bool lessThan(fraction x, fraction y) // non-member function returning a bool
{                                     // indicating if x < y
    int xDen = x.getDenom();
    int yDen = y.getDenom();
    int lcm = LCM(xDen, yDen);           // same code as add, mostly
    int factor1 = lcm / xDen;
    int factor2 = lcm / yDen;
    return ((x.getNumer() * factor1) < (y.getNumer() * factor2));
}
fraction add(fraction x, fraction y) // non-member function to return a new
{                                    // fraction containing the sum of two others
    int xDen = x.getDenom();
    int yDen = y.getDenom();
    int lcm = LCM(xDen, yDen);          // it would be trivial to implement
    int factor1 = lcm / xDen;           // reduceMe here if desired.
    int factor2 = lcm / yDen;
    int num = (x.getNumer() * factor1) + (y.getNumer() * factor2);
    fraction z = fraction(num, lcm);
    return z;
}
Esempio n. 3
0
bool operator<(const fraction &a, const fraction &b) {
  double ax, ay;
  int as;
  getFrSpec(a.getNumer(), a.getDenom(), &ax, &ay, &as);
  if(as == -1) { ax =- ax; ay =-ay; }

  double bx, by;
  int bs;
  getFrSpec(b.getNumer(), b.getDenom(), &bx, &by, &bs);
  if(bs == -1) { bx =- bx; by =-by; }
  return (ax < bx || (ax == bx && ay < by));
}
Esempio n. 4
0
const fraction operator*(const fraction &a, int64_t b) {
  if(b < a.getInterimMultOverflowPt()) {
    //   b < interimMultOverflowPt
    return fraction(b * a.getNumer(), a.getDenom());
  } else if(b <= a.getFinalMultOverflowPt()) {
    //   interimMultOverflowPt <= b <= finalMultInterimPt
    cerr << "fraction::operator*- an interim overflow has occurred\n";
    return fraction(I64_MAX);
  } else {  //  finalMultInterimPt < b
    cerr << "fraction::operator*- a final overflow has occurred\n";
    return fraction(I64_MAX);
  }
}
Esempio n. 5
0
void mixedNumber::copy(const fraction &other)
{
    setFraction(other.getNum(), other.getDenom());
}