Esempio n. 1
0
// // [[Rcpp::export()]]
void getVgamma_hierIRT(arma::cube &Vgamma,
					arma::mat &gammasigma,
					arma::mat &Ebb,
					const arma::mat &g,
					const arma::mat &i,
                    const arma::mat &j,
                    const arma::mat &z,
                    const int NL,
                    const int NG
                    ) {
				
	signed int m, l;

#pragma omp parallel for private(m,l)
  	for(m=0; m < NG; m++){

		Vgamma.slice(m) = inv_sympd(gammasigma);

		for(l=0; l < NL; l++){
			if( g(i(l,0),0)==m ) Vgamma.slice(m) += Ebb(j(l,0),0) * trans(z.row(i(l,0))) * z.row(i(l,0));
		}

		// Note this yield C_inv, not C_m
		Vgamma.slice(m) = inv_sympd(Vgamma.slice(m));


  	}  // for(k=0; n < NJ; k++){

    return; 
} 
Esempio n. 2
0
// compute the gradients of f and g at all data points
int dtq::gradFGdata(arma::cube &gfd, arma::cube &ggd)
{
  for (int j=0; j<(ltvec-1); j++)
  {
    for (int l=0; l<numts; l++)
    {
      double xi = (*odata)(j,l);
      gfd.slice(l).col(j) = (*gradf)(xi,curtheta);
      ggd.slice(l).col(j) = (*gradg)(xi,curtheta);
    }
  }
  return 0;
}
Esempio n. 3
0
//' @title
//' mStep
//' @description
//' Return the parameters' posterior.
//' 
//' @param DP
//' @param DataStorage
//' @param xi
//' @param zeta
//' @export
// [[Rcpp::export]]
arma::cube mStep(NumericVector prior, arma::cube posterior, NumericVector data, IntegerVector xi, IntegerVector zeta){
  //NumericVector data = DataStorage.slot("simulation");
  const int N = data.length();
  
  //arma::cube prior = DP.slot("prior");
  
  arma::mat mu = posterior.slice(0);
  arma::mat Nmat = posterior.slice(1);
  arma::mat v = posterior.slice(2);
  arma::mat vs2 = posterior.slice(3);
  
  std::fill(mu.begin(), mu.end(), prior[0]);
  std::fill(Nmat.begin(), Nmat.end(), prior[1]);
  std::fill(v.begin(), v.end(), prior[2]);
  std::fill(vs2.begin(), vs2.end(), prior[3]);
  
  int temp;
  double update_mu;
  double update_vs2;
  double update_n;
  double update_v;
  
  for(int n=0; n < N; n++){
    // if n is not NA
    if(data(n) == data(n)){
      temp = xi[n];
      const int l = temp - 1;
      temp = zeta[n];
      const int k = temp - 1;
      
      update_mu = (Nmat(l,k)*mu(l,k)+data(n))/(1+Nmat(l,k));
      update_vs2 = vs2(l,k) + (Nmat(l,k)*std::pow((mu(l,k)-data(n)),2)/(1+Nmat(l,k)));
      update_n = Nmat(l,k) + 1.0;
      update_v = v(l,k) + 1.0;
      mu(l,k) = update_mu;
      Nmat(l,k) = update_n;
      v(l,k) = update_v;
      vs2(l,k) = update_vs2;
    }
  }
  arma::cube toRet = posterior;
  toRet.slice(0) = mu;
  toRet.slice(1) = Nmat;
  toRet.slice(2) = v;
  toRet.slice(3) = vs2;
  
  //DP.slot("prior") = posterior;
  return toRet;
}
Esempio n. 4
0
// build the big matrix of initial conditions
// and the gradients of those initial conditions!
int dtq::phatinitgrad(arma::mat &phatI, arma::cube &phatG, const arma::cube &gfd, const arma::cube &ggd)
{
  double myh12 = sqrt(myh);
  for (int j=0; j<(ltvec-1); j++)
  {
    // go through each particular initial condition at this time
    // and make a Gaussian
    for (int l=0; l<numts; l++)
    {
      double xi = (*odata)(j,l);
      double mu = xi + ((*f)(xi,curtheta))*myh;
      double gval = (*g)(xi,curtheta);
      double sig = gval*myh12;
      arma::vec thisphat = gausspdf(yvec,mu,sig);
      phatI.col(j) += thisphat;
      for (int i=0; i<curtheta.n_elem; i++)
      {
        arma::vec pgtemp = (yvec - mu)*gfd(i,j,l)/(gval*gval);
        pgtemp -= ggd(i,j,l)/gval;
        pgtemp += arma::pow(yvec - mu,2)*ggd(i,j,l)/(myh*gval*gval*gval);
        phatG.slice(i).col(j) += pgtemp % thisphat;
      }
    }
  }
  phatI = phatI / numts;
  phatG = phatG / numts;
  return 0;
}
Esempio n. 5
0
arma::cube get_Si(int n_states, arma::cube S, arma::mat m) {
    arma::cube Si(n_states, n_states, n_states);
    for (int i=0; i<n_states; i++) {
        Si.slice(i) = S.slice(i) * m;
    }
    return Si;
}
Esempio n. 6
0
void internalBackward(const arma::mat& transition, const arma::cube& emission,
    const arma::ucube& obs, arma::cube& beta, const arma::mat& scales, unsigned int threads) {

#pragma omp parallel for if(obs.n_slices >= threads) schedule(static) num_threads(threads) \
default(none) shared(beta, scales, obs, emission,transition)
  for (unsigned int k = 0; k < obs.n_slices; k++) {
    beta.slice(k).col(obs.n_cols - 1).fill(scales(obs.n_cols - 1, k));
    for (int t = obs.n_cols - 2; t >= 0; t--) {
        arma::vec tmpbeta = beta.slice(k).col(t + 1);
        for (unsigned int r = 0; r < obs.n_rows; r++) {
          tmpbeta %= emission.slice(r).col(obs(r, t + 1, k));
        }
        beta.slice(k).col(t) =  transition * tmpbeta * scales(t, k);
    }
  }
}
Esempio n. 7
0
// Bellman recursion using row rearrangement
//[[Rcpp::export]]
Rcpp::List Bellman(const arma::mat& grid,
                   Rcpp::NumericVector reward_,
                   const arma::cube& scrap,
                   Rcpp::NumericVector control_,
                   const arma::cube& disturb,
                   const arma::vec& weight) {
  // Passing R objects to C++
  const std::size_t n_grid = grid.n_rows;
  const std::size_t n_dim = grid.n_cols;
  const arma::ivec r_dims = reward_.attr("dim");
  const std::size_t n_pos = r_dims(3);
  const std::size_t n_action = r_dims(2);
  const std::size_t n_dec = r_dims(4) + 1;
  const arma::cube
      reward(reward_.begin(), n_grid, n_dim * n_action * n_pos, n_dec - 1, false);
  const arma::ivec c_dims = control_.attr("dim");
  arma::cube control2;
  arma::imat control;
  bool full_control;
  if (c_dims.n_elem == 3) {
    full_control = false;
    arma::cube temp_control2(control_.begin(), n_pos, n_action, n_pos, false);
    control2 = temp_control2;
  } else {
    full_control = true;
    arma::mat temp_control(control_.begin(), n_pos, n_action, false);
    control = arma::conv_to<arma::imat>::from(temp_control);
  }
  const std::size_t n_disturb = disturb.n_slices;
  // Bellman recursion
  arma::cube value(n_grid, n_dim * n_pos, n_dec);
  arma::cube cont(n_grid, n_dim * n_pos, n_dec - 1, arma::fill::zeros);
  arma::mat d_value(n_grid, n_dim);
  Rcpp::Rcout << "At dec: " << n_dec - 1 << "...";
  for (std::size_t pp = 0; pp < n_pos; pp++) {
    value.slice(n_dec - 1).cols(n_dim * pp, n_dim * (pp + 1) - 1) =
        scrap.slice(pp);
  }
  for (int tt = (n_dec - 2); tt >= 0; tt--) {
    Rcpp::Rcout << tt;
    // Approximating the continuation value
    for (std::size_t pp = 0; pp < n_pos; pp++) {
      cont.slice(tt).cols(n_dim * pp, n_dim * (pp + 1) - 1) =
          Expected(grid,
                   value.slice(tt + 1).cols(pp * n_dim, n_dim * (pp + 1) - 1),
                   disturb, weight);
    }
    Rcpp::Rcout << "..";
    // Optimise value function
    if (full_control) {
      BellmanOptimal(grid, control, value, reward, cont, tt);
    } else {
      BellmanOptimal2(grid, control2, value, reward, cont, tt);
    }
    Rcpp::Rcout << ".";
  }
  return Rcpp::List::create(Rcpp::Named("value") = value,
                            Rcpp::Named("expected") = cont);
}
arma::mat cvt_rgb2gray(const arma::cube &image) {
  arma::vec scale = { 0.3, 0.6, 0.1 };
  arma::mat new_image = arma::zeros<arma::mat>(image.n_rows, image.n_cols);
  for (arma::uword i = 0; i < image.n_slices; i++) {
    new_image += scale(i) * image.slice(i); // weighted construction
  }
  return new_image;
}
Esempio n. 9
0
void
HMM::computeXiCached() {
  arma::mat temp = B_.rows(1,T_-1) % beta_.cols(1,T_-1).t();
  for(unsigned int i = 0; i < N_; ++i) {
    xi_.slice(i) = temp % 
      (alpha_(i,arma::span(0, T_-2)).t() * A_.row(i));
  }
}
Esempio n. 10
0
// // [[Rcpp::export()]]
void getVb2_dynIRT(arma::cube &Vb2,
				 const arma::cube &Ex2x2,
                 const arma::mat &sigma,
                 const int T
                 ) {

	int t;

#pragma omp parallel for
	for(t=0; t<T; t++){

		Vb2.slice(t) = inv_sympd(inv_sympd(sigma) + Ex2x2.slice(t)) ;

	}

    return;

}
Esempio n. 11
0
// how to subset outer dimension of arma cube by IntegerVector
// [[Rcpp::export]]
arma::cube subsetCube(arma::cube data, IntegerVector index){
  if(data.n_slices != index.size()){ //informative error message
    Rcout << "subsetCube requires an array and index of the same outer dimension!" << std::endl;
  }
  arma::cube out = arma::zeros(data.n_rows,data.n_cols,data.n_slices);
  for(int i=0; i<data.n_slices; i++){
    out.slice(i) = data.slice(index(i));
  }
  return(out);
}
Esempio n. 12
0
/*
 * approx_model:  Gaussian approximation of the original model
 * t:             Time point where the weights are computed
 * alpha:         Simulated particles
 */
arma::vec ung_ssm::log_weights(const ugg_ssm& approx_model,
  const unsigned int t, const arma::cube& alpha) const {
  
  arma::vec weights(alpha.n_slices, arma::fill::zeros);
  
  if (arma::is_finite(y(t))) {
    switch(distribution) {
    case 0  :
      for (unsigned int i = 0; i < alpha.n_slices; i++) {
        double simsignal = alpha(0, t, i);
        weights(i) = -0.5 * (simsignal + std::pow(y(t) / phi, 2.0) * std::exp(-simsignal)) +
          0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
      }
      break;
    case 1  :
      for (unsigned int i = 0; i < alpha.n_slices; i++) {
        double simsignal = arma::as_scalar(Z.col(t * Ztv).t() *
          alpha.slice(i).col(t) + xbeta(t));
        weights(i) = y(t) * simsignal  - u(t) * std::exp(simsignal) +
          0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
      }
      break;
    case 2  :
      for (unsigned int i = 0; i < alpha.n_slices; i++) {
        double simsignal = arma::as_scalar(Z.col(t * Ztv).t() *
          alpha.slice(i).col(t) + xbeta(t));
        weights(i) = y(t) * simsignal - u(t) * std::log1p(std::exp(simsignal)) +
          0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
      }
      break;
    case 3  :
      for (unsigned int i = 0; i < alpha.n_slices; i++) {
        double simsignal = arma::as_scalar(Z.col(t * Ztv).t() *
          alpha.slice(i).col(t) + xbeta(t));
        weights(i) = y(t) * simsignal - (y(t) + phi) *
          std::log(phi + u(t) * std::exp(simsignal)) +
          0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
      }
      break;
    }
  }
  return weights;
}
Esempio n. 13
0
// @title Gradient step for regression coefficient
// @param X The ratings matrix. Unobserved entries must be marked NA. Users
// must be along rows, and tracks must be along columns.
// @param P The learned user latent factors.
// @param Q The learned track latent factors.
// @param beta The learned regression coefficients.
// @param lambda The regularization parameter for beta.
// @param gamma The step-size in the gradient descent.
// @return The update regression coefficients.
arma::vec update_beta(arma::mat X, arma::cube Z, arma::mat P, arma::mat Q,
		      arma::vec beta, double lambda, double gamma) {
  arma::uvec obs_ix = arma::conv_to<arma::uvec>::from(arma::find_finite(X));
  arma::mat resid = X - P * Q.t() - cube_multiply(Z, beta);
  arma::vec beta_grad = arma::zeros(beta.size());
  for(int l = 0; l < beta.size(); l++) {
    beta_grad[l] = accu(resid(obs_ix) % Z.slice(l)(obs_ix));
  }
  beta_grad = 2 * (lambda * beta - beta_grad);
  return beta - gamma * beta_grad;
}
Esempio n. 14
0
NumericVector logLikMixHMM(const arma::mat& transition, const arma::cube& emission,
  const arma::vec& init, const arma::ucube& obs, const arma::mat& coef, const arma::mat& X,
  const arma::uvec& numberOfStates, unsigned int threads) {
  
  arma::mat weights = exp(X * coef).t();
  if (!weights.is_finite()) {
    return wrap(-arma::datum::inf);
  }
  weights.each_row() /= sum(weights, 0);
  
  arma::vec ll(obs.n_slices);
  arma::sp_mat transition_t(transition.t());
#pragma omp parallel for if(obs.n_slices >= threads) schedule(static) num_threads(threads) \
  default(none) shared(ll, obs, weights, init, emission, transition_t, numberOfStates)
    for (unsigned int k = 0; k < obs.n_slices; k++) {
      arma::vec alpha = init % reparma(weights.col(k), numberOfStates);
      
      for (unsigned int r = 0; r < obs.n_rows; r++) {
        alpha %= emission.slice(r).col(obs(r, 0, k));
      }
      
      double tmp = sum(alpha);
      ll(k) = log(tmp);
      alpha /= tmp;
      
      for (unsigned int t = 1; t < obs.n_cols; t++) {
        alpha = transition_t * alpha;
        for (unsigned int r = 0; r < obs.n_rows; r++) {
          alpha %= emission.slice(r).col(obs(r, t, k));
        }
        
        tmp = sum(alpha);
        ll(k) += log(tmp);
        alpha /= tmp;
      }
    }
    return wrap(ll);
}
Esempio n. 15
0
arma::mat exact_trans2(arma::cube joint_means_trans, Rcpp::List eigen_decomp, double time_int, arma::ivec absorb_states, int start_state, int end_state, int exact_time_index){
	arma::mat rate_matrix=Rcpp::as<arma::mat>(eigen_decomp["rate"]);
	arma::mat out=arma::zeros<arma::mat>(rate_matrix.n_rows,rate_matrix.n_rows);
	
	arma::mat temp=arma::zeros<arma::mat>(rate_matrix.n_rows,rate_matrix.n_rows);
	
	int i=start_state-1;
	int j=end_state-1;
	int k=0;  
	
	bool i_in_A=0;
	bool j_in_A=0;
	
	//std::cout<<absorb_states;
	
	while(i_in_A==0 && k<absorb_states.size()){
		int test=absorb_states[k]-1;
		if(test==i){
			i_in_A=1;
		}
		k++;
	}
	
	k=0;
	while(j_in_A==0 && k<absorb_states.size()){
		int test=absorb_states[k]-1;
		if(test==j){
			j_in_A=1;
		}
		k++;
	}
	
	int in_either=i_in_A+j_in_A;

	
	if(in_either==0){
		for(int l=0;l<absorb_states.size();l++){
			int absorb_state=absorb_states[l]-1;
			temp.col(absorb_state)=rate_matrix.col(absorb_state);
		}
		out=joint_means_trans.slice(exact_time_index)*temp;
	}
	if(i_in_A==0 && j_in_A==1){
		arma::mat prob_mat=mat_exp_eigen_cpp(eigen_decomp,time_int);
		out.col(j)=prob_mat.col(i)*rate_matrix(i,j);
	}
	
	
	return(out);
}	
Esempio n. 16
0
// Expected value using row rearrangement
//[[Rcpp::export]]
arma::mat Expected(const arma::mat& grid,
                   const arma::mat& value,
                   const arma::cube& disturb,
                   const arma::vec& weight) {
  // Passing R objects to C++
  const std::size_t n_grid = grid.n_rows;
  const std::size_t n_dim = grid.n_cols;
  const std::size_t n_disturb = disturb.n_slices;
  // Computing the continuation value function
  arma::mat continuation(n_grid, n_dim, arma::fill::zeros);
  arma::mat d_value(n_grid, n_dim);
  for (std::size_t dd = 0; dd < n_disturb; dd++) {
    d_value = value * disturb.slice(dd);
    continuation += weight(dd) * Optimal(grid, d_value);
  }
  return continuation;
}
Esempio n. 17
0
//--------------------------------------------------------------------------------------------------
double Krigvar( const arma::colvec& KF, 
                const arma::cube& Gamma ) {
  
  int i;
  int n = Gamma.n_rows;
  int m = Gamma.n_slices;
  double Var;
  
  arma::mat V = arma::ones( n, n );
  for( i = 0; i < m; i++ ) {
    V = V % ( arma::ones( n, n ) + Gamma.slice( i ) );
  }
  V = V - arma::ones( n, n );
  
  Var = as_scalar( KF.t() * V * KF );
  
  return Var;
}
Esempio n. 18
0
//--------------------------------------------------------------------------------------------------
double Krigidx( const arma::colvec& KF,
                 const arma::colvec& comb,
                 const arma::mat& X,
                 const arma::cube& Gamma ) {
  int k;
  int n = X.n_rows;
  int c = comb.size();
  double S;
  
  arma::mat W = arma::ones( n, n );
    
  for ( k = 0; k < c; k++ ) {
    W = W % Gamma.slice( comb( k ) - 1 );
  }
  S = as_scalar( KF.t() * W * KF );

  return S;
}
Esempio n. 19
0
NumericVector log_logLikMixHMM(arma::mat transition, arma::cube emission, arma::vec init,
  const arma::ucube& obs, const arma::mat& coef, const arma::mat& X,
  const arma::uvec& numberOfStates, unsigned int threads) {
  
  arma::mat weights = exp(X * coef).t();
  if (!weights.is_finite()) {
    return wrap(-arma::datum::inf);
  }
  weights.each_row() /= sum(weights, 0);
  
  weights = log(weights);
  transition = log(transition);
  emission = log(emission);
  init = log(init);
  
  arma::vec ll(obs.n_slices);
  
#pragma omp parallel for if(obs.n_slices >= threads) schedule(static) num_threads(threads) \
  default(none) shared(ll, obs, weights, init, emission, transition, numberOfStates)
    for (unsigned int k = 0; k < obs.n_slices; k++) {
      arma::vec alpha = init + reparma(weights.col(k), numberOfStates);
      for (unsigned int r = 0; r < obs.n_rows; r++) {
        alpha += emission.slice(r).col(obs(r, 0, k));
      }
      arma::vec alphatmp(emission.n_rows);
      for (unsigned int t = 1; t < obs.n_cols; t++) {
        for (unsigned int i = 0; i < emission.n_rows; i++) {
          alphatmp(i) = logSumExp(alpha + transition.col(i));
          for (unsigned int r = 0; r < obs.n_rows; r++) {
            alphatmp(i) += emission(i, obs(r, t, k), r);
          }
        }
        alpha = alphatmp;
      }
      ll(k) = logSumExp(alpha);
    }
    
    return wrap(ll);
}
Esempio n. 20
0
// // [[Rcpp::export()]]
arma::mat getEb2_ordIRT(const arma::mat &Ezstar,
                 const arma::mat &Ex,
                 const arma::cube &Vb2,
                 const arma::mat &mubeta,
                 const arma::mat &sigmabeta,
                 const arma::mat &Edd,
                 const int J
                 ) {

    arma::mat ones(Ex.n_rows, 1) ;
    ones.ones() ;
    arma::mat Ex2 = Ex ;
    Ex2.insert_cols(0, ones) ;

    arma::mat Eb2(J, 2) ;

#pragma omp parallel for
    for (int j = 0; j < J; j++) {
        Eb2.row(j) = trans(Vb2.slice(j) * (inv_sympd(sigmabeta) * mubeta + Edd(j,0) * trans(Ex2) * Ezstar.col(j))) ;
    }

    return(Eb2) ;
}
Esempio n. 21
0
//[[Rcpp::export]]
arma::cube PathDisturb(const arma::vec& start,
                       Rcpp::NumericVector disturb_) {
  // R objects to C++
  const arma::ivec d_dims = disturb_.attr("dim");
  const std::size_t n_dim = d_dims(0);
  const std::size_t n_dec = d_dims(3) + 1;
  const std::size_t n_path = d_dims(2);
  const arma::cube disturb(disturb_.begin(), n_dim, n_dim * n_path, n_dec - 1,
			  false);
  // Simulating the sample paths
  arma::cube path(n_path, n_dim, n_dec);
  // Assign starting values
  for (std::size_t ii = 0; ii < n_dim; ii++) {
    path.slice(0).col(ii).fill(start(ii));
  }
  // Disturb the paths
  for (std::size_t pp = 0; pp < n_path; pp++) {
    for (std::size_t tt = 1; tt < n_dec; tt++) {
      path.slice(tt).row(pp) = path.slice(tt - 1).row(pp) *
          arma::trans(disturb.slice(tt - 1).cols(n_dim * pp, n_dim * (pp + 1) - 1));
    }
  }
  return path;
}
Esempio n. 22
0
// Calculate the martingale increments using the row rearrangement
//[[Rcpp::export]]
arma::cube AddDual(const arma::cube& path,
                   Rcpp::NumericVector subsim_,
                   const arma::vec& weight,
                   Rcpp::NumericVector value_,
                   Rcpp::Function Scrap_) {
  // R objects to C++
  const std::size_t n_path = path.n_rows;
  const arma::ivec v_dims = value_.attr("dim");
  const std::size_t n_grid = v_dims(0);
  const std::size_t n_dim = v_dims(1);
  const std::size_t n_pos = v_dims(2);
  const std::size_t n_dec = v_dims(3);
  const arma::cube value(value_.begin(), n_grid, n_dim * n_pos, n_dec, false);
  const arma::ivec s_dims = subsim_.attr("dim");
  const std::size_t n_subsim = s_dims(2);
  const arma::cube subsim(subsim_.begin(), n_dim, n_dim * n_subsim * n_path, n_dec - 1, false);
  // Duals
  arma::cube mart(n_path, n_pos, n_dec - 1);
  arma::mat temp_state(n_subsim * n_path, n_dim);
  arma::mat fitted(n_grid, n_dim);
  std::size_t ll;
  Rcpp::Rcout << "Additive duals at dec: ";
  // Find averaged value
  for (std::size_t tt = 0; tt < (n_dec - 2); tt++) {
    Rcpp::Rcout << tt << "...";
    // 1 step subsimulation
#pragma omp parallel for private(ll)
    for (std::size_t ii = 0; ii < n_path; ii++) {
      for (std::size_t ss = 0; ss < n_subsim; ss++) {
        ll = n_subsim * ii + ss;
        temp_state.row(ll) = weight(ss) * path.slice(tt).row(ii) *
            arma::trans(subsim.slice(tt).cols(n_dim * ll, n_dim * (ll + 1) - 1));       
      }
    }
    // Averaging
    for (std::size_t pp = 0; pp < n_pos; pp++) {
      fitted = value.slice(tt + 1).cols(n_dim * pp, n_dim * (pp + 1) - 1);
      mart.slice(tt).col(pp) = arma::conv_to<arma::vec>::from(arma::sum(arma::reshape(
          OptimalValue(temp_state, fitted), n_subsim, n_path)));
      // Subtract the path realisation
      mart.slice(tt).col(pp) -= OptimalValue(path.slice(tt + 1), fitted);
    }
  }
  // Scrap value
  Rcpp::Rcout << n_dec - 1 << "...";
  // 1 step subsimulation
#pragma omp parallel for private(ll)
  for (std::size_t ii = 0; ii < n_path; ii++) {
    for (std::size_t ss = 0; ss < n_subsim; ss++) {
      ll = n_subsim * ii + ss;
      temp_state.row(n_path * ss + ii) = path.slice(n_dec - 2).row(ii) *
          arma::trans(subsim.slice(n_dec - 2).cols(n_dim * ll, n_dim * (ll + 1) - 1));
    }
  }
  // Averaging
  arma::mat subsim_scrap(n_subsim * n_path, n_pos);
  subsim_scrap = Rcpp::as<arma::mat>(Scrap_(
      Rcpp::as<Rcpp::NumericMatrix>(Rcpp::wrap(temp_state))));
  arma::mat scrap(n_path, n_pos);
  scrap = Rcpp::as<arma::mat>(Scrap_(
      Rcpp::as<Rcpp::NumericMatrix>(Rcpp::wrap(path.slice(n_dec - 1)))));
  for (std::size_t pp = 0; pp < n_pos; pp++) {
    mart.slice(n_dec - 2).col(pp) =
        arma::reshape(subsim_scrap.col(pp), n_path, n_subsim) * weight;
    // Subtract the path realisation
    mart.slice(n_dec - 2).col(pp) -= scrap.col(pp);
  }
  Rcpp::Rcout << "done\n";
  return mart;
}
Esempio n. 23
0
 inline double MuOrAlphaProduct(const int chromophore, const int corr_start,
                                const int i_corr) {
   return arma::dot(mu_01_.slice(chromophore).col(corr_start),
                    mu_01_.slice(chromophore).col(corr_start+i_corr));
 }
Esempio n. 24
0
double
HMM::baumWelchCached(const arma::mat & data, const std::vector<GMM> & B, unsigned int seed = 0) {

  init(B, seed);
  allocateMemory(data.n_cols);


  cacheProbabilities(data);
  double logprobc = forwardProcedureCached();
  double logprobprev = 0.0;
  double delta;
  do {
    backwardProcedureCached();
    computeXiCached();
    computeGamma();
    logprobprev = logprobc;
    //update state probabilities pi
    pi_ = gamma_.col(0).t();
    for (unsigned int i = 0; i < N_; ++i) {
      arma::rowvec xi_i = arma::sum(xi_.slice(i));
      double shortscale = 1./arma::accu(gamma_.submat(arma::span(i),arma::span(0,T_-2)));
      for (unsigned int j = 0; j < N_; ++j) {
        A_(i,j) = xi_i(j) * shortscale;
      }
      // and update distributions

      unsigned int numComponents = (unsigned int) BModels_[i].getNumComponents();
      arma::mat gamma_lt = arma::mat(T_, numComponents);
      gamma_lt = (gamma_.row(i).t()* arma::ones(1, numComponents))% gammaLts_[i];

      for(unsigned int t = 0; t < T_ ; ++t) {
        double sumProb = B_(t,i);
        if (sumProb != 0.) {
          gamma_lt.row(t) /= sumProb; 
        }
      }

      double scale = 1./arma::accu(gamma_.row(i));
      for (unsigned int l = 0; l < numComponents; ++l) {
        double sumGammaLt = arma::accu(gamma_lt.col(l));
        double newWeight = scale * sumGammaLt;
        arma::vec newMu = data * gamma_lt.col(l) / sumGammaLt;
        arma::mat tempMat = data- newMu * arma::ones(1,T_);
        unsigned int d = data.n_rows;
        arma::mat newSigma = arma::zeros(d, d);
        for (unsigned int t = 0; t < T_ ; ++t) {
          arma::vec diff = data.col(t) - newMu;
          newSigma += diff * diff.t() * gamma_lt(t, l)/ sumGammaLt;
        }

        try{
          BModels_[i].updateGM(l, newWeight, newMu, newSigma);
        }
        catch( const std::runtime_error & e) {
          tempMat.print("tempMat");
          gamma_lt.col(l).print("gamma_lt");
          throw e;
        }
      }
      arma::uvec indices = BModels_[i].cleanupGMs();
      gammaLts_[i] = gammaLts_[i].cols(indices);
    }


    cacheProbabilities(data);
    logprobc = forwardProcedureCached();
    std::cout << logprobc << " " << logprobprev << std::endl;
    delta = logprobc - logprobprev;

  } 
  while (delta >= eps_ * std::abs(logprobprev));

  return logprobc;

}
Esempio n. 25
0
//[[Rcpp::export]]
Rcpp::List AddDualBounds(const arma::cube& path,
                         Rcpp::NumericVector control_,
                         Rcpp::Function Reward_,
                         Rcpp::Function Scrap_,
                         const arma::cube& mart,
                         const arma::ucube& path_action) {
  // Extract parameters
  const std::size_t n_dec = path.n_slices;
  const std::size_t n_path = path.n_rows;
  const std::size_t n_dim = path.n_cols;
  const arma::ivec c_dims = control_.attr("dim");
  const std::size_t n_pos = c_dims(0);
  const std::size_t n_action = c_dims(1);
  arma::imat control;  // full control
  arma::cube control2;  // partial control
  bool full_control;
  if (c_dims.n_elem == 3) {
    full_control = false;
    arma::cube temp_control2(control_.begin(), n_pos, n_action, n_pos, false);
    control2 = temp_control2;
  } else {
    full_control = true;
    arma::mat temp_control(control_.begin(), n_pos, n_action, false);
    control = arma::conv_to<arma::imat>::from(temp_control);
  }
  // Initialise with scrap value
  arma::cube primals(n_path, n_pos, n_dec);
  primals.slice(n_dec - 1) = Rcpp::as<arma::mat>(
      Scrap_(Rcpp::as<Rcpp::NumericMatrix>(Rcpp::wrap(path.slice(n_dec - 1)))));
  arma::cube duals = primals;
  // Perform the backward induction
  arma::uword policy;
  arma::cube reward(n_path, n_action, n_pos);
  if (full_control) {  // For the full control case
    arma::uword next;
    for (int tt = (n_dec - 2); tt >= 0; tt--) {
      reward = Rcpp::as<arma::cube>(Reward_(
          Rcpp::as<Rcpp::NumericMatrix>(Rcpp::wrap(path.slice(tt))), tt + 1));
#pragma omp parallel for private(policy, next)
      for (std::size_t ii = 0; ii < n_path; ii++) {
        for (std::size_t pp = 0; pp < n_pos; pp++) {
          // Primal values
          policy = path_action(ii, pp, tt) - 1;  // R to C indexing
          next = control(pp, policy) - 1;
          primals(ii, pp, tt) = reward(ii, policy, pp) + mart(ii, next, tt)
              + primals(ii, next, tt + 1);
          // Dual values
          next = control(pp, 0) - 1;
          duals(ii, pp, tt) = reward(ii, 0, pp) + mart(ii, next, tt)
              + duals(ii, next, tt + 1);
          for (std::size_t aa = 1; aa < n_action; aa++) {
            next = control(pp, aa) - 1;
            duals(ii, pp, tt) = std::max(reward(ii, aa, pp) + mart(ii, next, tt)
                         + duals(ii, next, tt + 1), duals(ii, pp, tt));
          }
        }
      }
    }
  } else {  // Positions evolve randomly
    arma::rowvec mod(n_pos);
    arma::rowvec prob_weight(n_pos);
    for (int tt = (n_dec - 2); tt >= 0; tt--) {
      reward = Rcpp::as<arma::cube>(Reward_(
          Rcpp::as<Rcpp::NumericMatrix>(Rcpp::wrap(path.slice(tt))), tt + 1));
#pragma omp parallel for private(policy, prob_weight, mod)
      for (std::size_t ii = 0; ii < n_path; ii++) {
        for (std::size_t pp = 0; pp < n_pos; pp++) {
          //  Primal values
          mod = primals.slice(tt + 1).row(ii) + mart.slice(tt).row(ii);
          policy = path_action(ii, pp, tt) - 1;
          prob_weight = control2.tube(pp, policy);
          primals(ii, pp, tt) =
              reward(ii, policy, pp) + arma::sum(prob_weight % mod);
          // Dual values
          mod = duals.slice(tt + 1).row(ii) + mart.slice(tt).row(ii);
          prob_weight = control2.tube(pp, 0);
          duals(ii, pp, tt) = reward(ii, 0, pp) + arma::sum(prob_weight % mod);
          for (std::size_t aa = 1; aa < n_action; aa++) {
            prob_weight = control2.tube(pp, aa);
            duals(ii, pp, tt) =
                std::max(reward(ii, aa, pp) + arma::sum(prob_weight % mod),
                         duals(ii, pp, tt));
          }
        }
      }
    }
  }
  return Rcpp::List::create(Rcpp::Named("primal") = primals,
                            Rcpp::Named("dual") = duals);
}
Esempio n. 26
0
List objectivex(const arma::mat& transition, const arma::cube& emission,
  const arma::vec& init, const arma::ucube& obs, const arma::umat& ANZ,
  const arma::ucube& BNZ, const arma::uvec& INZ, const arma::uvec& nSymbols,
  const arma::mat& coef, const arma::mat& X, arma::uvec& numberOfStates,
  unsigned int threads) {

  unsigned int q = coef.n_rows;
  arma::vec grad(
      arma::accu(ANZ) + arma::accu(BNZ) + arma::accu(INZ) + (numberOfStates.n_elem- 1) * q,
      arma::fill::zeros);
  arma::mat weights = exp(X * coef).t();
  if (!weights.is_finite()) {
    grad.fill(-arma::datum::inf);
    return List::create(Named("objective") = arma::datum::inf, Named("gradient") = wrap(grad));
  }

  weights.each_row() /= sum(weights, 0);

  arma::mat initk(emission.n_rows, obs.n_slices);

  for (unsigned int k = 0; k < obs.n_slices; k++) {
    initk.col(k) = init % reparma(weights.col(k), numberOfStates);
  }
  
  arma::uvec cumsumstate = arma::cumsum(numberOfStates);
  
  unsigned int error = 0;
  double ll = 0;
#pragma omp parallel for if(obs.n_slices >= threads) schedule(static) reduction(+:ll) num_threads(threads)       \
  default(none) shared(q, grad, nSymbols, ANZ, BNZ, INZ,                                                         \
    numberOfStates, cumsumstate, obs, init, initk, X, weights, transition, emission, error)
    for (unsigned int k = 0; k < obs.n_slices; k++) {
      if (error == 0) {
        arma::mat alpha(emission.n_rows, obs.n_cols); //m,n
        arma::vec scales(obs.n_cols); //n
        arma::sp_mat sp_trans(transition);
        uvForward(sp_trans.t(), emission, initk.col(k), obs.slice(k), alpha, scales);
        arma::mat beta(emission.n_rows, obs.n_cols); //m,n
        uvBackward(sp_trans, emission, obs.slice(k), beta, scales);

        int countgrad = 0;
        arma::vec grad_k(grad.n_elem, arma::fill::zeros);
        // transitionMatrix
        if (arma::accu(ANZ) > 0) {

          for (unsigned int jj = 0; jj < numberOfStates.n_elem; jj++) {
            arma::vec gradArow(numberOfStates(jj));
            arma::mat gradA(numberOfStates(jj), numberOfStates(jj));
            int ind_jj = cumsumstate(jj) - numberOfStates(jj);

            for (unsigned int i = 0; i < numberOfStates(jj); i++) {
              arma::uvec ind = arma::find(ANZ.row(ind_jj + i).subvec(ind_jj, cumsumstate(jj) - 1));

              if (ind.n_elem > 0) {
                gradArow.zeros();
                gradA.eye();
                gradA.each_row() -= transition.row(ind_jj + i).subvec(ind_jj, cumsumstate(jj) - 1);
                gradA.each_col() %= transition.row(ind_jj + i).subvec(ind_jj, cumsumstate(jj) - 1).t();


                for (unsigned int j = 0; j < numberOfStates(jj); j++) {
                  for (unsigned int t = 0; t < (obs.n_cols - 1); t++) {
                    double tmp = alpha(ind_jj + i, t);
                    for (unsigned int r = 0; r < obs.n_rows; r++) {
                      tmp *= emission(ind_jj + j, obs(r, t + 1, k), r);
                    }
                    gradArow(j) += tmp * beta(ind_jj + j, t + 1);
                  }

                }

                gradArow = gradA * gradArow;
                grad_k.subvec(countgrad, countgrad + ind.n_elem - 1) = gradArow.rows(ind);
                countgrad += ind.n_elem;
              }
            }
          }
        }
        if (arma::accu(BNZ) > 0) {
          // emissionMatrix
          for (unsigned int r = 0; r < obs.n_rows; r++) {
            arma::vec gradBrow(nSymbols(r));
            arma::mat gradB(nSymbols(r), nSymbols(r));
            for (unsigned int i = 0; i < emission.n_rows; i++) {
              arma::uvec ind = arma::find(BNZ.slice(r).row(i));
              if (ind.n_elem > 0) {
                gradBrow.zeros();
                gradB.eye();
                gradB.each_row() -= emission.slice(r).row(i).subvec(0, nSymbols(r) - 1);
                gradB.each_col() %= emission.slice(r).row(i).subvec(0, nSymbols(r) - 1).t();
                for (unsigned int j = 0; j < nSymbols(r); j++) {
                  if (obs(r, 0, k) == j) {
                    double tmp = initk(i, k);
                    for (unsigned int r2 = 0; r2 < obs.n_rows; r2++) {
                      if (r2 != r) {
                        tmp *= emission(i, obs(r2, 0, k), r2);
                      }
                    }
                    gradBrow(j) += tmp * beta(i, 0);
                  }
                  for (unsigned int t = 0; t < (obs.n_cols - 1); t++) {
                    if (obs(r, t + 1, k) == j) {
                      double tmp = beta(i, t + 1);
                      for (unsigned int r2 = 0; r2 < obs.n_rows; r2++) {
                        if (r2 != r) {
                          tmp *= emission(i, obs(r2, t + 1, k), r2);
                        }
                      }
                      gradBrow(j) += arma::dot(alpha.col(t), transition.col(i)) * tmp;
                    }
                  }

                }
                gradBrow = gradB * gradBrow;
                grad_k.subvec(countgrad, countgrad + ind.n_elem - 1) = gradBrow.rows(ind);
                countgrad += ind.n_elem;

              }
            }
          }
        }
        if (arma::accu(INZ) > 0) {
          for (unsigned int i = 0; i < numberOfStates.n_elem; i++) {
            int ind_i = cumsumstate(i) - numberOfStates(i);
            arma::uvec ind = arma::find(
              INZ.subvec(ind_i, cumsumstate(i) - 1));
            if (ind.n_elem > 0) {
              arma::vec gradIrow(numberOfStates(i), arma::fill::zeros);
              for (unsigned int j = 0; j < numberOfStates(i); j++) {
                double tmp = weights(i, k);
                for (unsigned int r = 0; r < obs.n_rows; r++) {
                  tmp *= emission(ind_i + j, obs(r, 0, k), r);
                }
                gradIrow(j) += tmp * beta(ind_i + j, 0);

              }
              arma::mat gradI(numberOfStates(i), numberOfStates(i), arma::fill::zeros);
              gradI.eye();
              gradI.each_row() -= init.subvec(ind_i, cumsumstate(i) - 1).t();
              gradI.each_col() %= init.subvec(ind_i, cumsumstate(i) - 1);
              gradIrow = gradI * gradIrow;
              grad_k.subvec(countgrad, countgrad + ind.n_elem - 1) = gradIrow.rows(ind);
              countgrad += ind.n_elem;
            }
          }
        }
        for (unsigned int jj = 1; jj < numberOfStates.n_elem; jj++) {
          unsigned int ind_jj = (cumsumstate(jj) - numberOfStates(jj));

          for (unsigned int j = 0; j < emission.n_rows; j++) {
            double tmp = 1.0;
            for (unsigned int r = 0; r < obs.n_rows; r++) {
              tmp *= emission(j, obs(r, 0, k), r);
            }
            if ((j >= ind_jj) & (j < cumsumstate(jj))) {
              grad_k.subvec(countgrad + q * (jj - 1), countgrad + q * jj - 1) += tmp
              * beta(j, 0) * initk(j, k) * X.row(k).t() * (1.0 - weights(jj, k));
            } else {
              grad_k.subvec(countgrad + q * (jj - 1), countgrad + q * jj - 1) -= tmp
              * beta(j, 0) * initk(j, k) * X.row(k).t() * weights(jj, k);
            }
          }

        }
        if (!scales.is_finite() || !beta.is_finite()) {
#pragma omp atomic
          error++;
        } else {
          ll -= arma::sum(log(scales));
#pragma omp critical
          grad += grad_k;
        }
      }
    }
    if(error > 0){
      ll = -arma::datum::inf;
      grad.fill(-arma::datum::inf);
    }
    return List::create(Named("objective") = -ll, Named("gradient") = wrap(-grad));
}
Esempio n. 27
0
// [[Rcpp::export]]
Rcpp::List objective(const arma::mat& transition, const arma::cube& emission,
  const arma::vec& init, arma::ucube& obs, const arma::umat& ANZ,
  const arma::ucube& BNZ, const arma::uvec& INZ, const arma::uvec& nSymbols, unsigned int threads) {

  arma::vec grad(arma::accu(ANZ) + arma::accu(BNZ) + arma::accu(INZ), arma::fill::zeros);

  unsigned int error = 0;
  double ll = 0;
#pragma omp parallel for if(obs.n_slices >= threads) schedule(static) reduction(+:ll) num_threads(threads) \
  default(shared) //shared(grad, nSymbols, ANZ, BNZ, INZ, obs, init, transition, emission, error, arma::fill::zeros)
    for (unsigned int k = 0; k < obs.n_slices; k++) {
      if (error == 0) {
        arma::mat alpha(emission.n_rows, obs.n_cols); //m,n
        arma::vec scales(obs.n_cols); //n
        arma::sp_mat sp_trans(transition);
        uvForward(sp_trans.t(), emission, init, obs.slice(k), alpha, scales);
        arma::mat beta(emission.n_rows, obs.n_cols); //m,n
        uvBackward(sp_trans, emission, obs.slice(k), beta, scales);

        int countgrad = 0;
        arma::vec grad_k(grad.n_elem, arma::fill::zeros);
        // transitionMatrix
        arma::vec gradArow(emission.n_rows);
        arma::mat gradA(emission.n_rows, emission.n_rows);

        for (unsigned int i = 0; i < emission.n_rows; i++) {
          arma::uvec ind = arma::find(ANZ.row(i));

          if (ind.n_elem > 0) {
            gradArow.zeros();
            gradA.eye();
            gradA.each_row() -= transition.row(i);
            gradA.each_col() %= transition.row(i).t();

            for (unsigned int t = 0; t < (obs.n_cols - 1); t++) {
              for (unsigned int j = 0; j < emission.n_rows; j++) {
                double tmp = 1.0;
                for (unsigned int r = 0; r < obs.n_rows; r++) {
                  tmp *= emission(j, obs(r, t + 1, k), r);
                }
                gradArow(j) += alpha(i, t) * tmp * beta(j, t + 1);
              }

            }

            gradArow = gradA * gradArow;
            grad_k.subvec(countgrad, countgrad + ind.n_elem - 1) = gradArow.rows(ind);
            countgrad += ind.n_elem;
          }
        }
        // emissionMatrix
        for (unsigned int r = 0; r < obs.n_rows; r++) {
          arma::vec gradBrow(nSymbols(r));
          arma::mat gradB(nSymbols(r), nSymbols(r));
          for (unsigned int i = 0; i < emission.n_rows; i++) {
            arma::uvec ind = arma::find(BNZ.slice(r).row(i));
            if (ind.n_elem > 0) {
              gradBrow.zeros();
              gradB.eye();
              gradB.each_row() -= emission.slice(r).row(i).subvec(0, nSymbols(r) - 1);
              gradB.each_col() %= emission.slice(r).row(i).subvec(0, nSymbols(r) - 1).t();
              for (unsigned int j = 0; j < nSymbols(r); j++) {
                if (obs(r, 0, k) == j) {
                  double tmp = 1.0;
                  for (unsigned int r2 = 0; r2 < obs.n_rows; r2++) {
                    if (r2 != r) {
                      tmp *= emission(i, obs(r2, 0, k), r2);
                    }
                  }
                  gradBrow(j) += init(i) * tmp * beta(i, 0);
                }
                for (unsigned int t = 0; t < (obs.n_cols - 1); t++) {
                  if (obs(r, t + 1, k) == j) {
                    double tmp = 1.0;
                    for (unsigned int r2 = 0; r2 < obs.n_rows; r2++) {
                      if (r2 != r) {
                        tmp *= emission(i, obs(r2, t + 1, k), r2);
                      }
                    }
                    gradBrow(j) += arma::dot(alpha.col(t), transition.col(i)) * tmp
                      * beta(i, t + 1);
                  }
                }

              }
              gradBrow = gradB * gradBrow;
              grad_k.subvec(countgrad, countgrad + ind.n_elem - 1) = gradBrow.rows(ind);
              countgrad += ind.n_elem;

            }
          }
        }
        // InitProbs
        arma::uvec ind = arma::find(INZ);
        if (ind.n_elem > 0) {
          arma::vec gradIrow(emission.n_rows);
          arma::mat gradI(emission.n_rows, emission.n_rows);

          gradIrow.zeros();
          gradI.zeros();
          gradI.eye();
          gradI.each_row() -= init.t();
          gradI.each_col() %= init;
          for (unsigned int j = 0; j < emission.n_rows; j++) {
            double tmp = 1.0;
            for (unsigned int r = 0; r < obs.n_rows; r++) {
              tmp *= emission(j, obs(r, 0, k), r);
            }
            gradIrow(j) += tmp * beta(j, 0);
          }

          gradIrow = gradI * gradIrow;
          grad_k.subvec(countgrad, countgrad + ind.n_elem - 1) = gradIrow.rows(ind);
          countgrad += ind.n_elem;
        }
        if (!scales.is_finite() || !beta.is_finite()) {
#pragma omp atomic
          error++;
        } else {
          ll -= arma::sum(log(scales));
#pragma omp critical
          grad += grad_k;
         // gradmat.col(k) = grad_k;
        }
//           for (unsigned int ii = 0; ii < grad_k.n_elem; ii++) {
// #pragma omp atomic
//             grad(ii) += grad_k(ii);
//         }

      }
    }
    if(error > 0){
      ll = -arma::datum::inf;
      grad.fill(-arma::datum::inf);
    }
    // } else {
    //   grad = sum(gradmat, 1);
    // }
    return Rcpp::List::create(Rcpp::Named("objective") = -ll, Rcpp::Named("gradient") = Rcpp::wrap(-grad));
}
Esempio n. 28
0
double ung_ssm::bsf_filter(const unsigned int nsim, arma::cube& alpha,
  arma::mat& weights, arma::umat& indices) {
  
  arma::uvec nonzero = arma::find(P1.diag() > 0);
  arma::mat L_P1(m, m, arma::fill::zeros);
  if (nonzero.n_elem > 0) {
    L_P1.submat(nonzero, nonzero) =
      arma::chol(P1.submat(nonzero, nonzero), "lower");
  }
  std::normal_distribution<> normal(0.0, 1.0);
  for (unsigned int i = 0; i < nsim; i++) {
    arma::vec um(m);
    for(unsigned int j = 0; j < m; j++) {
      um(j) = normal(engine);
    }
    alpha.slice(i).col(0) = a1 + L_P1 * um;
  }
  
  std::uniform_real_distribution<> unif(0.0, 1.0);
  arma::vec normalized_weights(nsim);
  double loglik = 0.0;
  
  if(arma::is_finite(y(0))) {
    weights.col(0) = log_obs_density(0, alpha);
    double max_weight = weights.col(0).max();
    weights.col(0) = arma::exp(weights.col(0) - max_weight);
    double sum_weights = arma::accu(weights.col(0));
    if(sum_weights > 0.0){
      normalized_weights = weights.col(0) / sum_weights;
    } else {
      return -std::numeric_limits<double>::infinity();
    }
    loglik = max_weight + std::log(sum_weights / nsim);
  } else {
    weights.col(0).ones();
    normalized_weights.fill(1.0 / nsim);
  }
  for (unsigned int t = 0; t < n; t++) {
    
    arma::vec r(nsim);
    for (unsigned int i = 0; i < nsim; i++) {
      r(i) = unif(engine);
    }
    
    indices.col(t) = stratified_sample(normalized_weights, r, nsim);
    
    arma::mat alphatmp(m, nsim);
    
    for (unsigned int i = 0; i < nsim; i++) {
      alphatmp.col(i) = alpha.slice(indices(i, t)).col(t);
    }
    
    for (unsigned int i = 0; i < nsim; i++) {
      arma::vec uk(k);
      for(unsigned int j = 0; j < k; j++) {
        uk(j) = normal(engine);
      }
      alpha.slice(i).col(t + 1) = C.col(t * Ctv) +
        T.slice(t * Ttv) * alphatmp.col(i) + R.slice(t * Rtv) * uk;
    }
    
    if ((t < (n - 1)) && arma::is_finite(y(t + 1))) {
      weights.col(t + 1) = log_obs_density(t + 1, alpha);
      
      double max_weight = weights.col(t + 1).max();
      weights.col(t + 1) = arma::exp(weights.col(t + 1) - max_weight);
      double sum_weights = arma::accu(weights.col(t + 1));
      if(sum_weights > 0.0){
        normalized_weights = weights.col(t + 1) / sum_weights;
      } else {
        return -std::numeric_limits<double>::infinity();
      }
      loglik += max_weight + std::log(sum_weights / nsim);
    } else {
      weights.col(t + 1).ones();
      normalized_weights.fill(1.0/nsim);
    }
  }
  // constant part of the log-likelihood
  switch(distribution) {
  case 0 :
    loglik += arma::uvec(arma::find_finite(y)).n_elem * norm_log_const(phi);
    break;
  case 1 : {
      arma::uvec finite_y(find_finite(y));
      loglik += poisson_log_const(y(finite_y), u(finite_y));
    } break;
  case 2 : {
    arma::uvec finite_y(find_finite(y));
    loglik += binomial_log_const(y(finite_y), u(finite_y));
  } break;
  case 3 : {
    arma::uvec finite_y(find_finite(y));
    loglik += negbin_log_const(y(finite_y), u(finite_y), phi);
  } break;
  }
  return loglik;
}
Esempio n. 29
0
//' Simulate an LNA path using a non-centered parameterization for the
//' log-transformed counting process LNA.
//'
//' @param lna_times vector of interval endpoint times
//' @param lna_draws vector of N(0,1) draws to be mapped to the path
//' @param lna_pars numeric matrix of parameters, constants, and time-varying
//'   covariates at each of the lna_times
//' @param init_start index in the parameter vector where the initial compartment
//'   volumes start
//' @param param_update_inds logical vector indicating at which of the times the
//'   LNA parameters need to be updated.
//' @param stoich_matrix stoichiometry matrix giving the changes to compartments
//'   from each reaction
//' @param forcing_inds logical vector of indicating at which times in the
//'   time-varying covariance matrix a forcing is applied.
//' @param forcing_matrix matrix containing the forcings.
//' @param max_attempts maximum number of tries if the first increment is rejected
//' @param step_size initial step size for the ODE solver (adapted internally,
//' but too large of an initial step can lead to failure in stiff systems).
//' @param lna_pointer external pointer to the compiled LNA integration function.
//' @param set_pars_pointer external pointer to the function for setting LNA pars.
//' @return list containing the stochastic perturbations (i.i.d. N(0,1) draws) and
//' the LNA path on its natural scale which is determined by the perturbations.
//'
//' @export
// [[Rcpp::export]]
Rcpp::List propose_lna(const arma::rowvec& lna_times,
                       const Rcpp::NumericVector& lna_draws,
                       const Rcpp::NumericMatrix& lna_pars,
                       const Rcpp::IntegerVector& lna_param_inds,
                       const Rcpp::IntegerVector& lna_tcovar_inds,
                       const int init_start,
                       const Rcpp::LogicalVector& param_update_inds,
                       const arma::mat& stoich_matrix,
                       const Rcpp::LogicalVector& forcing_inds,
                       const arma::uvec& forcing_tcov_inds,
                       const arma::mat& forcings_out,
                       const arma::cube& forcing_transfers,
                       int max_attempts,
                       double step_size,
                       SEXP lna_pointer,
                       SEXP set_pars_pointer) {
      
        // get the dimensions of various objects
        int n_events = stoich_matrix.n_cols;         // number of transition events, e.g., S2I, I2R
        int n_comps  = stoich_matrix.n_rows;         // number of model compartments (all strata)
        int n_odes   = n_events + n_events*n_events; // number of ODEs
        int n_times  = lna_times.n_elem;             // number of times at which the LNA must be evaluated
        int n_tcovar = lna_tcovar_inds.size();       // number of time-varying covariates or parameters
        int n_forcings = forcing_tcov_inds.n_elem;   // number of forcings
        
        // for use with forcings
        double forcing_flow = 0;
        arma::vec forcing_distvec(n_comps, arma::fill::zeros);

        // initialize the objects used in each time interval
        double t_L = 0;
        double t_R = 0;
        Rcpp::NumericVector current_params = lna_pars.row(0);   // vector for storing the current parameter values
        CALL_SET_ODE_PARAMS(current_params, set_pars_pointer);  // set the parameters in the odeintr namespace

        // initial state vector - copy elements from the current parameter vector
        arma::vec init_volumes(current_params.begin() + init_start, n_comps);

        // initialize the LNA objects - the vector for storing the current state
        Rcpp::NumericVector lna_state_vec(n_odes);   // vector to store the results of the ODEs
        
        arma::vec lna_drift(n_events, arma::fill::zeros); // incidence mean vector (natural scale)
        arma::mat lna_diffusion(n_events, n_events, arma::fill::zeros); // diffusion matrix
        
        arma::vec log_lna(n_events, arma::fill::zeros);  // LNA increment, log scale
        arma::vec nat_lna(n_events, arma::fill::zeros);  // LNA increment, natural scale
        
        // Objects for computing the eigen decomposition of the LNA covariance matrices
        arma::vec svd_d(n_events, arma::fill::zeros);
        arma::mat svd_U(n_events, n_events, arma::fill::zeros);
        arma::mat svd_V(n_events, n_events, arma::fill::zeros);
        bool good_svd = true;
        
        // matrix in which to store the LNA path
        arma::mat lna_path(n_events+1, n_times, arma::fill::zeros); // incidence path
        arma::mat prev_path(n_comps+1, n_times, arma::fill::zeros); // prevalence path (compartment volumes)
        lna_path.row(0) = lna_times;
        prev_path.row(0) = lna_times;
        prev_path(arma::span(1,n_comps), 0) = init_volumes;
        
        // apply forcings if called for - applied after censusing at the first time
        if(forcing_inds[0]) {
              
              // distribute the forcings proportionally to the compartment counts in the applicable states
              for(int j=0; j < n_forcings; ++j) {
                    
                    forcing_flow       = lna_pars(0, forcing_tcov_inds[j]);
                    forcing_distvec    = forcing_flow * normalise(forcings_out.col(j) % init_volumes, 1);
                    init_volumes      += forcing_transfers.slice(j) * forcing_distvec;
              }
        }
        
        // sample the stochastic perturbations - use Rcpp RNG for safety
        Rcpp::NumericVector draws_rcpp(Rcpp::clone(lna_draws));
        arma::mat draws(draws_rcpp.begin(), n_events, n_times-1, true);
        
        // iterate over the time sequence, solving the LNA over each interval
        for(int j=0; j < (n_times-1); ++j) {
              
              // set the times of the interval endpoints
              t_L = lna_times[j];
              t_R = lna_times[j+1];
              
              // Reset the LNA state vector and integrate the LNA ODEs over the next interval to 0
              std::fill(lna_state_vec.begin(), lna_state_vec.end(), 0.0);
              CALL_INTEGRATE_STEM_ODE(lna_state_vec, t_L, t_R, step_size, lna_pointer);
              
              // transfer the elements of the lna_state_vec to the process objects
              std::copy(lna_state_vec.begin(), lna_state_vec.begin() + n_events, lna_drift.begin());
              std::copy(lna_state_vec.begin() + n_events, lna_state_vec.end(), lna_diffusion.begin());
              
              // map the stochastic perturbation to the LNA path on its natural scale
              try{
                    if(lna_drift.has_nan() || lna_diffusion.has_nan()) {
                          good_svd = false;
                          throw std::runtime_error("Integration failed.");
                    } else {
                          good_svd = arma::svd(svd_U, svd_d, svd_V, lna_diffusion); // compute the SVD
                    }
                    
                    if(!good_svd) {
                          throw std::runtime_error("SVD failed.");
                          
                    } else {
                          svd_d.elem(arma::find(svd_d < 0)).zeros();          // zero out negative sing. vals
                          svd_V.each_row() %= arma::sqrt(svd_d).t();          // multiply rows of V by sqrt(d)
                          svd_U *= svd_V.t();                                 // complete svd_sqrt
                          svd_U.elem(arma::find(lna_diffusion == 0)).zeros(); // zero out numerical errors
                          
                          log_lna = lna_drift + svd_U * draws.col(j);         // map the LNA draws
                    }
                    
              } catch(std::exception & err) {
                    
                    // reinstatiate the SVD objects
                    arma::vec svd_d(n_events, arma::fill::zeros);
                    arma::mat svd_U(n_events, n_events, arma::fill::zeros);
                    arma::mat svd_V(n_events, n_events, arma::fill::zeros);
                    
                    // forward the exception
                    forward_exception_to_r(err);
                    
              } catch(...) {
                    ::Rf_error("c++ exception (unknown reason)");
              }
              
              // compute the LNA increment
              nat_lna = arma::vec(expm1(Rcpp::NumericVector(log_lna.begin(), log_lna.end())));
              
              // update the compartment volumes
              init_volumes += stoich_matrix * nat_lna;
              
              // throw errors for negative increments or negative volumes
              try{
                    if(any(nat_lna < 0)) {
                          throw std::runtime_error("Negative increment.");
                    }
                    
                    if(any(init_volumes < 0)) {
                          throw std::runtime_error("Negative compartment volumes.");
                    }
                    
              } catch(std::exception &err) {
                    
                    forward_exception_to_r(err);
                    
              } catch(...) {
                    ::Rf_error("c++ exception (unknown reason)");
              }      
              
              // save the increment and the prevalence
              lna_path(arma::span(1,n_events), j+1) = nat_lna;
              prev_path(arma::span(1,n_comps), j+1) = init_volumes;
              
              // apply forcings if called for - applied after censusing the path
              if(forcing_inds[j+1]) {
                    
                    // distribute the forcings proportionally to the compartment counts in the applicable states
                    for(int s=0; s < n_forcings; ++s) {
                          
                          forcing_flow       = lna_pars(j+1, forcing_tcov_inds[s]);
                          forcing_distvec    = forcing_flow * normalise(forcings_out.col(s) % init_volumes, 1);
                          init_volumes      += forcing_transfers.slice(s) * forcing_distvec;
                    }
                    
                    // throw errors for negative negative volumes
                    try{
                          if(any(init_volumes < 0)) {
                                throw std::runtime_error("Negative compartment volumes.");
                          }
                          
                    } catch(std::exception &err) {
                          
                          forward_exception_to_r(err);
                          
                    } catch(...) {
                          ::Rf_error("c++ exception (unknown reason)");
                    }
              }
              
              // update the parameters if they need to be updated
              if(param_update_inds[j+1]) {
                    
                    // time-varying covariates and parameters
                    std::copy(lna_pars.row(j+1).end() - n_tcovar,
                              lna_pars.row(j+1).end(),
                              current_params.end() - n_tcovar);
                    
              }
              
              // copy the compartment volumes to the current parameters
              std::copy(init_volumes.begin(), init_volumes.end(), current_params.begin() + init_start);
              
              // set the lna parameters and reset the LNA state vector
              CALL_SET_ODE_PARAMS(current_params, set_pars_pointer);
        }
        
        // return the paths
        return Rcpp::List::create(Rcpp::Named("draws")     = draws,
                                  Rcpp::Named("lna_path")  = lna_path.t(),
                                  Rcpp::Named("prev_path") = prev_path.t());
}
Esempio n. 30
0
File: de.cpp Progetto: kthohr/BMR
bool
mcmc::de_int(const arma::vec& initial_vals, arma::cube& draws_out, std::function<double (const arma::vec& vals_inp, void* target_data)> target_log_kernel, void* target_data, algo_settings_t* settings_inp)
{
    bool success = false;

    const size_t n_vals = initial_vals.n_elem;
    
    //
    // DE settings

    algo_settings_t settings;

    if (settings_inp) {
        settings = *settings_inp;
    }

    const size_t n_pop    = settings.de_n_pop;
    const size_t n_gen    = settings.de_n_gen;
    const size_t n_burnin = settings.de_n_burnin;

    const bool jumps = settings.de_jumps;
    const double par_b = settings.de_par_b;
    // const double par_gamma = settings.de_par_gamma;
    const double par_gamma = 2.38 / std::sqrt(2.0*n_vals);
    const double par_gamma_jump = settings.de_par_gamma_jump;

    const arma::vec par_initial_lb = (settings.de_initial_lb.n_elem == n_vals) ? settings.de_initial_lb : initial_vals - 0.5;
    const arma::vec par_initial_ub = (settings.de_initial_ub.n_elem == n_vals) ? settings.de_initial_ub : initial_vals + 0.5;

    const bool vals_bound = settings.vals_bound;

    const arma::vec lower_bounds = settings.lower_bounds;
    const arma::vec upper_bounds = settings.upper_bounds;

    const arma::uvec bounds_type = determine_bounds_type(vals_bound, n_vals, lower_bounds, upper_bounds);

    // lambda function for box constraints

    std::function<double (const arma::vec& vals_inp, void* box_data)> box_log_kernel \
    = [target_log_kernel, vals_bound, bounds_type, lower_bounds, upper_bounds] (const arma::vec& vals_inp, void* target_data) \
    -> double
    {
        if (vals_bound)
        {
            arma::vec vals_inv_trans = inv_transform(vals_inp, bounds_type, lower_bounds, upper_bounds);

            return target_log_kernel(vals_inv_trans, target_data) + log_jacobian(vals_inp, bounds_type, lower_bounds, upper_bounds);
        } 
        else
        {
            return target_log_kernel(vals_inp, target_data);
        }
    };

    //
    arma::vec target_vals(n_pop);
    arma::mat X(n_pop,n_vals);

#ifdef MCMC_USE_OPENMP
    #pragma omp parallel for
#endif
    for (size_t i=0; i < n_pop; i++)
    {
        X.row(i) = par_initial_lb.t() + (par_initial_ub.t() - par_initial_lb.t())%arma::randu(1,n_vals);

        double prop_kernel_val = box_log_kernel(X.row(i).t(),target_data);

        if (!std::isfinite(prop_kernel_val)) {
            prop_kernel_val = neginf;
        }
        
        target_vals(i) = prop_kernel_val;
    }

    //
    // begin MCMC run

    draws_out.set_size(n_pop,n_vals,n_gen);

    int n_accept = 0;
    double par_gamma_run = par_gamma;
    
    for (size_t j=0; j < n_gen + n_burnin; j++) 
    {
        double temperature_j = de_cooling_schedule(j,n_gen);
        
        if (jumps && ((j+1) % 10 == 0)) {
            par_gamma_run = par_gamma_jump;
        }

#ifdef MCMC_USE_OPENMP
        #pragma omp parallel for
#endif
            for (size_t i=0; i < n_pop; i++) {

                uint_t R_1, R_2;

                do {
                    R_1 = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_pop-1)));
                } while(R_1==i);

                do {
                    R_2 = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_pop-1)));
                } while(R_2==i || R_2==R_1);

                //

                arma::vec prop_rand = arma::randu(n_vals,1)*(2*par_b) - par_b; // generate a vector of U[-b,b] RVs

                arma::rowvec X_prop = X.row(i) + par_gamma_run * ( X.row(R_1) - X.row(R_2) ) + prop_rand;
                
                double prop_kernel_val = box_log_kernel(X_prop.t(),target_data);
                
                if (!std::isfinite(prop_kernel_val)) {
                    prop_kernel_val = neginf;
                }
                
                //
                
                double comp_val = prop_kernel_val - target_vals(i);
                double z = arma::as_scalar(arma::randu(1,1));

                if (comp_val > temperature_j * std::log(z)) {
                    X.row(i) = X_prop;
                    
                    target_vals(i) = prop_kernel_val;
                    
                    if (j >= n_burnin) {
                        n_accept++;
                    }
                }
            }
        
        //

        if (j >= n_burnin) {
            draws_out.slice(j-n_burnin) = X;
        }
        
        if (jumps && ((j+1) % 10 == 0)) {
            par_gamma_run = par_gamma;
        }
    }

    success = true;

    //
    
    if (vals_bound) {
#ifdef MCMC_USE_OPENMP
        #pragma omp parallel for
#endif
        for (size_t ii = 0; ii < n_gen; ii++) {
            for (size_t jj = 0; jj < n_pop; jj++) {
                draws_out.slice(ii).row(jj) = arma::trans(inv_transform(draws_out.slice(ii).row(jj).t(), bounds_type, lower_bounds, upper_bounds));
            }
        }
    }
    
    if (settings_inp) {
        settings_inp->de_accept_rate = static_cast<double>(n_accept) / static_cast<double>(n_pop*n_gen);
    }

    //
    
    return success;
}