static void sortBlock(unsigned from, unsigned to, WillBeHeapVector<NodeSetVector>& parentMatrix, bool mayContainAttributeNodes) { // Should not call this function with less that two nodes to sort. ASSERT(from + 1 < to); unsigned minDepth = UINT_MAX; for (unsigned i = from; i < to; ++i) { unsigned depth = parentMatrix[i].size() - 1; if (minDepth > depth) minDepth = depth; } // Find the common ancestor. unsigned commonAncestorDepth = minDepth; Node* commonAncestor; while (true) { commonAncestor = parentWithDepth(commonAncestorDepth, parentMatrix[from]); if (commonAncestorDepth == 0) break; bool allEqual = true; for (unsigned i = from + 1; i < to; ++i) { if (commonAncestor != parentWithDepth(commonAncestorDepth, parentMatrix[i])) { allEqual = false; break; } } if (allEqual) break; --commonAncestorDepth; } if (commonAncestorDepth == minDepth) { // One of the nodes is the common ancestor => it is the first in // document order. Find it and move it to the beginning. for (unsigned i = from; i < to; ++i) { if (commonAncestor == parentMatrix[i][0]) { parentMatrix[i].swap(parentMatrix[from]); if (from + 2 < to) sortBlock(from + 1, to, parentMatrix, mayContainAttributeNodes); return; } } } if (mayContainAttributeNodes && commonAncestor->isElementNode()) { // The attribute nodes and namespace nodes of an element occur before // the children of the element. The namespace nodes are defined to occur // before the attribute nodes. The relative order of namespace nodes is // implementation-dependent. The relative order of attribute nodes is // implementation-dependent. unsigned sortedEnd = from; // FIXME: namespace nodes are not implemented. for (unsigned i = sortedEnd; i < to; ++i) { Node* n = parentMatrix[i][0]; if (n->isAttributeNode() && toAttr(n)->ownerElement() == commonAncestor) parentMatrix[i].swap(parentMatrix[sortedEnd++]); } if (sortedEnd != from) { if (to - sortedEnd > 1) sortBlock(sortedEnd, to, parentMatrix, mayContainAttributeNodes); return; } } // Children nodes of the common ancestor induce a subdivision of our // node-set. Sort it according to this subdivision, and recursively sort // each group. WillBeHeapHashSet<RawPtrWillBeMember<Node> > parentNodes; for (unsigned i = from; i < to; ++i) parentNodes.add(parentWithDepth(commonAncestorDepth + 1, parentMatrix[i])); unsigned previousGroupEnd = from; unsigned groupEnd = from; for (Node* n = commonAncestor->firstChild(); n; n = n->nextSibling()) { // If parentNodes contains the node, perform a linear search to move its // children in the node-set to the beginning. if (parentNodes.contains(n)) { for (unsigned i = groupEnd; i < to; ++i) { if (parentWithDepth(commonAncestorDepth + 1, parentMatrix[i]) == n) parentMatrix[i].swap(parentMatrix[groupEnd++]); } if (groupEnd - previousGroupEnd > 1) sortBlock(previousGroupEnd, groupEnd, parentMatrix, mayContainAttributeNodes); ASSERT(previousGroupEnd != groupEnd); previousGroupEnd = groupEnd; #ifndef NDEBUG parentNodes.remove(n); #endif } } ASSERT(parentNodes.isEmpty()); }
bool RadioButtonGroup::contains(HTMLInputElement* button) const { return m_members.contains(button); }
void TableSectionPainter::paintObject(const PaintInfo& paintInfo, const LayoutPoint& paintOffset) { LayoutRect localPaintInvalidationRect = paintInfo.rect; localPaintInvalidationRect.moveBy(-paintOffset); LayoutRect tableAlignedRect = m_renderTableSection.logicalRectForWritingModeAndDirection(localPaintInvalidationRect); CellSpan dirtiedRows = m_renderTableSection.dirtiedRows(tableAlignedRect); CellSpan dirtiedColumns = m_renderTableSection.dirtiedColumns(tableAlignedRect); WillBeHeapHashSet<RawPtrWillBeMember<RenderTableCell> > overflowingCells = m_renderTableSection.overflowingCells(); if (dirtiedColumns.start() < dirtiedColumns.end()) { if (!m_renderTableSection.hasMultipleCellLevels() && !overflowingCells.size()) { if (paintInfo.phase == PaintPhaseCollapsedTableBorders) { // Collapsed borders are painted from the bottom right to the top left so that precedence // due to cell position is respected. for (unsigned r = dirtiedRows.end(); r > dirtiedRows.start(); r--) { unsigned row = r - 1; for (unsigned c = dirtiedColumns.end(); c > dirtiedColumns.start(); c--) { unsigned col = c - 1; RenderTableSection::CellStruct& current = m_renderTableSection.cellAt(row, col); RenderTableCell* cell = current.primaryCell(); if (!cell || (row > dirtiedRows.start() && m_renderTableSection.primaryCellAt(row - 1, col) == cell) || (col > dirtiedColumns.start() && m_renderTableSection.primaryCellAt(row, col - 1) == cell)) continue; LayoutPoint cellPoint = m_renderTableSection.flipForWritingModeForChild(cell, paintOffset); TableCellPainter(*cell).paintCollapsedBorders(paintInfo, cellPoint); } } } else { // Draw the dirty cells in the order that they appear. for (unsigned r = dirtiedRows.start(); r < dirtiedRows.end(); r++) { RenderTableRow* row = m_renderTableSection.rowRendererAt(r); if (row && !row->hasSelfPaintingLayer()) TableRowPainter(*row).paintOutlineForRowIfNeeded(paintInfo, paintOffset); for (unsigned c = dirtiedColumns.start(); c < dirtiedColumns.end(); c++) { RenderTableSection::CellStruct& current = m_renderTableSection.cellAt(r, c); RenderTableCell* cell = current.primaryCell(); if (!cell || (r > dirtiedRows.start() && m_renderTableSection.primaryCellAt(r - 1, c) == cell) || (c > dirtiedColumns.start() && m_renderTableSection.primaryCellAt(r, c - 1) == cell)) continue; paintCell(cell, paintInfo, paintOffset); } } } } else { // The overflowing cells should be scarce to avoid adding a lot of cells to the HashSet. #if ENABLE(ASSERT) unsigned totalRows = m_renderTableSection.numRows(); unsigned totalCols = m_renderTableSection.table()->columns().size(); ASSERT(overflowingCells.size() < totalRows * totalCols * gMaxAllowedOverflowingCellRatioForFastPaintPath); #endif // To make sure we properly paint invalidate the section, we paint invalidated all the overflowing cells that we collected. Vector<RenderTableCell*> cells; copyToVector(overflowingCells, cells); HashSet<RenderTableCell*> spanningCells; for (unsigned r = dirtiedRows.start(); r < dirtiedRows.end(); r++) { RenderTableRow* row = m_renderTableSection.rowRendererAt(r); if (row && !row->hasSelfPaintingLayer()) TableRowPainter(*row).paintOutlineForRowIfNeeded(paintInfo, paintOffset); for (unsigned c = dirtiedColumns.start(); c < dirtiedColumns.end(); c++) { RenderTableSection::CellStruct& current = m_renderTableSection.cellAt(r, c); if (!current.hasCells()) continue; for (unsigned i = 0; i < current.cells.size(); ++i) { if (overflowingCells.contains(current.cells[i])) continue; if (current.cells[i]->rowSpan() > 1 || current.cells[i]->colSpan() > 1) { if (!spanningCells.add(current.cells[i]).isNewEntry) continue; } cells.append(current.cells[i]); } } } // Sort the dirty cells by paint order. if (!overflowingCells.size()) std::stable_sort(cells.begin(), cells.end(), compareCellPositions); else std::sort(cells.begin(), cells.end(), compareCellPositionsWithOverflowingCells); if (paintInfo.phase == PaintPhaseCollapsedTableBorders) { for (unsigned i = cells.size(); i > 0; --i) { LayoutPoint cellPoint = m_renderTableSection.flipForWritingModeForChild(cells[i - 1], paintOffset); TableCellPainter(*cells[i - 1]).paintCollapsedBorders(paintInfo, cellPoint); } } else { for (unsigned i = 0; i < cells.size(); ++i) paintCell(cells[i], paintInfo, paintOffset); } } } }
SMILTime SMILTimeContainer::updateAnimations(SMILTime elapsed, bool seekToTime) { SMILTime earliestFireTime = SMILTime::unresolved(); #if ENABLE(ASSERT) // This boolean will catch any attempts to schedule/unschedule scheduledAnimations during this critical section. // Similarly, any elements removed will unschedule themselves, so this will catch modification of animationsToApply. m_preventScheduledAnimationsChanges = true; #endif if (m_documentOrderIndexesDirty) updateDocumentOrderIndexes(); WillBeHeapHashSet<ElementAttributePair> invalidKeys; using AnimationsVector = WillBeHeapVector<RefPtrWillBeMember<SVGSMILElement>>; AnimationsVector animationsToApply; for (const auto& entry : m_scheduledAnimations) { if (!entry.key.first || entry.value->isEmpty()) { invalidKeys.add(entry.key); continue; } AnimationsLinkedHashSet* scheduled = entry.value.get(); // Sort according to priority. Elements with later begin time have higher priority. // In case of a tie, document order decides. // FIXME: This should also consider timing relationships between the elements. Dependents // have higher priority. AnimationsVector scheduledAnimations; copyToVector(*scheduled, scheduledAnimations); std::sort(scheduledAnimations.begin(), scheduledAnimations.end(), PriorityCompare(elapsed)); SVGSMILElement* resultElement = nullptr; for (const auto& itAnimation : scheduledAnimations) { SVGSMILElement* animation = itAnimation.get(); ASSERT(animation->timeContainer() == this); ASSERT(animation->targetElement()); ASSERT(animation->hasValidAttributeName()); // Results are accumulated to the first animation that animates and contributes to a particular element/attribute pair. // FIXME: we should ensure that resultElement is of an appropriate type. if (!resultElement) { if (!animation->hasValidAttributeType()) continue; resultElement = animation; } // This will calculate the contribution from the animation and add it to the resultsElement. if (!animation->progress(elapsed, resultElement, seekToTime) && resultElement == animation) resultElement = nullptr; SMILTime nextFireTime = animation->nextProgressTime(); if (nextFireTime.isFinite()) earliestFireTime = std::min(nextFireTime, earliestFireTime); } if (resultElement) animationsToApply.append(resultElement); } m_scheduledAnimations.removeAll(invalidKeys); std::sort(animationsToApply.begin(), animationsToApply.end(), PriorityCompare(elapsed)); unsigned animationsToApplySize = animationsToApply.size(); if (!animationsToApplySize) { #if ENABLE(ASSERT) m_preventScheduledAnimationsChanges = false; #endif return earliestFireTime; } // Apply results to target elements. for (unsigned i = 0; i < animationsToApplySize; ++i) animationsToApply[i]->applyResultsToTarget(); #if ENABLE(ASSERT) m_preventScheduledAnimationsChanges = false; #endif for (unsigned i = 0; i < animationsToApplySize; ++i) { if (animationsToApply[i]->inDocument() && animationsToApply[i]->isSVGDiscardElement()) { RefPtrWillBeRawPtr<SVGSMILElement> animDiscard = animationsToApply[i]; RefPtrWillBeRawPtr<SVGElement> targetElement = animDiscard->targetElement(); if (targetElement && targetElement->inDocument()) { targetElement->remove(IGNORE_EXCEPTION); ASSERT(!targetElement->inDocument()); } if (animDiscard->inDocument()) { animDiscard->remove(IGNORE_EXCEPTION); ASSERT(!animDiscard->inDocument()); } } } return earliestFireTime; }