/// Returns the original version of the decision variables ready to be fed /// to the original problem decision_vector rotated::derotate(const decision_vector& x_normed) const { // This may be outside of the original domain, due to the // relaxed variable bounds after rotation -- project it back if so. // 1. De-rotate the vector in the normalized space Eigen::VectorXd x_normed_vec = Eigen::VectorXd::Zero(x_normed.size()); Eigen::VectorXd x_derotated_vec; for(base::size_type i = 0; i < x_normed.size(); i++){ x_normed_vec(i) = x_normed[i]; } x_derotated_vec = m_InvRotate * x_normed_vec; // 2. De-normalize the de-rotated vector to the original bounds decision_vector x_derotated(x_normed.size(), 0); for(base::size_type i = 0; i < x_normed.size(); i++){ x_derotated[i] = x_derotated_vec(i); } decision_vector x_wild = denormalize_to_original(x_derotated); // 3. The de-normalized vector may be out of bounds, if so project back in decision_vector x = projection_via_clipping(x_wild); return x; }
/// Apply noise on the decision vector based on rho void robust::inject_noise_x(decision_vector &x) const { // We follow the algorithm at // http://math.stackexchange.com/questions/87230/picking-random-points-in-the-volume-of-sphere-with-uniform-probability // 0. Define the radius double radius = m_rho * pow(m_uniform_dist(m_drng),1.0/x.size()); // 1. Sampling N(0,1) on each dimension std::vector<double> perturbation(x.size(), 0.0); double c2=0; for(size_type i = 0; i < perturbation.size(); i++){ perturbation[i] = m_normal_dist(m_drng); c2 += perturbation[i]*perturbation[i]; } // 2. Normalize the vector for(size_type i = 0; i < perturbation.size(); i++){ perturbation[i] *= (radius / sqrt(c2) ); x[i] += perturbation[i]; } // 3. Clip the variables to the valid bounds for(base::size_type i = 0; i < x.size(); i++){ x[i] = std::max(x[i], get_lb()[i]); x[i] = std::min(x[i], get_ub()[i]); } }
// Used to normalize the original upper and lower bounds // to [-1, 1], at each dimension decision_vector rotated::normalize_to_center(const decision_vector& x) const { decision_vector normalized_x(x.size(), 0); for(base::size_type i = 0; i < x.size(); i++) { if (m_normalize_scale[i] == 0) { //If the bounds witdth is zero normalized_x[i] = 0; } else { normalized_x[i] = (x[i] - m_normalize_translation[i]) / m_normalize_scale[i]; } } return normalized_x; }
double antibodies_problem::compute_distance(const decision_vector &x) const { double distance = 0.; // hamming distance switch(m_method) { case(algorithm::cstrs_immune_system::HAMMING): { const decision_vector &lb = get_lb(); const decision_vector &ub = get_ub(); for(decision_vector::size_type i=0; i<x.size(); i++) { std::vector<int> current_binary_gene = double_to_binary(x.at(i), lb.at(i), ub.at(i)); for(decision_vector::size_type j=0; j<m_pop_antigens.size(); j++) { std::vector<int> antigens_binary_gene = double_to_binary((m_pop_antigens.at(j)).at(i), lb.at(i), ub.at(i)); for(std::vector<int>::size_type k=0; k<antigens_binary_gene.size(); k++) { distance += antigens_binary_gene.at(k) && current_binary_gene.at(k); } } } // we take the inverse of the distance as the measure we need is // how close the x is from the antigen population // which means that we need to maximize the ressemblance distance = - distance; break; } case(algorithm::cstrs_immune_system::EUCLIDEAN): { for(decision_vector::size_type j=0; j<m_pop_antigens.size(); j++) { double euclid = 0.; const decision_vector &antigen_decision = m_pop_antigens.at(j); for(decision_vector::size_type i=0; i<x.size(); i++) { euclid += std::pow(x.at(i) - antigen_decision.at(i),2); } distance += std::sqrt(euclid); } break; } } return distance; }
// Write into retval the gradient of the continuous part of the objective function of prob calculated in input. void gsl_gradient::objfun_numdiff_central(gsl_vector *retval, const problem::base &prob, const decision_vector &input, const double &step_size) { if (input.size() != prob.get_dimension()) { pagmo_throw(value_error,"invalid input vector dimension in numerical differentiation of the objective function"); } if (prob.get_f_dimension() != 1) { pagmo_throw(value_error,"numerical differentiation of the objective function cannot work on multi-objective problems"); } // Size of the continuous part of the problem. const problem::base::size_type cont_size = prob.get_dimension() - prob.get_i_dimension(); // Structure to pass data to the wrapper. objfun_numdiff_wrapper_params pars; pars.x = input; pars.f.resize(1); pars.prob = &prob; // GSL function. gsl_function F; F.function = &objfun_numdiff_wrapper; F.params = (void *)&pars; double result, abserr; // Numerical differentiation component by component. for (problem::base::size_type i = 0; i < cont_size; ++i) { pars.coord = i; gsl_deriv_central(&F,input[i],step_size,&result,&abserr); gsl_vector_set(retval,i,result); } }
/** * @return the encoded string (std::string) */ std::string string_match::pretty(const decision_vector &x) const { std::string retval; for (decision_vector::size_type i = 0; i < x.size(); ++i) { retval += char(x[i]); } return retval; }
/// Implementation of the objective function. void lavor_maculan::objfun_impl(fitness_vector &f, const decision_vector &x) const { const decision_vector::size_type n = x.size(); f[0] = 0.0; for (decision_vector::size_type i = 0 ; i < n ; ++i) { f[0] += 1 + cos(3 * x[i]) + (((i % 2 == 1) ? 1 : -1) / (sqrt(10.60099896 - 4.141720682 * cos(x[i])))); } }
/// Implementation of the objective function. void rosenbrock::objfun_impl(fitness_vector &f, const decision_vector &x) const { const decision_vector::size_type n = x.size(); f[0]=0; for (decision_vector::size_type i=0; i<n-1; ++i){ f[0] += 100 * (x[i]*x[i] -x[i+1])*(x[i]*x[i] -x[i+1]) + (x[i]-1)*(x[i]-1); } }
/// Implementation of the constraint function. void luksan_vlcek_3::compute_constraints_impl(constraint_vector &c, const decision_vector &x) const { int n = x.size(); c[0] = 3.*std::pow(x[0],3) + 2.*x[1] - 5. + std::sin(x[0]-x[1])*std::sin(x[0]+x[1]) - m_cub[0]; c[1] = m_clb[0] - ( 3.*std::pow(x[0],3) + 2.*x[1] - 5. + std::sin(x[0]-x[1])*std::sin(x[0]+x[1]) ); c[2] = 4.*x[n-3] - x[n-4]*std::exp(x[n-4]-x[n-3]) - 3 - m_cub[1]; c[3] = m_clb[1] - ( 4.*x[n-3] - x[n-4]*std::exp(x[n-4]-x[n-3]) - 3 ); }
// For a decision_vector in the normalized [-1, 1] space, // perform the inverse operation of normalization to get it's // location in the original space decision_vector rotated::denormalize_to_original(const decision_vector& x_normed) const { decision_vector denormalized_x(x_normed.size(), 0); for(base::size_type i = 0; i < x_normed.size(); i++){ denormalized_x[i] = (x_normed[i] * m_normalize_scale[i]) + m_normalize_translation[i]; } return denormalized_x; }
/// Implementation of the objective function. void rastrigin::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 1); const double omega = 2.0 * boost::math::constants::pi<double>(); f[0] = 0; const decision_vector::size_type n = x.size(); for (decision_vector::size_type i = 0; i < n; ++i) { f[0] += x[i] * x[i] - 10.0 * std::cos(omega * x[i]); } f[0] += 10.0 * n; }
/// Implementation of the objective function. void michalewicz::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 1); decision_vector::size_type n = x.size(); double retval = 0.0; for (decision_vector::size_type i=0; i<n; i++){ retval -= sin(x[i]) * pow(sin((i+1)*x[i]*x[i]/boost::math::constants::pi<double>()) , 2*m_m); } f[0] = retval; }
/// Implementation of the objective function. void schwefel::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 1); std::vector<double>::size_type n = x.size(); double value=0; for (std::vector<double>::size_type i=0; i<n; i++){ value += x[i] * sin(sqrt(fabs(x[i]))); } f[0] = 418.9828872724338 * n - value; }
/// Implementation of the objective function. void dejong::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 1); decision_vector::size_type n = x.size(); double retval = 0.0; for (decision_vector::size_type i=0; i<n; i++){ retval += x[i]*x[i]; } f[0] = retval; }
/// Implementation of the objective function. void luksan_vlcek_3::objfun_impl(fitness_vector &f, const decision_vector &x) const { f[0] = 0.; for (decision_vector::size_type i=0; i<(x.size()-2)/2; i++) { double a1 = x[2*i]+10.*x[2*i+1]; double a2 = x[2*i+2] - x[2*i+3]; double a3 = x[2*i+1] - 2.*x[2*i+2]; double a4 = x[2*i] - x[2*i+3]; f[0] += a1*a1 + 5.*a2*a2 + std::pow(a3,4)+ 10.*std::pow(a4,4); } }
/// Implementation of the objective function. void zdt2::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 2); pagmo_assert(x.size() == 30); double g = 0; f[0] = x[0]; for(problem::base::size_type i = 2; i < 30; ++i) { g += x[i]; } g = 1 + (9 * g) / 29; f[1] = g * ( 1 - (x[0]/g)*(x[0]/g)); }
/// Implementation of the objective function. void zdt6::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 2); pagmo_assert(x.size() == 10); double g = 0; f[0] = 1 - exp(-4*x[0])*pow(sin(6*m_pi*x[0]),6); for(problem::base::size_type i = 2; i < 10; ++i) { g += x[i]; } g = 1 + (9 * g) / 9; f[1] = g * ( 1 - (f[0]/g)*(f[0]/g)); }
/// Implementation of the objective function. void levy5::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 1); decision_vector::size_type n = x.size(); double isum = 0.0; double jsum = 0.0; f[0] = 0; for ( decision_vector::size_type j=0; j<n; j+=2 ) { for ( int i=1; i<=5; i++ ) { isum += (double)(i) * cos((double)(i-1)*x[j] + (double)(i)); jsum += (double)(i) * cos((double)(i+1)*x[j+1] + (double)(i)); } } f[0] = isum*jsum; for ( decision_vector::size_type j=0; j<n; j+=2 ) f[0] += pow(x[j] + 1.42513,2) + pow(x[j+1] + 0.80032,2); }
/// Implementation of the objective function. void sch::objfun_impl(fitness_vector &f, const decision_vector &x) const { pagmo_assert(f.size() == 2 && x.size() == 1); f[0] = x[0]*x[0]; f[1] = (x[0]-2) * (x[0]-2); }