Esempio n. 1
0
VectorOf<Word> SGOfFreeNilpotentGroupRep::normalClosureBasis() const {

  //@ep I have found that the process is slower with the full basis,
  // so I form it from the scratch.

  MalcevSet newBasis(theGenerators, theParentGroup.collector());
  newBasis.makeNormalClosure();

  // The basis is found. Now we try to reduce it to make further
  // processing easier.

  VectorOf<Word> basis = newBasis.getCommutatorWords();

  // First, we reduce words in terms of basic commutators.
  // We could proceed without this step, but it helps
  // to reduce the second one greatly.
  
  FreeGroup F( theParentGroup.theHirschNumber() );  
  basis = F.nielsenBasis(basis);
  
  // Convert words in terms of basic commutators to group
  // generators.

  for(int i = 0; i < basis.length(); i++) {
    PolyWord pw = basis.val(i);
    basis[i] = theParentGroup.commutators().wordForm().toWord(pw);
  }

  // Now reduce this vector

  FreeGroup F1( theParentGroup.numberOfGenerators() );
  basis = F1.nielsenBasis(basis);
  

  return basis;
}
Esempio n. 2
0
// put the words to the set
MalcevSet::MalcevSet(const VectorOf<Word>& v, const NGCollector& nc)
  : isBasis(false), isNormal(dontknow), theCollector(nc)
{
  for(int i = 0; i < v.length(); i++)
    addWord( v.val(i) );
}