ossimRefPtr<ossimImageData> ossimMaskFilter::executeMaskFilter(ossimRefPtr<ossimImageData> imageSourceData, ossimRefPtr<ossimImageData> maskSourceData) { if(!theTile) { theTile = (ossimImageData*)imageSourceData->dup(); if(!theTile->getBuf()) { theTile->initialize(); } } else { ossim_uint32 tw = theTile->getWidth(); ossim_uint32 th = theTile->getHeight(); ossim_uint32 dw = imageSourceData->getWidth(); ossim_uint32 dh = imageSourceData->getHeight(); theTile->setWidthHeight(imageSourceData->getWidth(), imageSourceData->getHeight()); theTile->setOrigin(imageSourceData->getOrigin()); if((tw*th) != (dw*dh)) { theTile->initialize(); } theTile->setDataObjectStatus(imageSourceData->getDataObjectStatus()); } theTile->loadTile(imageSourceData.get()); theTile->setDataObjectStatus(imageSourceData->getDataObjectStatus()); switch(theMaskType) { case OSSIM_MASK_TYPE_SELECT: { return executeMaskFilterSelect(theTile, maskSourceData); } case OSSIM_MASK_TYPE_INVERT: { return executeMaskFilterInvertSelect(theTile, maskSourceData); } case OSSIM_MASK_TYPE_WEIGHTED: { return executeMaskFilterWeighted(theTile, maskSourceData); } } return imageSourceData; }
template <class T> void ossimTiledElevationDatabase::fillGrid(T /* dummyTemplate */, ossimRefPtr<ossimImageData> data) { if ( data.valid() ) { // Copy to grid reversing the lines as the ossimDblGrid's origin is the SW corner. const ossim_float64 NP = data->getNullPix(0); const T* buf = static_cast<T*>(data->getBuf(0)); if ( buf ) { const ossimIpt SIZE( data->getWidth(), data->getHeight() ); ossim_int32 bufIdx = (SIZE.y-1) * data->getWidth(); ossim_int32 grdY = 0; for (ossim_int32 y = SIZE.y-1; y >= 0; --y) { for (ossim_int32 x = 0; x < SIZE.x; ++ x) { ossim_float64 v = static_cast<ossim_float64>(buf[bufIdx+x]); m_grid->setNode(x, grdY, (v!=NP?v:ossim::nan()) ); } bufIdx -= data->getWidth(); ++grdY; } } } }
void ossimFftFilter::runFft(ossimRefPtr<ossimImageData>& input, ossimRefPtr<ossimImageData>& output) { NEWMAT::Matrix* realIn = new NEWMAT::Matrix(input->getHeight(), input->getWidth()); NEWMAT::Matrix* imgIn = new NEWMAT::Matrix(input->getHeight(), input->getWidth()); NEWMAT::Matrix* realOut = new NEWMAT::Matrix(input->getHeight(), input->getWidth()); NEWMAT::Matrix* imgOut = new NEWMAT::Matrix(input->getHeight(), input->getWidth()); ossim_uint32 bandIdx = 0; ossim_uint32 w = input->getWidth(); ossim_uint32 h = input->getHeight(); ossim_uint32 x = 0; ossim_uint32 y = 0; if(theDirectionType == FORWARD) { ossim_uint32 bands = input->getNumberOfBands(); for(bandIdx = 0; bandIdx < bands; ++bandIdx) { ossim_float64* bandReal = 0; ossim_float64* bandImg = 0; fillMatrixForward((ossim_float64*)input->getBuf(bandIdx), (ossim_float64)input->getNullPix(bandIdx), *realIn, *imgIn); NEWMAT::FFT2(*realIn, *imgIn, *realOut, *imgOut); bandReal = (ossim_float64*)output->getBuf(2*bandIdx); bandImg = (ossim_float64*)output->getBuf(2*bandIdx + 1); if(bandReal&&bandImg) { for(y = 0; y < h; ++y) { for(x = 0; x < w; ++x) { *bandReal = (ossim_float64)((*realOut)[y][x]); *bandImg = (ossim_float64)((*imgOut)[y][x]); ++bandReal; ++bandImg; } } } } } else { ossim_float64* bandReal = 0; ossim_uint32 bands = input->getNumberOfBands(); for(bandIdx = 0; bandIdx < bands; bandIdx+=2) { bandReal = (ossim_float64*)output->getBuf(bandIdx/2); if(input->getBuf(bandIdx)&& input->getBuf(bandIdx+1)) { fillMatrixInverse((double*)input->getBuf(bandIdx), (double*)input->getBuf(bandIdx+1), *realIn, *imgIn); NEWMAT::FFT2I(*realIn, *imgIn, *realOut, *imgOut); for(y = 0; y < h; ++y) { for(x = 0; x < w; ++x) { *bandReal = (ossim_float64)((*realOut)[y][x]); // if(*bandReal > 1.0) // { // *bandReal = 1.0; // } // if(*bandReal < 0.0) // { // *bandReal = 0.0; // } ++bandReal; } } } } } delete realIn; delete imgIn; delete realOut; delete imgOut; }
ossimRefPtr<ossimImageData> ossimHistogramEqualization::runEqualizationAlgorithm(T, ossimRefPtr<ossimImageData> tile) { if(!theAccumulationHistogram || !getHistogram()) { return tile; } // for now we will always pull from res 0 information ossimRefPtr<ossimMultiBandHistogram> histo = getHistogram()->getMultiBandHistogram(0); if(histo.valid()) { ossim_uint32 maxBands = ( (histo->getNumberOfBands() > tile->getNumberOfBands())? tile->getNumberOfBands(): histo->getNumberOfBands()); long offsetUpperBound = tile->getHeight()*tile->getWidth(); for(ossim_uint32 band = 0; band < maxBands; ++band) { ossimRefPtr<ossimHistogram> bandHisto = histo->getHistogram(band); T* buf = static_cast<T*>(tile->getBuf(band)); double *histoLut = band<theForwardLut.size()?theForwardLut[band]:NULL; ossim_uint32 actualBand = theBandList[band]; if(bandHisto.valid()) { if(buf&&histoLut&&(actualBand < histo->getNumberOfBands())) { if(theInverseFlag) { histoLut = theInverseLut[actualBand]; } if(histoLut) { if(tile->getDataObjectStatus() == OSSIM_FULL) { T minPix = (T)tile->getMinPix(actualBand); T maxPix = (T)tile->getMaxPix(actualBand); for(long offset = 0; offset < offsetUpperBound; ++offset) { ossim_int32 idx = bandHisto->GetIndex(buf[offset]); if(idx>=0) { T value = (T)(histoLut[idx]); //--- // Assign clamping to min max. // // ESH 03/2009 -- Clamping to within min-max fixed //--- buf[offset] = value < minPix ? minPix : (value > maxPix ? maxPix : value); } } } else { T minPix = (T)tile->getMinPix(actualBand); T maxPix = (T)tile->getMaxPix(actualBand); T nullPix = (T)tile->getNullPix(actualBand); for(long offset = 0; offset < offsetUpperBound; ++offset) { ossim_int32 idx = bandHisto->GetIndex(buf[offset]); if((buf[offset]!=nullPix)&&(idx>=0)) { T value = (T)(histoLut[idx]); //--- // Assign clamping to min max. // // ESH 03/2009 -- Clamping to within min-max fixed //--- buf[offset] = value < minPix ? minPix : (value > maxPix ? maxPix : value); } else { buf[offset] = nullPix; } } } } } } } tile->validate(); } return tile; }
template <class T> void ossimImageToPlaneNormalFilter::computeNormalsTemplate( T /* inputScalarTypeDummy */, ossimRefPtr<ossimImageData>& inputTile, ossimRefPtr<ossimImageData>& outputTile) { T inputNull = (T)inputTile->getNullPix(0); T* inbuf = (T*)inputTile->getBuf(); double* normX = (double*)outputTile->getBuf(0); double* normY = (double*)outputTile->getBuf(1); double* normZ = (double*)outputTile->getBuf(2); ossim_int32 inbuf_width = inputTile->getWidth(); ossim_int32 normbuf_width = outputTile->getWidth(); ossim_int32 normbuf_height = outputTile->getHeight(); ossimColumnVector3d normal; for (ossim_int32 y=0; y<normbuf_height; y++) { // Establish offsets into the image and output normals buffers given row: ossim_uint32 n = y*normbuf_width; ossim_uint32 i = (y+1)*inbuf_width + 1; // Loop to compute the gradient (normal) vector [dh/dx, dh/dy, 1]: for (ossim_int32 x=0; x<normbuf_width; x++) { // Default in case of null inputs is a flat earth: normal[0] = 0; normal[1] = 0; normal[2] = 1.0; // Compute the x-direction differential: if (inbuf[i+1] != inputNull) { if (inbuf[i-1] != inputNull) normal[0] = theXScale*theSmoothnessFactor*(inbuf[i+1] - inbuf[i-1]) / 2.0; else if (inbuf[i] != inputNull) normal[0] = theXScale*theSmoothnessFactor*(inbuf[i+1] - inbuf[i]); } else if ((inbuf[i] != inputNull) && (inbuf[i-1] != inputNull)) { normal[0] = theXScale*theSmoothnessFactor*(inbuf[i] - inbuf[i-1]); } // Compute the y-direction differential: if (inbuf[i+inbuf_width] != inputNull) { if (inbuf[i-inbuf_width] != inputNull) normal[1] = theYScale*theSmoothnessFactor*(inbuf[i+inbuf_width] - inbuf[i-inbuf_width]) / 2.0; else if (inbuf[i] != inputNull) normal[1] = theYScale*theSmoothnessFactor*(inbuf[i+inbuf_width] - inbuf[i]); } else if ((inbuf[i] != inputNull) && (inbuf[i-inbuf_width] != inputNull)) { normal[1] = theYScale*theSmoothnessFactor*(inbuf[i] - inbuf[i-inbuf_width]); } // Stuff the normalized gradient vector into the output buffers: normal = normal.unit(); normX[n] = normal[0]; normY[n] = normal[1]; normZ[n] = normal[2]; ++n; ++i; } } }
template<class T> void ossimCFARFilter::convolveFull( T, ossimRefPtr<ossimImageData> inputData, ossimRefPtr<ossimImageData> outputData) { // let's set up some temporary variables so we don't // have to call the functions in loops. Iknow that compilers // typically optimize this out but if we are in debug mode // with no optimization it will still run fast // double sum = 0.0,sqrsum = 0.0,variance = 0.0; ossim_int32 inputW = static_cast<ossim_int32>(inputData->getWidth()); ossim_uint32 outputW = outputData->getWidth(); ossim_uint32 outputH = outputData->getHeight(); ossim_uint32 numberOfBands = inputData->getNumberOfBands(); ossimIpt outputOrigin = outputData->getOrigin(); ossimIpt inputOrigin = inputData->getOrigin(); ossim_int32 startInputOffset = std::abs(outputOrigin.y - inputOrigin.y)* inputW + std::abs(outputOrigin.x - inputOrigin.x); ossim_int32 ulKernelStart = -(2*inputW) - 2; ossim_int32 ul1KernelStart = -inputW - 1; ossim_int32 leftKernelStart = -2; ossim_int32 ll1KernelStart = inputW - 1; ossim_int32 llKernelStart = (2*inputW) - 2; //populate kernel offset indices ossim_int32 KernelStart[BOXSIZE]; T* KernelStartBuf[BOXSIZE]; for(ossim_uint16 i=0;i<BOXSIZE;i++) { int offset = i-(BOXSIZE/2); KernelStart[i] = offset*inputW + offset; KernelStartBuf[i] = NULL; } T* ulKernelStartBuf = NULL; T* ul1KernelStartBuf = NULL; T* leftKernelStartBuf = NULL; T* ll1KernelStartBuf = NULL; T* llKernelStartBuf = NULL; for(ossim_uint32 band = 0; band < numberOfBands; ++band) { T* inputBuf = static_cast<T*>(inputData->getBuf(band))+startInputOffset; T* outputBuf = static_cast<T*>(outputData->getBuf(band)); T maxPix = static_cast<T>(getMaxPixelValue(band)); T minPix = static_cast<T>(getMinPixelValue(band)); if(inputBuf&&outputBuf) { for(ossim_uint32 row = 0; row < outputW; ++row) { ossim_int32 rowOffset = inputW*row; ulKernelStartBuf = inputBuf + (rowOffset + ulKernelStart); ul1KernelStartBuf = inputBuf + (rowOffset + ul1KernelStart); leftKernelStartBuf = inputBuf + (rowOffset + leftKernelStart); ll1KernelStartBuf = inputBuf + (rowOffset + ll1KernelStart); llKernelStartBuf = inputBuf + (rowOffset + llKernelStart); for(ossim_uint16 i=0;i<BOXSIZE;i++) { KernelStartBuf[i] = inputBuf + (rowOffset + KernelStart[i]); } for(ossim_uint32 col = 0; col < outputH; ++col) { //calculate mean sum = 0.0; sqrsum = 0.0; for(ossim_uint32 r=0; r<5; ++r) sum += theKernel[0][r]*(double)ulKernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sum += theKernel[1][r]*(double)ul1KernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sum += theKernel[2][r]*(double)leftKernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sum += theKernel[3][r]*(double)ll1KernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sum += theKernel[4][r]*(double)llKernelStartBuf[r]; /* for(ossim_uint16 i=0;i<BOXSIZE;i++) { for(ossim_uint32 r=0; r<5; ++r) { sum += theKernel[i][r]*(double)KernelStartBuf[i][r]; sqrsum += theKernel[i][r]*(double)KernelStartBuf[i][r] *(double)KernelStartBuf[i][r]; } } */ //calculate mean of squares for(ossim_uint32 r=0; r<5; ++r) sqrsum += theKernel[0][r]*(double)ulKernelStartBuf[r] *(double)ulKernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sqrsum += theKernel[1][r]*(double)ul1KernelStartBuf[r] *(double)ul1KernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sqrsum += theKernel[2][r]*(double)leftKernelStartBuf[r] *(double)leftKernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sqrsum += theKernel[3][r]*(double)ll1KernelStartBuf[r] *(double)ll1KernelStartBuf[r]; for(ossim_uint32 r=0; r<5; ++r) sqrsum += theKernel[4][r]*(double)llKernelStartBuf[r] *(double)llKernelStartBuf[r]; //calculate variance variance = sqrsum - (sum*sum); //calculate k-value sum = ((double)leftKernelStartBuf[2] - sum)/sqrt(variance); //Threshold k-value if(sum < theThreshold) sum = minPix; else sum = maxPix; /* sum = theKernel[0][0]*(double)ulKernelStartBuf[0] + theKernel[0][1]*(double)ulKernelStartBuf[1] + theKernel[0][2]*(double)ulKernelStartBuf[2] + theKernel[1][0]*(double)leftKernelStartBuf[0] + theKernel[1][1]*(double)leftKernelStartBuf[1] + theKernel[1][2]*(double)leftKernelStartBuf[2] + theKernel[2][0]*(double)llKernelStartBuf[0] + theKernel[2][1]*(double)llKernelStartBuf[1] + theKernel[2][2]*(double)llKernelStartBuf[2]; */ if(sum > maxPix) { *outputBuf = maxPix; } else if(sum < minPix) { *outputBuf = minPix; } else { *outputBuf = static_cast<T>(sum); } // // Need to implement the convolution here. // ++ulKernelStartBuf; ++ul1KernelStartBuf; ++leftKernelStartBuf; ++ll1KernelStartBuf; ++llKernelStartBuf; ++outputBuf; } } } } }
//***************************************************************************** // METHOD: ossimHsvGridRemapEngine::remapTile // //***************************************************************************** void ossimHsvGridRemapEngine::remapTile(const ossimDpt& origin, ossimGridRemapSource* remapper, ossimRefPtr<ossimImageData>& tile) { static const char MODULE[] = "ossimHsvGridRemapEngine::remapTile"; if (traceExec()) CLOG << "entering..." << endl; //*** // Fetch tile size and NULL pixel value: //*** int width = tile->getWidth(); int height = tile->getHeight(); int offset = 0; void* red_buf = tile->getBuf(0); void* grn_buf = tile->getBuf(1); void* blu_buf = tile->getBuf(2); ossimDblGrid& gridH = *(remapper->getGrid(0)); ossimDblGrid& gridS = *(remapper->getGrid(1)); ossimDblGrid& gridV = *(remapper->getGrid(2)); //--- // Remap according to pixel type: //--- switch(tile->getScalarType()) { case OSSIM_UINT8: { for (double line=origin.line; line<origin.line+height; line+=1.0) { for (double samp=origin.samp; samp<origin.samp+width; samp+=1.0) { //--- // Fetch pixel from the input tile band buffers and convert // to HSV: //--- ossimRgbVector rgb_pixel (((ossim_uint8*)red_buf)[offset], ((ossim_uint8*)grn_buf)[offset], ((ossim_uint8*)blu_buf)[offset]); ossimHsvVector hsv_pixel (rgb_pixel); //--- // Remap pixel HSV with spatially variant bias value: //--- hsv_pixel.setH(hsv_pixel.getH() + gridH(samp,line)); hsv_pixel.setS(hsv_pixel.getS() + gridS(samp,line)); hsv_pixel.setV(hsv_pixel.getV() + gridV(samp,line)); //--- // Convert back to RGB and write to the tile: //--- rgb_pixel = hsv_pixel; // auto-clamped ((ossim_uint8*)red_buf)[offset] = rgb_pixel.getR(); ((ossim_uint8*)grn_buf)[offset] = rgb_pixel.getG(); ((ossim_uint8*)blu_buf)[offset] = rgb_pixel.getB(); offset++; } } break; } case OSSIM_USHORT11: break; case OSSIM_UINT16: break; case OSSIM_SINT16: break; case OSSIM_FLOAT64: break; case OSSIM_NORMALIZED_DOUBLE: break; case OSSIM_FLOAT32: break; case OSSIM_NORMALIZED_FLOAT: break; case OSSIM_SCALAR_UNKNOWN: default: break; } // end switch statement if (traceExec()) CLOG << "returning..." << endl; return; };
bool ossimCodecFactory::encodeJpeg( ossim_uint32 quality, const ossimRefPtr<ossimImageData>& in, std::vector<ossim_uint8>& out ) const { bool result = false; if ( in.valid() && (in->getDataObjectStatus() != OSSIM_NULL) ) { if ( in->getScalarType() == OSSIM_UINT8 ) { // Open a memory stream up to put the jpeg image in memory: std::stringstream jpegStreamBuf; //--- // Initialize JPEG compression library: // NOTE: JDIMENSION is an "unsigned int" //--- struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; cinfo.err = jpeg_std_error( &jerr ); jpeg_create_compress(&cinfo); // Define a custom stream destination manager for jpeglib to write compressed block: jpeg_cpp_stream_dest(&cinfo, jpegStreamBuf); /* Setting the parameters of the output file here */ cinfo.image_width = in->getWidth(); cinfo.image_height = in->getHeight(); // Bands must be one or three for this writer. const ossim_uint32 INPUT_BANDS = in->getNumberOfBands(); if ( (INPUT_BANDS == 1) || (INPUT_BANDS == 3) ) { cinfo.input_components = INPUT_BANDS; } else { if ( INPUT_BANDS < 3 ) { cinfo.input_components = 1; // Use first band. } else { cinfo.input_components = 3; // Use the first 3 bands. } } // colorspace of input image if ( cinfo.input_components == 3) { cinfo.in_color_space = JCS_RGB; } else { cinfo.in_color_space = JCS_GRAYSCALE; } // Default compression parameters, we shouldn't be worried about these. jpeg_set_defaults( &cinfo ); jpeg_set_quality(&cinfo, quality, TRUE); //limit to baseline-JPEG values // Now do the compression... jpeg_start_compress( &cinfo, TRUE ); // Line buffer: ossim_uint32 buf_size = cinfo.input_components*cinfo.image_width; std::vector<ossim_uint8> buf(buf_size); // Compress the tile on line at a time: JSAMPROW row_pointer[1]; // Pointer to a single row. row_pointer[0] = (JSAMPLE*)&buf.front(); // Get pointers to the input data: std::vector<const ossim_uint8*> inBuf(cinfo.input_components); for ( ossim_int32 band = 0; band < cinfo.input_components; ++band ) { inBuf[band] = in->getUcharBuf(band); } ossim_uint32 inIdx = 0; for (ossim_uint32 line=0; line< cinfo.image_height; ++line) { // Convert from band sequential to band interleaved by pixel. ossim_uint32 outIdx = 0; for ( ossim_uint32 p = 0; p < cinfo.image_width; ++p ) { for ( ossim_int32 band = 0; band < cinfo.input_components; ++band ) { buf[outIdx++] = inBuf[band][inIdx]; } ++inIdx; } // Write it... jpeg_write_scanlines( &cinfo, row_pointer, 1 ); } // Similar to read file, clean up after we're done compressing. jpeg_finish_compress( &cinfo ); jpeg_destroy_compress( &cinfo ); // Copy the memory stream to output vector. out.resize(jpegStreamBuf.str().size()); jpegStreamBuf.seekg(0, std::ios_base::beg); jpegStreamBuf.read((char*)&out.front(), jpegStreamBuf.str().size()); result = true; } else // Scalar type check... { ossimNotify(ossimNotifyLevel_WARN) << "ossimCodecFactory::encodeJpeg ERROR:" << "\nPassing non-eight bit data to eight bit encoder!" << std::endl; } } // Matches: if ( in.valid() ... ) return result; }