Esempio n. 1
0
void
GlobalOptimization::setCommonBoundary (const vector_vec3d &boundary, const vector_vec2i &nurbs_indices)
{
  if (boundary.empty () || boundary.size () != nurbs_indices.size ())
  {
    printf ("[GlobalOptimization::setCommonBoundary] Error, common boundary empty or size does not match.\n");
    return;
  }
}
Esempio n. 2
0
void
NurbsTools::pca (const vector_vec3d &data, ON_3dVector &mean, Eigen::Matrix3d &eigenvectors,
		 Eigen::Vector3d &eigenvalues)
{
  if (data.empty ())
  {
    printf ("[NurbsTools::pca] Error, data is empty\n");
    abort ();
  }

  mean = computeMean (data);

  unsigned s = data.size ();

  ON_Matrix Q(3, s);

  for (unsigned i = 0; i < s; i++) {
    Q[0][i] = data[i].x - mean.x;
    Q[1][i] = data[i].y - mean.y;
    Q[2][i] = data[i].z - mean.z;
  }

  ON_Matrix Qt = Q;
  Qt.Transpose();

  ON_Matrix oC;
  oC.Multiply(Q,Qt);

  Eigen::Matrix3d C(3,3);
  for (unsigned i = 0; i < 3; i++) {
      for (unsigned j = 0; j < 3; j++) {
	  C(i,j) = oC[i][j];
      }
  }

  Eigen::SelfAdjointEigenSolver < Eigen::Matrix3d > eigensolver (C);
  if (eigensolver.info () != Eigen::Success)
  {
    printf ("[NurbsTools::pca] Can not find eigenvalues.\n");
    abort ();
  }

  for (int i = 0; i < 3; ++i)
  {
    eigenvalues (i) = eigensolver.eigenvalues () (2 - i);
    if (i == 2)
      eigenvectors.col (2) = eigenvectors.col (0).cross (eigenvectors.col (1));
    else
      eigenvectors.col (i) = eigensolver.eigenvectors ().col (2 - i);
  }
}
Esempio n. 3
0
unsigned
NurbsTools::getClosestPoint (const Eigen::Vector3d &p, const vector_vec3d &data)
{
  if (data.empty ())
    throw std::runtime_error ("[NurbsTools::getClosestPoint(2d)] Data empty.\n");

  size_t idx = 0;
  double dist2 (DBL_MAX);
  for (size_t i = 0; i < data.size (); i++)
  {
    double d2 = (data[i] - p).squaredNorm ();
    if (d2 < dist2)
    {
      idx = i;
      dist2 = d2;
    }
  }
  return idx;
}
Esempio n. 4
0
unsigned
NurbsTools::getClosestPoint (const ON_3dPoint &p, const vector_vec3d &data)
{
  if (data.empty ())
    throw std::runtime_error ("[NurbsTools::getClosestPoint(2d)] Data empty.\n");

  unsigned idx (0);
  double dist2 (DBL_MAX);
  for (unsigned i = 0; i < data.size (); i++)
  {
    ON_3dVector v = (data[i] - p);
    double d2 = ON_DotProduct(v, v);  // Was the squaredNorm in Eigen
    if (d2 < dist2)
    {
      idx = i;
      dist2 = d2;
    }
  }
  return idx;
}
Esempio n. 5
0
void
NurbsTools::pca (const vector_vec3d &data, Eigen::Vector3d &mean, Eigen::Matrix3d &eigenvectors,
                 Eigen::Vector3d &eigenvalues)
{
  if (data.empty ())
  {
    printf ("[NurbsTools::pca] Error, data is empty\n");
    abort ();
  }

  mean = computeMean (data);

  unsigned s = unsigned (data.size ());

  Eigen::MatrixXd Q (3, s);

  for (unsigned i = 0; i < s; i++)
    Q.col (i) << (data[i] - mean);

  Eigen::Matrix3d C = Q * Q.transpose ();

  Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigensolver (C);
  if (eigensolver.info () != Success)
  {
    printf ("[NurbsTools::pca] Can not find eigenvalues.\n");
    abort ();
  }

  for (int i = 0; i < 3; ++i)
  {
    eigenvalues (i) = eigensolver.eigenvalues () (2 - i);
    if (i == 2)
      eigenvectors.col (2) = eigenvectors.col (0).cross (eigenvectors.col (1));
    else
      eigenvectors.col (i) = eigensolver.eigenvectors ().col (2 - i);
  }
}
Esempio n. 6
0
ON_NurbsCurve
FittingCurve::initNurbsCurvePCA (int order, const vector_vec3d &data, int ncps, double rf)
{
  if (data.empty ())
    printf ("[FittingCurve::initNurbsCurvePCA] Warning, no boundary parameters available\n");

  Eigen::Vector3d mean;
  Eigen::Matrix3d eigenvectors;
  Eigen::Vector3d eigenvalues;

  unsigned s = unsigned (data.size ());

  NurbsTools::pca (data, mean, eigenvectors, eigenvalues);

  eigenvalues = eigenvalues / s; // seems that the eigenvalues are dependent on the number of points (???)

  double r = rf * sqrt (eigenvalues (0));

  if (ncps < 2 * order)
    ncps = 2 * order;

  ON_NurbsCurve nurbs = ON_NurbsCurve (3, false, order, ncps);
  nurbs.MakePeriodicUniformKnotVector (1.0 / (ncps - order + 1));

  double dcv = (2.0 * M_PI) / (ncps - order + 1);
  Eigen::Vector3d cv, cv_t;
  for (int j = 0; j < ncps; j++)
  {
    cv (0) = r * sin (dcv * j);
    cv (1) = r * cos (dcv * j);
    cv (2) = 0.0;
    cv_t = eigenvectors * cv + mean;
    nurbs.SetCV (j, ON_3dPoint (cv_t (0), cv_t (1), cv_t (2)));
  }

  return nurbs;
}