collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef, f32 pos_max_d, const core::aabbox3d<f32> &box_0, f32 dtime, v3f &pos_f, v3f &speed_f) { collisionMoveResult final_result; // Maximum time increment (for collision detection etc) // time = distance / speed f32 dtime_max_increment = pos_max_d / speed_f.getLength(); // Maximum time increment is 10ms or lower if(dtime_max_increment > 0.01) dtime_max_increment = 0.01; // Don't allow overly huge dtime if(dtime > 2.0) dtime = 2.0; f32 dtime_downcount = dtime; u32 loopcount = 0; do { loopcount++; f32 dtime_part; if(dtime_downcount > dtime_max_increment) { dtime_part = dtime_max_increment; dtime_downcount -= dtime_part; } else { dtime_part = dtime_downcount; /* Setting this to 0 (no -=dtime_part) disables an infinite loop when dtime_part is so small that dtime_downcount -= dtime_part does nothing */ dtime_downcount = 0; } collisionMoveResult result = collisionMoveSimple(map, gamedef, pos_max_d, box_0, dtime_part, pos_f, speed_f); if(result.touching_ground) final_result.touching_ground = true; if(result.collides) final_result.collides = true; } while(dtime_downcount > 0.001); return final_result; }
collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef, f32 pos_max_d, const aabb3f &box_0, f32 stepheight, f32 dtime, v3f &pos_f, v3f &speed_f, v3f &accel_f,ActiveObject* self, bool collideWithObjects) { Map *map = &env->getMap(); //TimeTaker tt("collisionMoveSimple"); //ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG); collisionMoveResult result; /* Calculate new velocity */ if( dtime > 1 ) { /* infostream<<"collisionMoveSimple: WARNING: maximum step interval exceeded, lost movement details!"<<std::endl; */ dtime = 1; } speed_f += accel_f * dtime; // If there is no speed, there are no collisions if(speed_f.getLength() == 0) return result; // Limit speed for avoiding hangs speed_f.Y=rangelim(speed_f.Y,-1000,1000); speed_f.X=rangelim(speed_f.X,-1000,1000); speed_f.Z=rangelim(speed_f.Z,-1000,1000); /* Collect node boxes in movement range */ std::vector<aabb3f> cboxes; std::vector<bool> is_unloaded; std::vector<bool> is_step_up; std::vector<bool> is_object; std::vector<int> bouncy_values; std::vector<v3s16> node_positions; { //TimeTaker tt2("collisionMoveSimple collect boxes"); //ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG); v3s16 oldpos_i = floatToInt(pos_f, BS); v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS); s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1; s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1; s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1; s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1; s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1; s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1; for(s16 x = min_x; x <= max_x; x++) for(s16 y = min_y; y <= max_y; y++) for(s16 z = min_z; z <= max_z; z++) { v3s16 p(x,y,z); bool is_position_valid; MapNode n = map->getNodeNoEx(p, &is_position_valid); if (is_position_valid) { // Object collides into walkable nodes const ContentFeatures &f = gamedef->getNodeDefManager()->get(n); if(f.walkable == false) continue; int n_bouncy_value = itemgroup_get(f.groups, "bouncy"); std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef()); for(std::vector<aabb3f>::iterator i = nodeboxes.begin(); i != nodeboxes.end(); ++i) { aabb3f box = *i; box.MinEdge += v3f(x, y, z)*BS; box.MaxEdge += v3f(x, y, z)*BS; cboxes.push_back(box); is_unloaded.push_back(false); is_step_up.push_back(false); bouncy_values.push_back(n_bouncy_value); node_positions.push_back(p); is_object.push_back(false); } } else { // Collide with unloaded nodes aabb3f box = getNodeBox(p, BS); cboxes.push_back(box); is_unloaded.push_back(true); is_step_up.push_back(false); bouncy_values.push_back(0); node_positions.push_back(p); is_object.push_back(false); } } } // tt2 if(collideWithObjects) { //ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG); //TimeTaker tt3("collisionMoveSimple collect object boxes"); /* add object boxes to cboxes */ std::vector<ActiveObject*> objects; #ifndef SERVER ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env); if (c_env != 0) { f32 distance = speed_f.getLength(); std::vector<DistanceSortedActiveObject> clientobjects; c_env->getActiveObjects(pos_f,distance * 1.5,clientobjects); for (size_t i=0; i < clientobjects.size(); i++) { if ((self == 0) || (self != clientobjects[i].obj)) { objects.push_back((ActiveObject*)clientobjects[i].obj); } } } else #endif { ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env); if (s_env != 0) { f32 distance = speed_f.getLength(); std::vector<u16> s_objects; s_env->getObjectsInsideRadius(s_objects, pos_f, distance * 1.5); for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); ++iter) { ServerActiveObject *current = s_env->getActiveObject(*iter); if ((self == 0) || (self != current)) { objects.push_back((ActiveObject*)current); } } } } for (std::vector<ActiveObject*>::const_iterator iter = objects.begin(); iter != objects.end(); ++iter) { ActiveObject *object = *iter; if (object != NULL) { aabb3f object_collisionbox; if (object->getCollisionBox(&object_collisionbox) && object->collideWithObjects()) { cboxes.push_back(object_collisionbox); is_unloaded.push_back(false); is_step_up.push_back(false); bouncy_values.push_back(0); node_positions.push_back(v3s16(0,0,0)); is_object.push_back(true); } } } } //tt3 /* assert(cboxes.size() == is_unloaded.size()); // post-condition assert(cboxes.size() == is_step_up.size()); // post-condition assert(cboxes.size() == bouncy_values.size()); // post-condition assert(cboxes.size() == node_positions.size()); // post-condition assert(cboxes.size() == is_object.size()); // post-condition */ /* Collision detection */ /* Collision uncertainty radius Make it a bit larger than the maximum distance of movement */ f32 d = pos_max_d * 1.1; // A fairly large value in here makes moving smoother //f32 d = 0.15*BS; // This should always apply, otherwise there are glitches if(!(d > pos_max_d)) return result; int loopcount = 0; while(dtime > BS*1e-10) { //TimeTaker tt3("collisionMoveSimple dtime loop"); //ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG); // Avoid infinite loop loopcount++; if(loopcount >= 100) { infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl; dtime = 0; break; } aabb3f movingbox = box_0; movingbox.MinEdge += pos_f; movingbox.MaxEdge += pos_f; int nearest_collided = -1; f32 nearest_dtime = dtime; u32 nearest_boxindex = -1; /* Go through every nodebox, find nearest collision */ for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { // Ignore if already stepped up this nodebox. if(is_step_up[boxindex]) continue; // Find nearest collision of the two boxes (raytracing-like) f32 dtime_tmp; int collided = axisAlignedCollision( cboxes[boxindex], movingbox, speed_f, d, dtime_tmp); if(collided == -1 || dtime_tmp >= nearest_dtime) continue; nearest_dtime = dtime_tmp; nearest_collided = collided; nearest_boxindex = boxindex; } if(nearest_collided == -1) { // No collision with any collision box. pos_f += speed_f * dtime; dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers } else { // Otherwise, a collision occurred. const aabb3f& cbox = cboxes[nearest_boxindex]; // Check for stairs. bool step_up = (nearest_collided != 1) && // must not be Y direction (movingbox.MinEdge.Y < cbox.MaxEdge.Y) && (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) && (!wouldCollideWithCeiling(cboxes, movingbox, cbox.MaxEdge.Y - movingbox.MinEdge.Y, d)); // Get bounce multiplier bool bouncy = (bouncy_values[nearest_boxindex] >= 1); float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0; // Move to the point of collision and reduce dtime by nearest_dtime if(nearest_dtime < 0) { // Handle negative nearest_dtime (can be caused by the d allowance) if(!step_up) { if(nearest_collided == 0) pos_f.X += speed_f.X * nearest_dtime; if(nearest_collided == 1) pos_f.Y += speed_f.Y * nearest_dtime; if(nearest_collided == 2) pos_f.Z += speed_f.Z * nearest_dtime; } } else { pos_f += speed_f * nearest_dtime; dtime -= nearest_dtime; } bool is_collision = true; if(is_unloaded[nearest_boxindex]) is_collision = false; CollisionInfo info; if (is_object[nearest_boxindex]) { info.type = COLLISION_OBJECT; } else { info.type = COLLISION_NODE; } info.node_p = node_positions[nearest_boxindex]; info.bouncy = bouncy; info.old_speed = speed_f; // Set the speed component that caused the collision to zero if(step_up) { // Special case: Handle stairs is_step_up[nearest_boxindex] = true; is_collision = false; } else if(nearest_collided == 0) // X { if(fabs(speed_f.X) > BS*3) speed_f.X *= bounce; else speed_f.X = 0; result.collides = true; result.collides_xz = true; } else if(nearest_collided == 1) // Y { if(fabs(speed_f.Y) > BS*3) speed_f.Y *= bounce; else speed_f.Y = 0; result.collides = true; } else if(nearest_collided == 2) // Z { if(fabs(speed_f.Z) > BS*3) speed_f.Z *= bounce; else speed_f.Z = 0; result.collides = true; result.collides_xz = true; } info.new_speed = speed_f; if(info.new_speed.getDistanceFrom(info.old_speed) < 0.1*BS) is_collision = false; if(is_collision){ result.collisions.push_back(info); } } } /* Final touches: Check if standing on ground, step up stairs. */ aabb3f box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { const aabb3f& cbox = cboxes[boxindex]; /* See if the object is touching ground. Object touches ground if object's minimum Y is near node's maximum Y and object's X-Z-area overlaps with the node's X-Z-area. Use 0.15*BS so that it is easier to get on a node. */ if( cbox.MaxEdge.X-d > box.MinEdge.X && cbox.MinEdge.X+d < box.MaxEdge.X && cbox.MaxEdge.Z-d > box.MinEdge.Z && cbox.MinEdge.Z+d < box.MaxEdge.Z ){ if(is_step_up[boxindex]) { pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y); box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; } if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS) { result.touching_ground = true; if(is_unloaded[boxindex]) result.standing_on_unloaded = true; } } } return result; }
// This doesn't seem to work and isn't used collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef, f32 pos_max_d, const aabb3f &box_0, f32 stepheight, f32 dtime, v3f &pos_f, v3f &speed_f, v3f &accel_f) { //TimeTaker tt("collisionMovePrecise"); ScopeProfiler sp(g_profiler, "collisionMovePrecise avg", SPT_AVG); collisionMoveResult final_result; // If there is no speed, there are no collisions if(speed_f.getLength() == 0) return final_result; // Don't allow overly huge dtime if(dtime > 2.0) dtime = 2.0; f32 dtime_downcount = dtime; u32 loopcount = 0; do { loopcount++; // Maximum time increment (for collision detection etc) // time = distance / speed f32 dtime_max_increment = 1.0; if(speed_f.getLength() != 0) dtime_max_increment = pos_max_d / speed_f.getLength(); // Maximum time increment is 10ms or lower if(dtime_max_increment > 0.01) dtime_max_increment = 0.01; f32 dtime_part; if(dtime_downcount > dtime_max_increment) { dtime_part = dtime_max_increment; dtime_downcount -= dtime_part; } else { dtime_part = dtime_downcount; /* Setting this to 0 (no -=dtime_part) disables an infinite loop when dtime_part is so small that dtime_downcount -= dtime_part does nothing */ dtime_downcount = 0; } collisionMoveResult result = collisionMoveSimple(map, gamedef, pos_max_d, box_0, stepheight, dtime_part, pos_f, speed_f, accel_f); if(result.touching_ground) final_result.touching_ground = true; if(result.collides) final_result.collides = true; if(result.collides_xz) final_result.collides_xz = true; if(result.standing_on_unloaded) final_result.standing_on_unloaded = true; } while(dtime_downcount > 0.001); return final_result; }
collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef, f32 pos_max_d, const aabb3f &box_0, f32 stepheight, f32 dtime, v3f &pos_f, v3f &speed_f, v3f &accel_f) { TimeTaker tt("collisionMoveSimple"); collisionMoveResult result; // If there is no speed, there are no collisions if(speed_f.getLength() == 0) return result; /* Calculate new velocity */ speed_f += accel_f * dtime; /* Collect node boxes in movement range */ std::vector<aabb3f> cboxes; std::vector<bool> is_unloaded; std::vector<bool> is_step_up; { TimeTaker tt2("collisionMoveSimple collect boxes"); v3s16 oldpos_i = floatToInt(pos_f, BS); v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS); s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1; s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1; s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1; s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1; s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1; s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1; for(s16 x = min_x; x <= max_x; x++) for(s16 y = min_y; y <= max_y; y++) for(s16 z = min_z; z <= max_z; z++) { try { // Object collides into walkable nodes MapNode n = map->getNode(v3s16(x,y,z)); if(gamedef->getNodeDefManager()->get(n).walkable == false) continue; std::vector<aabb3f> nodeboxes = n.getNodeBoxes(gamedef->ndef()); for(std::vector<aabb3f>::iterator i = nodeboxes.begin(); i != nodeboxes.end(); i++) { aabb3f box = *i; box.MinEdge += v3f(x, y, z)*BS; box.MaxEdge += v3f(x, y, z)*BS; cboxes.push_back(box); is_unloaded.push_back(false); is_step_up.push_back(false); } } catch(InvalidPositionException &e) { // Collide with unloaded nodes aabb3f box = getNodeBox(v3s16(x,y,z), BS); cboxes.push_back(box); is_unloaded.push_back(true); is_step_up.push_back(false); } } } // tt2 assert(cboxes.size() == is_unloaded.size()); assert(cboxes.size() == is_step_up.size()); /* Collision detection */ /* Collision uncertainty radius Make it a bit larger than the maximum distance of movement */ f32 d = pos_max_d * 1.1; // A fairly large value in here makes moving smoother //f32 d = 0.15*BS; // This should always apply, otherwise there are glitches assert(d > pos_max_d); int loopcount = 0; while(dtime > BS*1e-10) { TimeTaker tt3("collisionMoveSimple dtime loop"); // Avoid infinite loop loopcount++; if(loopcount >= 100) { infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl; dtime = 0; break; } aabb3f movingbox = box_0; movingbox.MinEdge += pos_f; movingbox.MaxEdge += pos_f; int nearest_collided = -1; f32 nearest_dtime = dtime; u32 nearest_boxindex = -1; /* Go through every nodebox, find nearest collision */ for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { // Ignore if already stepped up this nodebox. if(is_step_up[boxindex]) continue; // Find nearest collision of the two boxes (raytracing-like) f32 dtime_tmp; int collided = axisAlignedCollision( cboxes[boxindex], movingbox, speed_f, d, dtime_tmp); if(collided == -1 || dtime_tmp >= nearest_dtime) continue; nearest_dtime = dtime_tmp; nearest_collided = collided; nearest_boxindex = boxindex; } if(nearest_collided == -1) { // No collision with any collision box. pos_f += speed_f * dtime; dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers } else { // Otherwise, a collision occurred. const aabb3f& cbox = cboxes[nearest_boxindex]; // Check for stairs. bool step_up = (nearest_collided != 1) && // must not be Y direction (movingbox.MinEdge.Y < cbox.MaxEdge.Y) && (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) && (!wouldCollideWithCeiling(cboxes, movingbox, cbox.MaxEdge.Y - movingbox.MinEdge.Y, d)); // Move to the point of collision and reduce dtime by nearest_dtime if(nearest_dtime < 0) { // Handle negative nearest_dtime (can be caused by the d allowance) if(!step_up) { if(nearest_collided == 0) pos_f.X += speed_f.X * nearest_dtime; if(nearest_collided == 1) pos_f.Y += speed_f.Y * nearest_dtime; if(nearest_collided == 2) pos_f.Z += speed_f.Z * nearest_dtime; } } else { pos_f += speed_f * nearest_dtime; dtime -= nearest_dtime; } // Set the speed component that caused the collision to zero if(step_up) { // Special case: Handle stairs is_step_up[nearest_boxindex] = true; } else if(nearest_collided == 0) // X { speed_f.X = 0; result.collides = true; result.collides_xz = true; } else if(nearest_collided == 1) // Y { speed_f.Y = 0; result.collides = true; } else if(nearest_collided == 2) // Z { speed_f.Z = 0; result.collides = true; result.collides_xz = true; } } } /* Final touches: Check if standing on ground, step up stairs. */ aabb3f box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { const aabb3f& cbox = cboxes[boxindex]; /* See if the object is touching ground. Object touches ground if object's minimum Y is near node's maximum Y and object's X-Z-area overlaps with the node's X-Z-area. Use 0.15*BS so that it is easier to get on a node. */ if( cbox.MaxEdge.X-d > box.MinEdge.X && cbox.MinEdge.X+d < box.MaxEdge.X && cbox.MaxEdge.Z-d > box.MinEdge.Z && cbox.MinEdge.Z+d < box.MaxEdge.Z ) { if(is_step_up[boxindex]) { pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y); box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; } if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS) { result.touching_ground = true; if(is_unloaded[boxindex]) result.standing_on_unloaded = true; } } } return result; }
PointedThing ClientEnvironment::getPointedThing( core::line3d<f32> shootline, bool liquids_pointable, bool look_for_object) { PointedThing result; INodeDefManager *nodedef = m_map->getNodeDefManager(); core::aabbox3d<s16> maximal_exceed = nodedef->getSelectionBoxIntUnion(); // The code needs to search these nodes core::aabbox3d<s16> search_range(-maximal_exceed.MaxEdge, -maximal_exceed.MinEdge); // If a node is found, there might be a larger node behind. // To find it, we have to go further. s16 maximal_overcheck = std::max(abs(search_range.MinEdge.X), abs(search_range.MaxEdge.X)) + std::max(abs(search_range.MinEdge.Y), abs(search_range.MaxEdge.Y)) + std::max(abs(search_range.MinEdge.Z), abs(search_range.MaxEdge.Z)); const v3f original_vector = shootline.getVector(); const f32 original_length = original_vector.getLength(); f32 min_distance = original_length; // First try to find an active object if (look_for_object) { ClientActiveObject *selected_object = getSelectedActiveObject( shootline, &result.intersection_point, &result.intersection_normal); if (selected_object != NULL) { min_distance = (result.intersection_point - shootline.start).getLength(); result.type = POINTEDTHING_OBJECT; result.object_id = selected_object->getId(); } } // Reduce shootline if (original_length > 0) { shootline.end = shootline.start + shootline.getVector() / original_length * min_distance; } // Try to find a node that is closer than the selected active // object (if it exists). voxalgo::VoxelLineIterator iterator(shootline.start / BS, shootline.getVector() / BS); v3s16 oldnode = iterator.m_current_node_pos; // Indicates that a node was found. bool is_node_found = false; // If a node is found, it is possible that there's a node // behind it with a large nodebox, so continue the search. u16 node_foundcounter = 0; // If a node is found, this is the center of the // first nodebox the shootline meets. v3f found_boxcenter(0, 0, 0); // The untested nodes are in this range. core::aabbox3d<s16> new_nodes; while (true) { // Test the nodes around the current node in search_range. new_nodes = search_range; new_nodes.MinEdge += iterator.m_current_node_pos; new_nodes.MaxEdge += iterator.m_current_node_pos; // Only check new nodes v3s16 delta = iterator.m_current_node_pos - oldnode; if (delta.X > 0) new_nodes.MinEdge.X = new_nodes.MaxEdge.X; else if (delta.X < 0) new_nodes.MaxEdge.X = new_nodes.MinEdge.X; else if (delta.Y > 0) new_nodes.MinEdge.Y = new_nodes.MaxEdge.Y; else if (delta.Y < 0) new_nodes.MaxEdge.Y = new_nodes.MinEdge.Y; else if (delta.Z > 0) new_nodes.MinEdge.Z = new_nodes.MaxEdge.Z; else if (delta.Z < 0) new_nodes.MaxEdge.Z = new_nodes.MinEdge.Z; // For each untested node for (s16 x = new_nodes.MinEdge.X; x <= new_nodes.MaxEdge.X; x++) { for (s16 y = new_nodes.MinEdge.Y; y <= new_nodes.MaxEdge.Y; y++) { for (s16 z = new_nodes.MinEdge.Z; z <= new_nodes.MaxEdge.Z; z++) { MapNode n; v3s16 np(x, y, z); bool is_valid_position; n = m_map->getNodeNoEx(np, &is_valid_position); if (!(is_valid_position && isPointableNode(n, nodedef, liquids_pointable))) { continue; } std::vector<aabb3f> boxes; n.getSelectionBoxes(nodedef, &boxes, n.getNeighbors(np, m_map)); v3f npf = intToFloat(np, BS); for (std::vector<aabb3f>::const_iterator i = boxes.begin(); i != boxes.end(); ++i) { aabb3f box = *i; box.MinEdge += npf; box.MaxEdge += npf; v3f intersection_point; v3s16 intersection_normal; if (!boxLineCollision(box, shootline.start, shootline.getVector(), &intersection_point, &intersection_normal)) { continue; } f32 distance = (intersection_point - shootline.start).getLength(); if (distance >= min_distance) { continue; } result.type = POINTEDTHING_NODE; result.node_undersurface = np; result.intersection_point = intersection_point; result.intersection_normal = intersection_normal; found_boxcenter = box.getCenter(); min_distance = distance; is_node_found = true; } } } } if (is_node_found) { node_foundcounter++; if (node_foundcounter > maximal_overcheck) { break; } } // Next node if (iterator.hasNext()) { oldnode = iterator.m_current_node_pos; iterator.next(); } else { break; } } if (is_node_found) { // Set undersurface and abovesurface nodes f32 d = 0.002 * BS; v3f fake_intersection = result.intersection_point; // Move intersection towards its source block. if (fake_intersection.X < found_boxcenter.X) fake_intersection.X += d; else fake_intersection.X -= d; if (fake_intersection.Y < found_boxcenter.Y) fake_intersection.Y += d; else fake_intersection.Y -= d; if (fake_intersection.Z < found_boxcenter.Z) fake_intersection.Z += d; else fake_intersection.Z -= d; result.node_real_undersurface = floatToInt(fake_intersection, BS); result.node_abovesurface = result.node_real_undersurface + result.intersection_normal; } return result; }