ALGEB minpoly(MKernelVector kv, ALGEB* args) { int i; ALGEB retlist, blank; char err[] = "ERROR! Associated blackbox object does not exist!"; int key = MapleToInteger32(kv,args[1]), flag; std::map<int,int>::iterator f_i; std::map<int,void*>::iterator h_i; // Get the data from the hash table f_i = typeTable.find(key); if( f_i == typeTable.end() ) MapleRaiseError(kv,err); else flag = f_i->second; h_i = hashTable.find(key); if(h_i != hashTable.end() ) { // We've got data switch( flag ) { // Getting the minimal polynomial is rather complicated, so both instances of this code were // wrapped up inside a block, to cut down at the clutter at the top of this function. // First declares a vector of the proper type and casts the pointer. Then computes the minimal // polynomial. It then builds the proper Maple list structure for this application. case BlackBoxi: { Vectorl mpreturn; Vectorl::iterator mp_i; TriplesBBi* BB = (TriplesBBi*) h_i->second; LinBox::minpoly( mpreturn, *BB, BB->field() ); retlist = MapleListAlloc(kv, mpreturn.size() ); for(i = 1, mp_i = mpreturn.begin(); mp_i != mpreturn.end(); ++mp_i, ++i) MapleListAssign(kv, retlist, i, ToMapleInteger(kv, *mp_i)); } break; case BlackBoxI: { VectorI mpreturn; VectorI::iterator mp_i; TriplesBBI* BB = (TriplesBBI*) h_i->second; LinBox::minpoly( mpreturn, *BB, BB->field() ); retlist = MapleListAlloc(kv, mpreturn.size()); for(i = 1, mp_i = mpreturn.begin(); mp_i != mpreturn.end(); ++mp_i, ++i) MapleListAssign(kv, retlist, i, LiToM(kv, *mp_i, blank)); } break; } } else MapleRaiseError(kv,err); return retlist; }
inline void assign_vector( VectorI &v_src, VectorI &v_ind, VectorI &v_val, VectorJ &v_out, Accum accum) { using namespace detail; if (v_val.size() != v_ind.size()) { return; } assign_vector_helper(v_src, v_ind, v_val.begin(), v_out, accum); }
ALGEB getVector(MKernelVector kv, ALGEB* args) { // Get the key, declare variables int key = MapleToInteger32(kv,args[1]), flag; char err[] = "ERROR! The associated Vector object does not exist!"; M_INT index, bound[2]; RTableData d; RTableSettings s; ALGEB rtable, blank; char MapleStatement[100] = "rtable(1.."; // Check to see if the object pointed to by key is in the type table. If not, panic std::map<int,int>::iterator f_i = typeTable.find(key); if(f_i == typeTable.end() ) { MapleRaiseError(kv, err); } // Otherwise, we have our object flag = f_i->second; // Get a pointer to the actual data std::map<int,void*>::iterator h_i = hashTable.find(key); if(h_i != hashTable.end() ) { // Diverge over whether we are using maple 7 or 8 ( and 5 & 6) // in Maple, arg 3 is a flag indicating which method to use switch( MapleToInteger32(kv, args[3])) { // In this case, Maple 7 is being used, we have to construct a call using "EvalMapleStatement()" // to call the RTable constructor case 1: switch(flag) { case SmallV:{ // Get the vector Vectorl* V = (Vectorl*) h_i->second; Vectorl::const_iterator V_i; // Create the Maple object sprintf(MapleStatement + strlen(MapleStatement), "%d", V->size() ); strcat(MapleStatement, ", subtype=Vector[column], storage=sparse)"); rtable = kv->evalMapleStatement(MapleStatement); // populate the Maple vector w/ the entries from V above for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { d.dag = ToMapleInteger(kv, *V_i); // d is a union, dag is the // ALGEB union field RTableAssign(kv, rtable, &index, d); } } break; case LargeV: { // This part works the same way as above VectorI* V = (VectorI*) h_i->second; VectorI::const_iterator V_i; sprintf(MapleStatement + strlen(MapleStatement), "%d", V->size() ); strcat(MapleStatement, ",subtype=Vector[column], storage=sparse)"); rtable = kv->evalMapleStatement(MapleStatement); // Use maple callback to call the procedure from Maple that translates a gmp integer // into a large maple integer. Then put this into the Maple vector for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { /* Okay, here's how this line works. Basically, * in order to set the entries of this RTable to * multi-precision integers, I have to first use my own conversion * method, LiToM, to convert the integer entry to a ALGEB structure, * then do a callback into Maple that calls the ExToM procedure, * which converts the results of LiToM into a Maple multi-precision * integer. At the moment, this is the best idea I've got as to * how to convert a GMP integer into a Maple representation in one shot. */ d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *V_i, blank)); RTableAssign(kv, rtable, &index, d); } } break; default: MapleRaiseError(kv, err); break; } break; // In this case, use the simpler RTableCreate function, rather than building a string // that must be parsed by maple case 2: kv->rtableGetDefaults(&s); // Get default settings - set datatype to Maple, // DAGTAG to anything s.subtype = 2; // Subtype set to column vector s.storage = 4; // Storage set to rectangular s.num_dimensions = 1; // What do you think this means :-) bound[0] = 1; // Set the lower bounds of each dimension to 0 switch(flag) {// Switch on data type of vector case SmallV:{ // single word integer entry vector Vectorl* V = (Vectorl*) h_i->second; Vectorl::const_iterator V_i; bound[1] = V->size(); rtable = kv->rtableCreate(&s, NULL, bound); // Create the Maple vector for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { d.dag = ToMapleInteger(kv, *V_i); // d is a union, dag is the // ALGEB union field RTableAssign(kv, rtable, &index, d); } } break; case LargeV: { // Same as above for multi-word integer entry vector VectorI* V = (VectorI*) h_i->second; VectorI::const_iterator V_i; bound[1] = V->size(); rtable = kv->rtableCreate(&s, NULL, bound); for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { /* Okay, here's how this line works. Basically, * in order to set the entries of this RTable to * multi-precision integers, I have to first use my own conversion * method, LiToM, to convert the integer entry to a ALGEB structure, * then do a callback into Maple that calls the ExToM procedure, * which converts the results of LiToM into a Maple multi-precision * integer. At the moment, this is the best idea I've got as to * how to convert a GMP integer into a Maple representation in one shot. */ d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *V_i, blank)); RTableAssign(kv, rtable, &index, d); } } break; default: MapleRaiseError(kv, err); break; } break; // breaks case 2. // This was causing a wicked error :-) default: MapleRaiseError(kv, err); break; } } else { MapleRaiseError(kv, err); } return rtable; }
ALGEB getMatrix(MKernelVector kv, ALGEB* args) { // Get the key int key = MapleToInteger32(kv,args[1]), flag; char err[] = "ERROR! The associated BlackBox object does not exist!"; M_INT index[2], bound[4]; RTableData d; ALGEB rtable, blank; RTableSettings s; std::vector<size_t> Row, Col; std::vector<size_t>::const_iterator r_i, c_i; char MapleStatement[100] = "rtable(1.."; // Get the data type of the blackbox std::map<int,int>::iterator f_i = typeTable.find(key); if( f_i == typeTable.end() ) // In case the blackbox isn't there MapleRaiseError(kv,err); flag = f_i->second; // Otherwise, get the blackbox type // Check that the data is there std::map<int,void*>::iterator h_i = hashTable.find(key); if(h_i != hashTable.end() ) { // Switch according to mode - regular or "special fix" mode switch( MapleToInteger32(kv, args[3])) { case 1: // This is the Maple 7 case, "special fix" mode // Use the EvalMapleStatement() to call the rtable constructor in the // Maple environment // Switch according to the type switch(flag) { case BlackBoxi:{ // For single word entry matrices // Extract the necessary data TriplesBBi* BB = (TriplesBBi*) h_i->second; Vectorl Data = BB->getData(); Row = BB->getRows(); Col = BB->getCols(); Vectorl::const_iterator d_i; // Builds the statement that will be used in the Maple 7 callback sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->rowdim() ); strcat(MapleStatement, ",1.."); sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->coldim() ); strcat(MapleStatement, ", subtype=Matrix, storage=sparse);"); // Perform the callback rtable = kv->evalMapleStatement(MapleStatement); // Insert each non-zero entry for(d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++c_i, ++r_i) { index[0] = *r_i; index[1] = *c_i; d.dag = ToMapleInteger(kv, *d_i); // d is a union, dag is the // ALGEB union field RTableAssign(kv, rtable, index, d); } } break; case BlackBoxI: { // For multi-word size matrix types TriplesBBI* BB = (TriplesBBI*) h_i->second; VectorI Data = BB->getData(); VectorI::const_iterator d_i; // Build and execute the Maple callback sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->rowdim() ); strcat(MapleStatement, ", 1.."); sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->coldim() ); strcat(MapleStatement, ", subtype=Matrix, storage=sparse);"); rtable = kv->evalMapleStatement(MapleStatement); for(d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++r_i, ++c_i) { index[0] = *r_i; index[1] = *c_i; // * Okay, here's how this line works. Basically, // * in order to set the entries of this RTable to // * multi-precision integers, I have to first use my own conversion // * method, LiToM, to convert the integer entry to a ALGEB structure, // * then do a callback into Maple that calls the ExToM procedure, // * which converts the results of LiToM into a Maple multi-precision // * integer. At the moment, this is the best idea I've got as to // * how to convert a GMP integer into a Maple representation in one shot. // * d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *d_i, blank)); RTableAssign(kv, rtable, index, d); } } break; // In this case the object is not a BlackBox type default: MapleRaiseError(kv,err); break; } break; case 2: // Okay, here is the normal case. // Use RTableCreate to create a Maple rtable object kv->rtableGetDefaults(&s); // Get default settings - set datatype to Maple, // DAGTAG to anything s.subtype = RTABLE_MATRIX; // Subtype set to Matrix s.storage = RTABLE_SPARSE; // Storage set to sparse s.num_dimensions = 2; // What do you think this means :-) bound[0] = bound[2] = 1; // Set the lower bounds of each dimension to 0, which for maple is 1 switch(flag) { // Switch on data type case BlackBoxi:{ // word size entry Matrix TriplesBBi* BB = (TriplesBBi*) h_i->second; Vectorl Data = BB->getData(); Row = BB->getRows(); Col = BB->getCols(); Vectorl::const_iterator d_i; bound[1] = BB->rowdim(); bound[3] = BB->coldim(); rtable = kv->rtableCreate(&s, NULL, bound); // This is the RTableCreate function, it's // just the one that works // Assign all the non-zero rows for( d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++c_i, ++r_i) { index[0] = *r_i; index[1] = *c_i; d.dag = ToMapleInteger(kv, *d_i); // d is a union, dag is the // ALGEB union field RTableAssign(kv, rtable, index, d); } } break; case BlackBoxI: { // For multi-word entry Matrices TriplesBBI* BB = (TriplesBBI*) h_i->second; VectorI Data = BB->getData(); // Setup the Create() call VectorI::const_iterator d_i; Row = BB->getRows(); Col = BB->getCols(); bound[1] = BB->rowdim(); bound[3] = BB->coldim(); rtable = kv->rtableCreate(&s, NULL, bound); // Create an empty RTable // Populate the RTable using the callback method described below for(d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++r_i, ++c_i) { index[0] = *r_i; index[1] = *c_i; // * Okay, here's how this line works. Basically, // * in order to set the entries of this RTable to // * multi-precision integers, I have to first use my own conversion // * method, LiToM, to convert the integer entry to a ALGEB structure, // * then do a callback into Maple that calls the ExToM procedure, // * which converts the results of LiToM into a Maple multi-precision // * integer. At the moment, this is the best idea I've got as to // * how to convert a GMP integer into a Maple representation in one shot. d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *d_i, blank)); RTableAssign(kv, rtable, index, d); } } break; } } } else MapleRaiseError(kv,err); return rtable; }