);
        Cleanup(setting, pano, imgs, keyFiles, parent);
        return cps;
    };
    wxString autopanoArgs = setting.GetArgs();
    
    // TODO: create a secure temporary filename here
    wxString ptofile = wxFileName::CreateTempFileName(wxT("ap_res"));
    autopanoArgs.Replace(wxT("%o"), ptofile);
    wxString tmp;
    tmp.Printf(wxT("%d"), nFeatures);
    autopanoArgs.Replace(wxT("%p"), tmp);

    SrcPanoImage firstImg = pano.getSrcImage(*imgs.begin());
    tmp.Printf(wxT("%f"), firstImg.getHFOV());
    autopanoArgs.Replace(wxT("%v"), tmp);

    tmp.Printf(wxT("%d"), (int) firstImg.getProjection());
    autopanoArgs.Replace(wxT("%f"), tmp);

    long idx = autopanoArgs.Find(wxT("%namefile")) ;
    DEBUG_DEBUG("find %namefile in '"<< autopanoArgs.mb_str(wxConvLocal) << "' returned: " << idx);
    bool use_namefile = idx >=0;
    idx = autopanoArgs.Find(wxT("%i"));
    DEBUG_DEBUG("find %i in '"<< autopanoArgs.mb_str(wxConvLocal) << "' returned: " << idx);
    bool use_params = idx >=0;
    idx = autopanoArgs.Find(wxT("%s"));
    bool use_inputscript = idx >=0;

    if (! (use_namefile || use_params || use_inputscript)) {
        CPMessage(_("Please use %namefile, %i or %s to specify the input files for the control point detector"),
                     _("Error in control point detector command"), parent);
        return cps;
    }

    wxFile namefile;
    wxString namefile_name;
    if (use_namefile) {
        // create temporary file with image names.
        namefile_name = wxFileName::CreateTempFileName(wxT("ap_imgnames"), &namefile);
        DEBUG_DEBUG("before replace %namefile: " << autopanoArgs.mb_str(wxConvLocal));
        autopanoArgs.Replace(wxT("%namefile"), namefile_name);
        DEBUG_DEBUG("after replace %namefile: " << autopanoArgs.mb_str(wxConvLocal));
        for(UIntSet::const_iterator it = imgs.begin(); it != imgs.end(); it++)
        {
            namefile.Write(wxString(pano.getImage(*it).getFilename().c_str(), HUGIN_CONV_FILENAME));
            namefile.Write(wxT("\r\n"));
        }
        // close namefile
        if (namefile_name != wxString(wxT(""))) {
            namefile.Close();
        }
    } else {
        string imgFiles;
        for(UIntSet::const_iterator it = imgs.begin(); it != imgs.end(); it++)
        {
            imgFiles.append(" ").append(quoteFilename(pano.getImage(*it).getFilename()));
        }
        autopanoArgs.Replace(wxT("%i"), wxString (imgFiles.c_str(), HUGIN_CONV_FILENAME));
    }

    wxString ptoinfile_name;
    if (use_inputscript) {
        wxFile ptoinfile;
        ptoinfile_name = wxFileName::CreateTempFileName(wxT("ap_inproj"));
        autopanoArgs.Replace(wxT("%s"), ptoinfile_name);

        ofstream ptoinstream(ptoinfile_name.mb_str(wxConvFile));
        //delete all existing control points in temp project
        //otherwise the existing control points will be loaded again
        Panorama tempPano=pano.duplicate();
        CPVector emptyCPV;
        tempPano.setCtrlPoints(emptyCPV);
        tempPano.printPanoramaScript(ptoinstream, tempPano.getOptimizeVector(), tempPano.getOptions(), imgs, false);
    }

#ifdef __WXMSW__
    if (autopanoArgs.size() > 32000) {
        CPMessage(_("Command line for control point detector too long.\nThis is a Windows limitation\nPlease select less images, or place the images in a folder with\na shorter pathname"),
                     _("Too many images selected"), parent );
        return cps;
    }
#endif

    wxString cmd = autopanoExe + wxT(" ") + autopanoArgs;
    DEBUG_DEBUG("Executing: " << autopanoExe.mb_str(wxConvLocal) << " " << autopanoArgs.mb_str(wxConvLocal));

    wxArrayString arguments = wxCmdLineParser::ConvertStringToArgs(autopanoArgs);
    if (arguments.GetCount() > 127) {
        DEBUG_ERROR("Too many arguments for call to wxExecute()");
        DEBUG_ERROR("Try using the %%s parameter in preferences");
        CPMessage(wxString::Format(_("Too many arguments (images). Try using the %%s parameter in preferences.\n\n Could not execute command: %s"), autopanoExe.c_str()), _("wxExecute Error"), parent);
        return cps;
    }

    ret_value = 0;
    // use MyExternalCmdExecDialog
    ret_value = CPExecute(autopanoExe, autopanoArgs, _("finding control points"), parent);

    if (ret_value == HUGIN_EXIT_CODE_CANCELLED) {
        return cps;
    } else if (ret_value == -1) {
        CPMessage( wxString::Format(_("Could not execute command: %s"),cmd.c_str()), _("wxExecute Error"), parent);
        return cps;
    } else if (ret_value > 0) {
        CPMessage(wxString::Format(_("Command: %s\nfailed with error code: %d"),cmd.c_str(),ret_value),
                     _("wxExecute Error"), parent);
        return cps;
    }

    if (! wxFileExists(ptofile.c_str())) {
        CPMessage(wxString::Format(_("Could not open %s for reading\nThis is an indicator that the control point detector call failed,\nor incorrect command line parameters have been used.\n\nExecuted command: %s"),ptofile.c_str(),cmd.c_str()),
                     _("Control point detector failure"), parent );
        return cps;
    }

    // read and update control points
    if(use_inputscript)
    {
        cps = readUpdatedControlPoints((const char*)ptofile.mb_str(HUGIN_CONV_FILENAME), pano, imgs);
    }
    else
    {
        cps = readUpdatedControlPoints((const char *)ptofile.mb_str(HUGIN_CONV_FILENAME), pano);
    };

    if (namefile_name != wxString(wxT(""))) {
        namefile.Close();
        wxRemoveFile(namefile_name);
    }

    if (ptoinfile_name != wxString(wxT(""))) {
        wxRemoveFile(ptoinfile_name);
    }

    if (!wxRemoveFile(ptofile)) {
        DEBUG_DEBUG("could not remove temporary file: " << ptofile.c_str());
    }

    return cps;
}
CPVector AutoPanoSiftPreAlign::automatch(CPDetectorSetting &setting, Panorama & pano, const UIntSet & imgs,
                                         int nFeatures, std::vector<wxString> &keyFiles, int & ret_value, wxWindow *parent)
{
    CPVector cps;
    if (imgs.size()<2) 
        return cps;
    DEBUG_ASSERT(keyFiles.size()==pano.getNrOfImages());

    vector<UIntSet> usedImages;
    usedImages.resize(pano.getNrOfImages());
    if(setting.GetOption())
    {
        //only work on not connected image pairs
        CPVector oldCps=pano.getCtrlPoints();
        for(unsigned i=0;i<oldCps.size();i++)
        {
            if(oldCps[i].mode==ControlPoint::X_Y)
            {
                usedImages[oldCps[i].image1Nr].insert(oldCps[i].image2Nr);
                usedImages[oldCps[i].image2Nr].insert(oldCps[i].image1Nr);
            };
        };
    };
    HuginBase::CalculateImageOverlap overlap(&pano);
    overlap.calculate(10);
    for(UIntSet::const_iterator it=imgs.begin();it!=imgs.end();it++)
    {
        UIntSet images;
        images.clear();
        images.insert(*it);
        UIntSet::const_iterator it2=it;
        for(++it2;it2!=imgs.end();it2++)
        {
            //check if this image pair was yet used
            if(set_contains(usedImages[*it2],*it))
                continue;
            //now check position
            if(overlap.getOverlap(*it,*it2)>0)
            {
                images.insert(*it2);
            };
        };
        if(images.size()<2)
            continue;
        //remember image pairs for later
        for(UIntSet::const_iterator img_it=images.begin();img_it!=images.end();img_it++)
            for(UIntSet::const_iterator img_it2=images.begin();img_it2!=images.end();img_it2++)
                usedImages[*img_it].insert(*img_it2);
        AutoPanoSift matcher;
        CPVector new_cps;
        if(setting.IsTwoStepDetector())
            new_cps=matcher.automatch(setting, pano, images, nFeatures, keyFiles, ret_value, parent);
        else
            new_cps=matcher.automatch(setting, pano, images, nFeatures, ret_value, parent);
        if(new_cps.size()>0)
            AddControlPointsWithCheck(cps,new_cps);
        if(ret_value!=0)
        {
            Cleanup(setting, pano, imgs, keyFiles, parent);
            return cps;
        };
    };
    Cleanup(setting, pano, imgs, keyFiles, parent);
    return cps;
};