void boolbvt::convert_constant(const constant_exprt &expr, bvt &bv) { unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); bv.resize(width); const typet &expr_type=expr.type(); if(expr_type.id()==ID_array) { unsigned op_width=width/expr.operands().size(); unsigned offset=0; forall_operands(it, expr) { const bvt &tmp=convert_bv(*it); if(tmp.size()!=op_width) throw "convert_constant: unexpected operand width"; for(unsigned j=0; j<op_width; j++) bv[offset+j]=tmp[j]; offset+=op_width; } return; }
void boolbvt::convert_replication(const exprt &expr, bvt &bv) { unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); if(expr.operands().size()!=2) throw "replication takes two operands"; mp_integer times; if(to_integer(expr.op0(), times)) throw "replication takes constant as first parameter"; const unsigned u_times=integer2unsigned(times); const bvt &op=convert_bv(expr.op1()); unsigned offset=0; bv.resize(width); for(unsigned i=0; i<u_times; i++) { if(op.size()+offset>width) throw "replication operand width too big"; for(unsigned i=0; i<op.size(); i++) bv[i+offset]=op[i]; offset+=op.size(); } if(offset!=bv.size()) throw "replication operand width too small"; }
void boolbvt::convert_concatenation(const exprt &expr, bvt &bv) { unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); const exprt::operandst &operands=expr.operands(); if(operands.size()==0) throw "concatenation takes at least one operand"; unsigned offset=width; bv.resize(width); forall_expr(it, operands) { const bvt &op=convert_bv(*it); if(op.size()>offset) throw "concatenation operand width too big"; offset-=op.size(); for(unsigned i=0; i<op.size(); i++) bv[offset+i]=op[i]; } if(offset!=0) throw "concatenation operand width too small"; }
void boolbvt::convert_index( const exprt &array, const mp_integer &index, bvt &bv) { const array_typet &array_type= to_array_type(ns.follow(array.type())); unsigned width=boolbv_width(array_type.subtype()); if(width==0) return conversion_failed(array, bv); bv.resize(width); const bvt &tmp=convert_bv(array); // recursive call mp_integer offset=index*width; if(offset>=0 && offset+width<=mp_integer(tmp.size())) { // in bounds for(unsigned i=0; i<width; i++) bv[i]=tmp[integer2long(offset+i)]; } else { // out of bounds for(unsigned i=0; i<width; i++) bv[i]=prop.new_variable(); } }
void boolbvt::convert_with( const typet &type, const exprt &op1, const exprt &op2, const bvt &prev_bv, bvt &next_bv) { // we only do that on arrays, bitvectors, structs, and unions next_bv.resize(prev_bv.size()); if(type.id()==ID_array) return convert_with_array(to_array_type(type), op1, op2, prev_bv, next_bv); else if(type.id()==ID_bv || type.id()==ID_unsignedbv || type.id()==ID_signedbv) return convert_with_bv(type, op1, op2, prev_bv, next_bv); else if(type.id()==ID_struct) return convert_with_struct(to_struct_type(type), op1, op2, prev_bv, next_bv); else if(type.id()==ID_union) return convert_with_union(to_union_type(type), op1, op2, prev_bv, next_bv); else if(type.id()==ID_symbol) return convert_with(ns.follow(type), op1, op2, prev_bv, next_bv); error().source_location=type.source_location(); error() << "unexpected with type: " << type.id(); throw 0; }
void boolbvt::convert_cond(const exprt &expr, bvt &bv) { const exprt::operandst &operands=expr.operands(); unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); bv.resize(width); // make it free variables Forall_literals(it, bv) *it=prop.new_variable(); if(operands.size()<2) throw "cond takes at least two operands"; if((operands.size()%2)!=0) throw "number of cond operands must be even"; if(prop.has_set_to()) { bool condition=true; literalt previous_cond=const_literal(false); literalt cond_literal=const_literal(false); forall_operands(it, expr) { if(condition) { cond_literal=convert(*it); cond_literal=prop.land(prop.lnot(previous_cond), cond_literal); previous_cond=prop.lor(previous_cond, cond_literal); } else { const bvt &op=convert_bv(*it); if(bv.size()!=op.size()) { std::cerr << "result size: " << bv.size() << std::endl << "operand: " << op.size() << std::endl << it->pretty() << std::endl; throw "size of value operand does not match"; } literalt value_literal=bv_utils.equal(bv, op); prop.l_set_to_true(prop.limplies(cond_literal, value_literal)); } condition=!condition; } }
void boolbvt::convert_union(const exprt &expr, bvt &bv) { unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); if(expr.operands().size()!=1) throw "union expects one argument"; const bvt &op_bv=convert_bv(expr.op0()); if(width<op_bv.size()) throw "union: unexpected operand op width"; bv.resize(width); for(unsigned i=0; i<op_bv.size(); i++) bv[i]=op_bv[i]; // pad with nondets for(unsigned i=op_bv.size(); i<bv.size(); i++) bv[i]=prop.new_variable(); }
void boolbvt::convert_mult(const exprt &expr, bvt &bv) { unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); bv.resize(width); const exprt::operandst &operands=expr.operands(); if(operands.size()==0) throw "mult without operands"; const exprt &op0=expr.op0(); bool no_overflow=expr.id()=="no-overflow-mult"; if(expr.type().id()==ID_fixedbv) { if(op0.type()!=expr.type()) throw "multiplication with mixed types"; bv=convert_bv(op0); if(bv.size()!=width) throw "convert_mult: unexpected operand width"; unsigned fraction_bits= to_fixedbv_type(expr.type()).get_fraction_bits(); // do a sign extension by fraction_bits bits bv=bv_utils.sign_extension(bv, bv.size()+fraction_bits); for(exprt::operandst::const_iterator it=operands.begin()+1; it!=operands.end(); it++) { if(it->type()!=expr.type()) throw "multiplication with mixed types"; bvt op=convert_bv(*it); if(op.size()!=width) throw "convert_mult: unexpected operand width"; op=bv_utils.sign_extension(op, bv.size()); bv=bv_utils.signed_multiplier(bv, op); } // cut it down again bv.erase(bv.begin(), bv.begin()+fraction_bits); return; } else if(expr.type().id()==ID_floatbv) { if(op0.type()!=expr.type()) throw "multiplication with mixed types"; bv=convert_bv(op0); if(bv.size()!=width) throw "convert_mult: unexpected operand width"; float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(expr.type()); for(exprt::operandst::const_iterator it=operands.begin()+1; it!=operands.end(); it++) { if(it->type()!=expr.type()) throw "multiplication with mixed types"; const bvt &op=convert_bv(*it); if(op.size()!=width) throw "convert_mult: unexpected operand width"; bv=float_utils.mul(bv, op); } return; } else if(expr.type().id()==ID_unsignedbv || expr.type().id()==ID_signedbv) { if(op0.type()!=expr.type()) throw "multiplication with mixed types"; bv_utilst::representationt rep= expr.type().id()==ID_signedbv?bv_utilst::SIGNED: bv_utilst::UNSIGNED; bv=convert_bv(op0); if(bv.size()!=width) throw "convert_mult: unexpected operand width"; for(exprt::operandst::const_iterator it=operands.begin()+1; it!=operands.end(); it++) { if(it->type()!=expr.type()) throw "multiplication with mixed types"; const bvt &op=convert_bv(*it); if(op.size()!=width) throw "convert_mult: unexpected operand width"; if(no_overflow) bv=bv_utils.multiplier_no_overflow(bv, op, rep); else bv=bv_utils.multiplier(bv, op, rep); } return; } conversion_failed(expr, bv); }
void boolbvt::convert_add_sub(const exprt &expr, bvt &bv) { const typet &type=ns.follow(expr.type()); if(type.id()!=ID_unsignedbv && type.id()!=ID_signedbv && type.id()!=ID_fixedbv && type.id()!=ID_floatbv && type.id()!=ID_range && type.id()!=ID_vector) return conversion_failed(expr, bv); unsigned width=boolbv_width(type); if(width==0) return conversion_failed(expr, bv); const exprt::operandst &operands=expr.operands(); if(operands.size()==0) throw "operand "+expr.id_string()+" takes at least one operand"; const exprt &op0=expr.op0(); if(op0.type()!=type) { std::cerr << expr.pretty() << std::endl; throw "add/sub with mixed types"; } convert_bv(op0, bv); if(bv.size()!=width) throw "convert_add_sub: unexpected operand 0 width"; bool subtract=(expr.id()==ID_minus || expr.id()=="no-overflow-minus"); bool no_overflow=(expr.id()=="no-overflow-plus" || expr.id()=="no-overflow-minus"); typet arithmetic_type= (type.id()==ID_vector)?ns.follow(type.subtype()):type; bv_utilst::representationt rep= (arithmetic_type.id()==ID_signedbv || arithmetic_type.id()==ID_fixedbv)?bv_utilst::SIGNED: bv_utilst::UNSIGNED; for(exprt::operandst::const_iterator it=operands.begin()+1; it!=operands.end(); it++) { if(it->type()!=type) { std::cerr << expr.pretty() << std::endl; throw "add/sub with mixed types"; } bvt op; convert_bv(*it, op); if(op.size()!=width) throw "convert_add_sub: unexpected operand width"; if(type.id()==ID_vector) { const typet &subtype=ns.follow(type.subtype()); unsigned sub_width=boolbv_width(subtype); if(sub_width==0 || width%sub_width!=0) throw "convert_add_sub: unexpected vector operand width"; unsigned size=width/sub_width; bv.resize(width); for(unsigned i=0; i<size; i++) { bvt tmp_op; tmp_op.resize(sub_width); for(unsigned j=0; j<tmp_op.size(); j++) { assert(i*sub_width+j<op.size()); tmp_op[j]=op[i*sub_width+j]; } bvt tmp_result; tmp_result.resize(sub_width); for(unsigned j=0; j<tmp_result.size(); j++) { assert(i*sub_width+j<bv.size()); tmp_result[j]=bv[i*sub_width+j]; } if(type.subtype().id()==ID_floatbv) { #ifdef HAVE_FLOATBV float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(subtype); tmp_result=float_utils.add_sub(tmp_result, tmp_op, subtract); #else return conversion_failed(expr, bv); #endif } else tmp_result=bv_utils.add_sub(tmp_result, tmp_op, subtract); assert(tmp_result.size()==sub_width); for(unsigned j=0; j<tmp_result.size(); j++) { assert(i*sub_width+j<bv.size()); bv[i*sub_width+j]=tmp_result[j]; } } } else if(type.id()==ID_floatbv) { #ifdef HAVE_FLOATBV float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(arithmetic_type); bv=float_utils.add_sub(bv, op, subtract); #else return conversion_failed(expr, bv); #endif } else if(no_overflow) bv=bv_utils.add_sub_no_overflow(bv, op, subtract, rep); else bv=bv_utils.add_sub(bv, op, subtract); } }
bool boolbvt::type_conversion( const typet &src_type, const bvt &src, const typet &dest_type, bvt &dest) { bvtypet dest_bvtype=get_bvtype(dest_type); bvtypet src_bvtype=get_bvtype(src_type); if(src_bvtype==IS_C_BIT_FIELD) return type_conversion( c_bit_field_replacement_type(to_c_bit_field_type(src_type), ns), src, dest_type, dest); if(dest_bvtype==IS_C_BIT_FIELD) return type_conversion( src_type, src, c_bit_field_replacement_type(to_c_bit_field_type(dest_type), ns), dest); std::size_t src_width=src.size(); std::size_t dest_width=boolbv_width(dest_type); if(dest_width==0 || src_width==0) return true; dest.clear(); dest.reserve(dest_width); if(dest_type.id()==ID_complex) { if(src_type==dest_type.subtype()) { forall_literals(it, src) dest.push_back(*it); // pad with zeros for(std::size_t i=src.size(); i<dest_width; i++) dest.push_back(const_literal(false)); return false; } else if(src_type.id()==ID_complex) { // recursively do both halfs bvt lower, upper, lower_res, upper_res; lower.assign(src.begin(), src.begin()+src.size()/2); upper.assign(src.begin()+src.size()/2, src.end()); type_conversion(ns.follow(src_type.subtype()), lower, ns.follow(dest_type.subtype()), lower_res); type_conversion(ns.follow(src_type.subtype()), upper, ns.follow(dest_type.subtype()), upper_res); assert(lower_res.size()+upper_res.size()==dest_width); dest=lower_res; dest.insert(dest.end(), upper_res.begin(), upper_res.end()); return false; } } if(src_type.id()==ID_complex) { assert(dest_type.id()!=ID_complex); if(dest_type.id()==ID_signedbv || dest_type.id()==ID_unsignedbv || dest_type.id()==ID_floatbv || dest_type.id()==ID_fixedbv || dest_type.id()==ID_c_enum || dest_type.id()==ID_c_enum_tag || dest_type.id()==ID_bool) { // A cast from complex x to real T // is (T) __real__ x. bvt tmp_src(src); tmp_src.resize(src.size()/2); // cut off imag part return type_conversion(src_type.subtype(), tmp_src, dest_type, dest); } } switch(dest_bvtype) { case IS_RANGE: if(src_bvtype==IS_UNSIGNED || src_bvtype==IS_SIGNED || src_bvtype==IS_C_BOOL) { mp_integer dest_from=to_range_type(dest_type).get_from(); if(dest_from==0) { // do zero extension dest.resize(dest_width); for(std::size_t i=0; i<dest.size(); i++) dest[i]=(i<src.size()?src[i]:const_literal(false)); return false; } } else if(src_bvtype==IS_RANGE) // range to range { mp_integer src_from=to_range_type(src_type).get_from(); mp_integer dest_from=to_range_type(dest_type).get_from(); if(dest_from==src_from) { // do zero extension, if needed dest=bv_utils.zero_extension(src, dest_width); return false; } else { // need to do arithmetic: add src_from-dest_from mp_integer offset=src_from-dest_from; dest= bv_utils.add( bv_utils.zero_extension(src, dest_width), bv_utils.build_constant(offset, dest_width)); } return false; } break; case IS_FLOAT: // to float { float_utilst float_utils(prop); switch(src_bvtype) { case IS_FLOAT: // float to float // we don't have a rounding mode here, // which is why we refuse. break; case IS_SIGNED: // signed to float case IS_C_ENUM: float_utils.spec=to_floatbv_type(dest_type); dest=float_utils.from_signed_integer(src); return false; case IS_UNSIGNED: // unsigned to float case IS_C_BOOL: // _Bool to float float_utils.spec=to_floatbv_type(dest_type); dest=float_utils.from_unsigned_integer(src); return false; case IS_BV: assert(src_width==dest_width); dest=src; return false; default: if(src_type.id()==ID_bool) { // bool to float // build a one ieee_floatt f; f.spec=to_floatbv_type(dest_type); f.from_integer(1); dest=convert_bv(f.to_expr()); assert(src_width==1); Forall_literals(it, dest) *it=prop.land(*it, src[0]); return false; } } } break; case IS_FIXED: if(src_bvtype==IS_FIXED) { // fixed to fixed std::size_t dest_fraction_bits=to_fixedbv_type(dest_type).get_fraction_bits(), dest_int_bits=dest_width-dest_fraction_bits; std::size_t op_fraction_bits=to_fixedbv_type(src_type).get_fraction_bits(), op_int_bits=src_width-op_fraction_bits; dest.resize(dest_width); // i == position after dot // i == 0: first position after dot for(std::size_t i=0; i<dest_fraction_bits; i++) { // position in bv std::size_t p=dest_fraction_bits-i-1; if(i<op_fraction_bits) dest[p]=src[op_fraction_bits-i-1]; else dest[p]=const_literal(false); // zero padding } for(std::size_t i=0; i<dest_int_bits; i++) { // position in bv std::size_t p=dest_fraction_bits+i; assert(p<dest_width); if(i<op_int_bits) dest[p]=src[i+op_fraction_bits]; else dest[p]=src[src_width-1]; // sign extension } return false; } else if(src_bvtype==IS_BV) { assert(src_width==dest_width); dest=src; return false; } else if(src_bvtype==IS_UNSIGNED || src_bvtype==IS_SIGNED || src_bvtype==IS_C_BOOL || src_bvtype==IS_C_ENUM) { // integer to fixed std::size_t dest_fraction_bits= to_fixedbv_type(dest_type).get_fraction_bits(); for(std::size_t i=0; i<dest_fraction_bits; i++) dest.push_back(const_literal(false)); // zero padding for(std::size_t i=0; i<dest_width-dest_fraction_bits; i++) { literalt l; if(i<src_width) l=src[i]; else { if(src_bvtype==IS_SIGNED || src_bvtype==IS_C_ENUM) l=src[src_width-1]; // sign extension else l=const_literal(false); // zero extension } dest.push_back(l); } return false; } else if(src_type.id()==ID_bool) { // bool to fixed std::size_t fraction_bits= to_fixedbv_type(dest_type).get_fraction_bits(); assert(src_width==1); for(std::size_t i=0; i<dest_width; i++) { if(i==fraction_bits) dest.push_back(src[0]); else dest.push_back(const_literal(false)); } return false; } break; case IS_UNSIGNED: case IS_SIGNED: case IS_C_ENUM: switch(src_bvtype) { case IS_FLOAT: // float to integer // we don't have a rounding mode here, // which is why we refuse. break; case IS_FIXED: // fixed to integer { std::size_t op_fraction_bits= to_fixedbv_type(src_type).get_fraction_bits(); for(std::size_t i=0; i<dest_width; i++) { if(i<src_width-op_fraction_bits) dest.push_back(src[i+op_fraction_bits]); else { if(dest_bvtype==IS_SIGNED) dest.push_back(src[src_width-1]); // sign extension else dest.push_back(const_literal(false)); // zero extension } } // we might need to round up in case of negative numbers // e.g., (int)(-1.00001)==1 bvt fraction_bits_bv=src; fraction_bits_bv.resize(op_fraction_bits); literalt round_up= prop.land(prop.lor(fraction_bits_bv), src.back()); dest=bv_utils.incrementer(dest, round_up); return false; } case IS_UNSIGNED: // integer to integer case IS_SIGNED: case IS_C_ENUM: case IS_C_BOOL: { // We do sign extension for any source type // that is signed, independently of the // destination type. // E.g., ((short)(ulong)(short)-1)==-1 bool sign_extension= src_bvtype==IS_SIGNED || src_bvtype==IS_C_ENUM; for(std::size_t i=0; i<dest_width; i++) { if(i<src_width) dest.push_back(src[i]); else if(sign_extension) dest.push_back(src[src_width-1]); // sign extension else dest.push_back(const_literal(false)); } return false; } case IS_VERILOG_UNSIGNED: // verilog_unsignedbv to signed/unsigned/enum { for(std::size_t i=0; i<dest_width; i++) { std::size_t src_index=i*2; // we take every second bit if(src_index<src_width) dest.push_back(src[src_index]); else // always zero-extend dest.push_back(const_literal(false)); } return false; } break; case IS_VERILOG_SIGNED: // verilog_signedbv to signed/unsigned/enum { for(std::size_t i=0; i<dest_width; i++) { std::size_t src_index=i*2; // we take every second bit if(src_index<src_width) dest.push_back(src[src_index]); else // always sign-extend dest.push_back(src.back()); } return false; } break; default: if(src_type.id()==ID_bool) { // bool to integer assert(src_width==1); for(std::size_t i=0; i<dest_width; i++) { if(i==0) dest.push_back(src[0]); else dest.push_back(const_literal(false)); } return false; } } break; case IS_VERILOG_UNSIGNED: if(src_bvtype==IS_UNSIGNED || src_bvtype==IS_C_BOOL || src_type.id()==ID_bool) { for(std::size_t i=0, j=0; i<dest_width; i+=2, j++) { if(j<src_width) dest.push_back(src[j]); else dest.push_back(const_literal(false)); dest.push_back(const_literal(false)); } return false; } else if(src_bvtype==IS_SIGNED) { for(std::size_t i=0, j=0; i<dest_width; i+=2, j++) { if(j<src_width) dest.push_back(src[j]); else dest.push_back(src.back()); dest.push_back(const_literal(false)); } return false; } else if(src_bvtype==IS_VERILOG_UNSIGNED) { // verilog_unsignedbv to verilog_unsignedbv dest=src; if(dest_width<src_width) dest.resize(dest_width); else { dest=src; while(dest.size()<dest_width) { dest.push_back(const_literal(false)); dest.push_back(const_literal(false)); } } return false; } break; case IS_BV: assert(src_width==dest_width); dest=src; return false; case IS_C_BOOL: dest.resize(dest_width, const_literal(false)); if(src_bvtype==IS_FLOAT) { float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(src_type); dest[0]=!float_utils.is_zero(src); } else if(src_bvtype==IS_C_BOOL) dest[0]=src[0]; else dest[0]=!bv_utils.is_zero(src); return false; default: if(dest_type.id()==ID_array) { if(src_width==dest_width) { dest=src; return false; } } else if(dest_type.id()==ID_struct) { const struct_typet &dest_struct = to_struct_type(dest_type); if(src_type.id()==ID_struct) { // we do subsets dest.resize(dest_width, const_literal(false)); const struct_typet &op_struct = to_struct_type(src_type); const struct_typet::componentst &dest_comp= dest_struct.components(); const struct_typet::componentst &op_comp= op_struct.components(); // build offset maps offset_mapt op_offsets, dest_offsets; build_offset_map(op_struct, op_offsets); build_offset_map(dest_struct, dest_offsets); // build name map typedef std::map<irep_idt, unsigned> op_mapt; op_mapt op_map; for(std::size_t i=0; i<op_comp.size(); i++) op_map[op_comp[i].get_name()]=i; // now gather required fields for(std::size_t i=0; i<dest_comp.size(); i++) { std::size_t offset=dest_offsets[i]; std::size_t comp_width=boolbv_width(dest_comp[i].type()); if(comp_width==0) continue; op_mapt::const_iterator it= op_map.find(dest_comp[i].get_name()); if(it==op_map.end()) { // not found // filling with free variables for(std::size_t j=0; j<comp_width; j++) dest[offset+j]=prop.new_variable(); } else { // found if(dest_comp[i].type()!=dest_comp[it->second].type()) { // filling with free variables for(std::size_t j=0; j<comp_width; j++) dest[offset+j]=prop.new_variable(); } else { std::size_t op_offset=op_offsets[it->second]; for(std::size_t j=0; j<comp_width; j++) dest[offset+j]=src[op_offset+j]; } } } return false; } } } return true; }
void boolbvt::convert_unary_minus(const exprt &expr, bvt &bv) { const typet &type=ns.follow(expr.type()); unsigned width=boolbv_width(type); if(width==0) return conversion_failed(expr, bv); const exprt::operandst &operands=expr.operands(); if(operands.size()!=1) throw "unary minus takes one operand"; const exprt &op0=expr.op0(); const bvt &op_bv=convert_bv(op0); bvtypet bvtype=get_bvtype(type); bvtypet op_bvtype=get_bvtype(op0.type()); unsigned op_width=op_bv.size(); bool no_overflow=(expr.id()=="no-overflow-unary-minus"); if(op_width==0 || op_width!=width) return conversion_failed(expr, bv); if(bvtype==IS_UNKNOWN && (type.id()==ID_vector || type.id()==ID_complex)) { const typet &subtype=ns.follow(type.subtype()); unsigned sub_width=boolbv_width(subtype); if(sub_width==0 || width%sub_width!=0) throw "unary-: unexpected vector operand width"; unsigned size=width/sub_width; bv.resize(width); for(unsigned i=0; i<size; i++) { bvt tmp_op; tmp_op.resize(sub_width); for(unsigned j=0; j<tmp_op.size(); j++) { assert(i*sub_width+j<op_bv.size()); tmp_op[j]=op_bv[i*sub_width+j]; } bvt tmp_result; if(type.subtype().id()==ID_floatbv) { float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(subtype); tmp_result=float_utils.negate(tmp_op); } else tmp_result=bv_utils.negate(tmp_op); assert(tmp_result.size()==sub_width); for(unsigned j=0; j<tmp_result.size(); j++) { assert(i*sub_width+j<bv.size()); bv[i*sub_width+j]=tmp_result[j]; } } return; } else if(bvtype==IS_FIXED && op_bvtype==IS_FIXED) { if(no_overflow) bv=bv_utils.negate_no_overflow(op_bv); else bv=bv_utils.negate(op_bv); return; } else if(bvtype==IS_FLOAT && op_bvtype==IS_FLOAT) { assert(!no_overflow); float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(expr.type()); bv=float_utils.negate(op_bv); return; } else if((op_bvtype==IS_SIGNED || op_bvtype==IS_UNSIGNED) && (bvtype==IS_SIGNED || bvtype==IS_UNSIGNED)) { if(no_overflow) prop.l_set_to(bv_utils.overflow_negate(op_bv), false); if(no_overflow) bv=bv_utils.negate_no_overflow(op_bv); else bv=bv_utils.negate(op_bv); return; } conversion_failed(expr, bv); }
void boolbvt::convert_floatbv_op(const exprt &expr, bvt &bv) { const exprt::operandst &operands=expr.operands(); if(operands.size()!=3) throw "operator "+expr.id_string()+" takes three operands"; const exprt &op0=expr.op0(); // first operand const exprt &op1=expr.op1(); // second operand const exprt &op2=expr.op2(); // rounding mode bvt bv0=convert_bv(op0); bvt bv1=convert_bv(op1); bvt bv2=convert_bv(op2); const typet &type=ns.follow(expr.type()); if(op0.type()!=type || op1.type()!=type) { std::cerr << expr.pretty() << std::endl; throw "float op with mixed types"; } float_utilst float_utils(prop); float_utils.set_rounding_mode(bv2); if(type.id()==ID_floatbv) { float_utils.spec=to_floatbv_type(expr.type()); if(expr.id()==ID_floatbv_plus) bv=float_utils.add_sub(bv0, bv1, false); else if(expr.id()==ID_floatbv_minus) bv=float_utils.add_sub(bv0, bv1, true); else if(expr.id()==ID_floatbv_mult) bv=float_utils.mul(bv0, bv1); else if(expr.id()==ID_floatbv_div) bv=float_utils.div(bv0, bv1); else if(expr.id()==ID_floatbv_rem) bv=float_utils.rem(bv0, bv1); else assert(false); } else if(type.id()==ID_vector || type.id()==ID_complex) { const typet &subtype=ns.follow(type.subtype()); if(subtype.id()==ID_floatbv) { float_utils.spec=to_floatbv_type(subtype); std::size_t width=boolbv_width(type); std::size_t sub_width=boolbv_width(subtype); if(sub_width==0 || width%sub_width!=0) throw "convert_floatbv_op: unexpected vector operand width"; std::size_t size=width/sub_width; bv.resize(width); for(std::size_t i=0; i<size; i++) { bvt tmp_bv0, tmp_bv1, tmp_bv; tmp_bv0.assign(bv0.begin()+i*sub_width, bv0.begin()+(i+1)*sub_width); tmp_bv1.assign(bv1.begin()+i*sub_width, bv1.begin()+(i+1)*sub_width); if(expr.id()==ID_floatbv_plus) tmp_bv=float_utils.add_sub(tmp_bv0, tmp_bv1, false); else if(expr.id()==ID_floatbv_minus) tmp_bv=float_utils.add_sub(tmp_bv0, tmp_bv1, true); else if(expr.id()==ID_floatbv_mult) tmp_bv=float_utils.mul(tmp_bv0, tmp_bv1); else if(expr.id()==ID_floatbv_div) tmp_bv=float_utils.div(tmp_bv0, tmp_bv1); else assert(false); assert(tmp_bv.size()==sub_width); assert(i*sub_width+sub_width-1<bv.size()); std::copy(tmp_bv.begin(), tmp_bv.end(), bv.begin()+i*sub_width); } } else return conversion_failed(expr, bv); } else return conversion_failed(expr, bv); }
void boolbvt::convert_bitwise(const exprt &expr, bvt &bv) { unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); if(expr.id()==ID_bitnot) { if(expr.operands().size()!=1) throw "bitnot takes one operand"; const exprt &op0=expr.op0(); const bvt &op_bv=convert_bv(op0); if(op_bv.size()!=width) throw "convert_bitwise: unexpected operand width"; bv=bv_utils.inverted(op_bv); return; } else if(expr.id()==ID_bitand || expr.id()==ID_bitor || expr.id()==ID_bitxor || expr.id()==ID_bitnand || expr.id()==ID_bitnor || expr.id()==ID_bitxnor) { bv.resize(width); forall_operands(it, expr) { const bvt &op=convert_bv(*it); if(op.size()!=width) throw "convert_bitwise: unexpected operand width"; if(it==expr.operands().begin()) bv=op; else { for(unsigned i=0; i<width; i++) { if(expr.id()==ID_bitand) bv[i]=prop.land(bv[i], op[i]); else if(expr.id()==ID_bitor) bv[i]=prop.lor(bv[i], op[i]); else if(expr.id()==ID_bitxor) bv[i]=prop.lxor(bv[i], op[i]); else if(expr.id()==ID_bitnand) bv[i]=prop.lnand(bv[i], op[i]); else if(expr.id()==ID_bitnor) bv[i]=prop.lnor(bv[i], op[i]); else if(expr.id()==ID_bitxnor) bv[i]=prop.lequal(bv[i], op[i]); else throw "unexpected operand"; } } } return; }
void boolbvt::convert_member(const member_exprt &expr, bvt &bv) { const exprt &struct_op=expr.struct_op(); const typet &struct_op_type=ns.follow(struct_op.type()); const bvt &struct_bv=convert_bv(struct_op); if(struct_op_type.id()==ID_union) { bv=convert_bv( byte_extract_exprt(byte_extract_id(), struct_op, gen_zero(integer_typet()), expr.type())); return; } else if(struct_op_type.id()==ID_struct) { const irep_idt &component_name=expr.get_component_name(); const struct_typet::componentst &components= to_struct_type(struct_op_type).components(); unsigned offset=0; for(struct_typet::componentst::const_iterator it=components.begin(); it!=components.end(); it++) { const typet &subtype=it->type(); unsigned sub_width=boolbv_width(subtype); if(it->get_name()==component_name) { if(!base_type_eq(subtype, expr.type(), ns)) { #if 0 std::cout << "DEBUG " << expr.pretty() << "\n"; #endif throw "member: component type does not match: "+ subtype.to_string()+" vs. "+ expr.type().to_string(); } bv.resize(sub_width); assert(offset+sub_width<=struct_bv.size()); for(unsigned i=0; i<sub_width; i++) bv[i]=struct_bv[offset+i]; return; } offset+=sub_width; } throw "component "+id2string(component_name)+" not found in structure"; } else throw "member takes struct or union operand"; }
void boolbvt::convert_case(const exprt &expr, bvt &bv) { const std::vector<exprt> &operands=expr.operands(); unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); bv.resize(width); // make it free variables Forall_literals(it, bv) *it=prop.new_variable(); if(operands.size()<3) throw "case takes at least three operands"; if((operands.size()%2)!=1) throw "number of case operands must be odd"; enum { FIRST, COMPARE, VALUE } what=FIRST; bvt compare_bv; literalt previous_compare=const_literal(false); literalt compare_literal=const_literal(false); forall_operands(it, expr) { bvt op=convert_bv(*it); switch(what) { case FIRST: compare_bv.swap(op); what=COMPARE; break; case COMPARE: if(compare_bv.size()!=op.size()) { std::cerr << "compare operand: " << compare_bv.size() << std::endl << "operand: " << op.size() << std::endl << it->pretty() << std::endl; throw "size of compare operand does not match"; } compare_literal=bv_utils.equal(compare_bv, op); compare_literal=prop.land(prop.lnot(previous_compare), compare_literal); previous_compare=prop.lor(previous_compare, compare_literal); what=VALUE; break; case VALUE: if(bv.size()!=op.size()) { std::cerr << "result size: " << bv.size() << std::endl << "operand: " << op.size() << std::endl << it->pretty() << std::endl; throw "size of value operand does not match"; } { literalt value_literal=bv_utils.equal(bv, op); prop.l_set_to_true( prop.limplies(compare_literal, value_literal)); } what=COMPARE; break; default: assert(false); } }
void boolbvt::convert_index(const index_exprt &expr, bvt &bv) { if(expr.id()!=ID_index) throw "expected index expression"; if(expr.operands().size()!=2) throw "index takes two operands"; const exprt &array=expr.array(); const exprt &index=expr.index(); const array_typet &array_type= to_array_type(ns.follow(array.type())); // see if the array size is constant if(is_unbounded_array(array_type)) { // use array decision procedure unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); // free variables bv.resize(width); for(unsigned i=0; i<width; i++) bv[i]=prop.new_variable(); record_array_index(expr); // record type if array is a symbol if(array.id()==ID_symbol) map.get_map_entry( to_symbol_expr(array).get_identifier(), array_type); // make sure we have the index in the cache convert_bv(index); return; } // see if the index address is constant mp_integer index_value; if(!to_integer(index, index_value)) return convert_index(array, index_value, bv); unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); mp_integer array_size; if(to_integer(array_type.size(), array_size)) { std::cout << to_array_type(array.type()).size().pretty() << std::endl; throw "failed to convert array size"; } // get literals for the whole array const bvt &array_bv=convert_bv(array); if(array_size*width!=array_bv.size()) throw "unexpected array size"; // TODO: maybe a shifter-like construction would be better if(prop.has_set_to()) { // free variables bv.resize(width); for(unsigned i=0; i<width; i++) bv[i]=prop.new_variable(); // add implications equal_exprt index_equality; index_equality.lhs()=index; // index operand bvt equal_bv; equal_bv.resize(width); for(mp_integer i=0; i<array_size; i=i+1) { index_equality.rhs()=from_integer(i, index_equality.lhs().type()); if(index_equality.rhs().is_nil()) throw "number conversion failed (1)"; mp_integer offset=i*width; for(unsigned j=0; j<width; j++) equal_bv[j]=prop.lequal(bv[j], array_bv[integer2long(offset+j)]); prop.l_set_to_true( prop.limplies(convert(index_equality), prop.land(equal_bv))); } } else { bv.resize(width); equal_exprt equality; equality.lhs()=index; // index operand typet constant_type=index.type(); // type of index operand assert(array_size>0); for(mp_integer i=0; i<array_size; i=i+1) { equality.op1()=from_integer(i, constant_type); literalt e=convert(equality); mp_integer offset=i*width; for(unsigned j=0; j<width; j++) { literalt l=array_bv[integer2long(offset+j)]; if(i==0) // this initializes bv bv[j]=l; else bv[j]=prop.lselect(e, l, bv[j]); } } } }